
Exercício Sete

30 de outubro de 2017

1 Exercício

O movimento sem atrito de uma argola de massa m está restrito ao aro de raio R. O aro gira com velocidade angular ω em torno de um eixo vertical que coincide com um diâmetro, como mostra a figura.

- (a) Calcule a força centrífuga.
- (b) Calcule a força de Coriolis.
- (c) Escreva a lagrangiana L do sistema.
- (d) Mostre que a grandeza

$$\dot{\theta} \frac{\partial L}{\partial \dot{\theta}} - L$$

é uma constante do movimento e identifique essa constante.

- (e) Obtenha a equação do movimento da argola e identifique as forças inerciais nessa equação.
- (f) Determine as posições de equilíbrio da argola para os casos em que $\omega < \sqrt{g/R}$ e $\omega > \sqrt{g/R}$.

(g) Identifique os pontos de equilíbrio estável e calcule a frequência de pequenas oscilações em torno desses pontos.

Sugestão: Considere a aproximação para pequenos ângulos, ou seja, substitua $\theta = \theta_0 + \alpha$ na equação do movimento, onde θ_0 é um ponto de equilíbrio estável e α é uma pequena perturbação desse equilíbrio $\alpha << 1$. Considere então apenas termos de primeira ordem.