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Visao geral

* Vibracoes de sistemas de 1 GL

: ~ : * Livres
* VVibracdes de sistemas com 2 GL .
* Forcadas harmonicas
* Vibragdes de sistemas com n GL - Forcadas gerais

* VVibracoes de sistemas continuos

e Solucdes analiticas [integracao e Laplace]
e Solucdes numéricas
* Solucdes numéricas por Elementos Finitos



Nesta fase do curso veremos

* Vibracoes de 1 GL
* Vibracoes de 2 GL
* VVibracoes de hastes

* Vibracdes de vigas

* llustracOes experimentais



Sistemas de 1 GL: comentarios sobre idealizacao [ou modelagem]
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FIGURE 2.4 Modeling of tall structure as spring-mass system.

L
|
6 |l

FIGURE 2.3 The space needle (structure).



Equacao do movimento
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FIGURE 2.1 A spring-mass system in horizontal position.

F(1) = —kx = m¥

mx + kx =10

(2.3)

The solution of Eq. (2.3) can be found by assuming
x(t) = Ce” (2.11)

where C and s are constants to be determined. Substitution of Eq. (2.11) into Eq. (2.3)
gives
C(ms®> + k) =0

Since C cannot be zero, we have
ms> + k=0 (2.12)

and hence

E\1/2
§ = —— = tiw, (2.13)



Equation (2.12) is called the awxiliary or the characteristic equation corresponding to the dif-
ferential Eq. (2.3). The two values of s given by Eq. (2.13) are the roots of the characteristic
equation, also known as the eigenvalues or the characteristic values of the problem. Since
both values of s satisfy Eq. (2.12), the general solution of Eqg. (2.3) can be expressed as

x(1) = Ce' + Coe™nl (2.15)

where C,; and (, are constants. By using the identities

e = oos ot + i sin at

Eqg. (2.15) can be rewritten as
x(1) = A cos wt + A, sin wyt (2.16)

where A; and A, are new constants. The constants C; and C, or A; and A, can be deter-
mined from the initial conditions of the system. Two conditions are to be specified to eval-
uate these constants uniquely. Note that the number of conditions to be specified is the
same as the order of the governing ditferential equation. In the present case, if the values of
displacement x(¢) and velocity x(t) = (dx/dt)(r) are specified as xg and xp att = 0, we
have, from Eq. (2.16),
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Hence A = xgand A5 = xy/w, Thus the solution of Eq. (2.3) subject to the initial con-
ditions of Eq. (2.17) is given by

x(1) = xpcos wt + 20 Gin Wl (2.18)
[i1]
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‘ Eqw;tion (2.16) can be expressed in a different form by introducing the notation

Ay = Acos ¢
As = Asind

(2.19)

where A and ¢ are the new constants, which can be expressed in terms of A; and A, as

2 2 1:[! 2 |2
A=Al + A2 = | xj+ | — = amplitude

oy,

¢ = tan™ A tan” *o = phase angle
A XpWy P ¢

Introducing Eq. (2.19) into Eq. (2.16), the solution can be written as

x(1) = Acos (w,t — &)
By using the relations
Ay = Apsin dy
As = Apcos dy
Eq. (2.16) can also be expressed as
x(1) = Agsin(w,t + dy)

where

and

by
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The nature of harmonic oscillation can be represented graphically as in Fig. 2.8(a). If A
denotes a vector of magnitude A, which makes an angle w,t — ¢ with respect to the
v_ﬁertical (x) axis, then the solution, Eq. (2.21), can be seen to be the projection of the vector
A on the x-axis. The constants A; and A, of Eq. (2.16), given by Eq. (2.19), are merely the
rectangular components of A along two orthogonal axes making angles ¢ and —(5 — &)
with respect to the vector A. Since the angle w,t — ¢ is a linear function of time, it
increases linearly with time; the entire diagram thus rotates counterclockwise at an angular
velocity w,,. As the diagram (Fig. 2.8a) rotates, the pro jection of A onto the x-axis varies
harmonically so that the motion repeats itself every time the vector A sweeps an angle of
2. The projection of A, namely (1), is shown plotted in Fig. 2.8(b) as a function of w1,

and as a function of ¢ in Fig. 2.8(c). The phase angle ¢ can also be interpreted as the angle
between the origin and the first peak.
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FIGURE 2.8 Graphical representation of the motion of a harmonic oscillator.
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If the spring-mass system is in a vertical position, as shown in Fig. 2.7(a), the circu-
lar natural frequency can be expressed as

r \1/2
w, = (;) (2.26)

The spring constant k can be expressed in terms of the mass m from Eq. (2.9) as

W mg

k = — =
5., 5e, (2.27)

Substitution of Eq. (2.27) into Eq. (2.14) yields

g \I/?
Wy = 3_“ (2.28)
Hence the natural frequency in cycles per second and the natural period are given by
1 [ g\
fo = 27\ (2.29)
1 ESL IIJ'IE
== 2 " (2.30)

Thus, when the mass vibrates in a vertical direction, we can compute the natural fre-
quency and the period of vibration by simply measuring the static deflection 6., We
don’t need to know the spring stiffness k and the mass m.
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FIGURE 2.7 A spring-mass system in vertical position.
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From Eq. (2.21), the velocity x( t) and the acceleration ¥( 1) of the mass m at time 1 can
be obtained as

i) =250 = —w Asin(w,r — &) = w, A cos (w,,: — b+ E)
dt 2
. d’x 5 5
() = FU) = —wpA cos(wyt — @) = wpAcos(wyt — & + @) (231

Equation (2.31) shows that the velocity leads the displacement by /2 and the accel-
eration leads the displacement by 7.

If the initial displacément (xp) is zero, Eq. (2.21) becomes

x(r) = 20 cos (mn-' — %) = x—ﬂﬁiﬂwnf (2.32)

Wy Wy
If the initial velocity ( xg) is zero, however, the solution becomes

x(t) = xpcos wyt (2.33)

11



The response of a single-degree-of-freedom system can be represented in the dis-
placement (x)-velocity -plane, known as the state space or phase plane. For this we
consider the displacement given by Eq. (2.21 ) and the corresponding velocity:

x(t) = Acos(w,t — )

or
cos(w,t — ¢) =
x(1) = —Aw,sin(wg — @) (2.34)
or
sin( wut — @) = _Ain = —% (2.35)

where y = %/w,. By squaring and adding Egs. (2.34) and (2.35), we obtain
cos wyt — @) + sinf(wyt — ¢) =1

or

-t =1 (2.36)

The graph of Eq. (2.36) in the (x, y)-plane is a circle, as shown in Fig. 2.9(a), and
it constitutes the phase-plane or state-space representation of the undamped sys-
tem. The radius of the circle, A, is determined by the initial conditions of motion.
Note that the graph of Eq. (2.36) in the ( x, x)-plane will be an ellipse, as shown in
Fig. 2.9(b).
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Exercicios

1. O extremo de um braco robdtico de comprimento L, com propriedade de secao transversal
El, carrega uma massa G em seu extremo. O brac¢o esta girando com rotacao o e
repentinamente é travado pelo operador. Detalhe o movimento da massa em termos de
deslocamento, velocidade e aceleracao ao longo do tempo. Considere que o sistema possui
amortecimento pequeno e que a massa do braco é pequena em relacao a G.

2. Free-Vibration Response Due to Impact

A cantilever beam carries a mass M at the free end as shown in Fig. 2.11(a). A mass m falls from a
height /i onto the mass M and adheres to it without rebounding. Determine the resulting transverse

vibration of the beam.
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Solution: When the mass m falls through a height h, it will strike the mass M with a velocity of
vm = V2gh, where g 1s the acceleration due to gravity. Since the mass m adheres to M without
rebounding, the velocity of the combined mass (M + m) immediately after the impact ( xp) can be
found using the principle of conservation of momentum:

mvy, = (M + m)x

. m o m —
Jrn_(1'I»f+n'1)lm (M+m) 2gh (ED

The static equilibrium position of the beam with the new mass (M + m) is located at a distance of

“E below the static equilibrium position of the original mass (M) as shown in Fig. 2.11(c). Here k
denotes the stiffness of the cantilever beam, given by

_3E1
-

Since free vibration of the beam with the new mass (M + m) occurs about its own static equilibrium
position, the initial conditions of the problem can be stated as

M+ m

Xy = ——% Xg = ( ~ )VZgh (E2)

Thus the resulting free transverse vibration of the beam can be expressed as (see Eq. (2.21 )}

x1) = Acos(w,t — @)

B N2 12
A= I:xﬁ + (—D)

a‘"ﬂ
xﬂm‘ﬂ)
_ ko 3EI
wy, = =\Em

M + m (M + m)

with xp and Xg given by Eq. (E2).

where
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Y'Y = static equilibrium position of M
Z 7 = static equilibrium position of M + m
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3. Effect of Mass on @, of a Spring

Determine the effect of the mass of the spring on the natural frequency of the spring-mass system
shown mm Fig. 2.19.

Solution: To find the effect of the mass of the spring on the natural frequency of the spring-mass
system, we add the kinetic energy of the system to that of the attached mass and use the energy
method to determine the natural frequency. Let [ be the total length of the spring. If x denotes the
displacement of the lower end of the spring (or mass m), the displacement at distance y from the
support is given by y(x4). Similarly, if x denotes the velocity of the mass m, the velocity of a spring
element located at distance v from the support is given by ¥ £/1). The kinetic energy of the spring

element of length dy is
1 [ my vx \2 |
T\ T\ (ED

S

—

A1)
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where m, is the mass of the spring. The total kinetic energy of the system can be expressed as

T = kinetic energy of mass (7,,) + kinetic energy of spring ( T,

I . "1 ms vt
2 2\ LN\ e

1 . :
= —mx? + = —x? (E2)

Il

|
3
it
+

The total potential energy of the system is given by
U = tkx?® (E.3)
By assuming a harmonic motion
x(1) = X cos w,f (E.4)

where X is the maximum displacement of the mass and w,, is the natural frequency, the maximum
kinetic and potential energies can be expressed as

1 mg 3

Tmu:: = E m + T X - I:E..S}
|

U = E.G:I- (E.6)

By equating T,,,,, and Uy,,,. we obtain the expression for the natural frequency:

i 1f2
w = m, (E.7)
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4. No brago robotico analisado no problema 1, como poderia ser considerado a influéncia da massa do braco, m,
no movimento pds travamento?

5. Qual a frequéncia natural do sistema da figura?

6. Qual a frequéncia natural do sistema da figura ao se considerar que a
massa m cai de uma altura / e fica fixa ao conjunto? Descreva o I I
|
movimento resultante. ;
\ . e — T
L.
& M L
w?:
7. Qual a frequéncia natural do sistema da figura, sendo W uma forca peso? ko3 k 3
N .
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8. Obtenha a equagao do movimento para a massa da figura e a frequéncia natural do sistema? Considere
pequenos deslocamentos.

9. Descreva o movimento de um bungee jumper que se atira de uma altura H?

10. Qual a frequéncia natural desta viga, quando modelada com um sistema massa-mola?

Mass, 50 kg

/f-‘nm section, 5 em X 5 cm é .

Z e
- 0.8 m le—0.2 m—>]

N




Tracker = video analysis

https://physlets.org/tracker/
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