Programa de P6s-Graduagao em

Engenharia Civil

Escola Politécnica da Universidade de Sdo Paulo

PEF-5750

Estruturas Leves
Ruy Marcelo de Oliverra Paulettr

ARGYRIS’ NATURAL MEMBRANE ELEMENT
THE NATURAL FORCE DENSITY METHOD

31/10/2017

Argyris’ Natural Membrane Element

Argyris ~1974

A membrane finite element based on natural deformations
(mesured along the sides of the element),

able to cope with large displacements and large deformations.

* Akin to a “strain rosette” plane stress finite element:

Meek ~1991
*A corrotational description;
*Small strains.

Pauletti ~2003

*a more concise notation;

~distinction between the constitutive and geometric
parts of the element tangent stiffness;

*the “simplest possible membrane finite element:
slarge displacements / small strains (a few percent...)

Pauletti (2006)

* first publication on the natural force density concept

R.M.O. Pauletti, “An extension of the force density procedure to membrane structures”

IASS Symposium / APCS Conference — New Olympics, New Shell and Spacial Structures, Beijing, 2006



Reference, Initial and Current Configurations
For Argyris Element

Element Description
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Element Stress Field and Vector of Internal Nodal Forces

Cauchy Plane Stress Tensor:
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Vector of Natural Forces

The vector of mternal forces can be
decomposed into components parallel to
the element sides:

e e
szz - N3V3
e

_ e e
p = N3V3_N1V1

e e
N1V1 - szz

Vector of Natural Forces




Natural Stresses

Compavring both expression available for pe:
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We obtain the Vector of Natural Forces, as function of Cauchy Stresses, and we
identity some “Natural Stresses” (o, 0,, 0,):
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Vector of Natural Stresses

We group the Natural Stresses” (o, o,, o,) in a Vector of Natural Stresses:
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Exercise 11. Verify the above expression!



Vector of Natural Stresses

Each natural force Ni can be understood as the nodal resultant of each

natural normal stress field O i
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Relationship between the Vectors of Natural
Forces and Stresses

n matrix form: N = \%
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Vector of Natural Deformations

The deformations along the sides
of the element are collected in a 2 2 .
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Exercise 12. Verify the above expression!

We remark that ©,and €, are energetically conjugate.

Indeed, by the Principle of Virtual Work:
68'6=05¢0, ,VOE
5876 =(Ts8) 6,=6¢T'o6, V58

Thus: G, = T "6 ., as deduced before.

Tangent Stiffness Matrix for Argyris’ Element
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Exact!




Tangent Stiffness Matrix for Argyris’ Element

External Stiffness Matrix
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Exercise 13. Verify the above expression for K./

Tangent Stiffness Matrix for Argyris’ Element

Exact!
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There exist some kind of relationshp N =N(a) so that
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Tangent Stiffness Matrix for Argyris’ Element

A simplification:  Linear elastic material behavior
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Thus, a linear relationship N = kna exists
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A linear elastic simplification for K,
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A linear elastic simplification for K,
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A linear elastic simplification for K,
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An order 3, symmetric matrix, that can be calculated and stored at the start, and rotated
at each Newton’s teration, according to the co-rotational element coordinate system:
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A benchmark:
an axisymmetric pressurized membrane

Membrane

Upper plate

Lower plate
Fastner
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THE NATURAL FORCE DENSITY METHOD

Vector of Natural Forces for Argyris’ Natural Membrane Element:
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The vector of internal forces can be . 2z 88
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element sides: N.VE — N.VE
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Relationships between

b
e _ A€ . _ eT e
element and global vectors: X*=AX ; P= ZlA P

b
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e=
Equilibrium: P=F

A system of linear equations: K g X = F

The Natural Force Densities (.0} can be collected into a

Vector of Natural Force Densitres:
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Remembering the relationship between Natural Forces and Stresses:
-1
N=VL o,

Natural force densitres can be calculated according to a given geometry and
an intial stress freld:
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Once the solution for X is obtamed, Cauchy stresses at
the final configuration can be computed according to:

6 =(VLT)N,
6 =(VLT)(V,LIT,T )8,

In general, even for uniform stresses at the reference configuration,
non-uniform stresses result at the equilibrium configuration!

This 15 fully coherent with the original force density method, for which
normal loads in the equilibrium configuration also vary, even thou
initial normal loads are uniform!

It can be shown that imposition of © y at a reference configuration
corvesponds to imposition of the 2% Prola-Kirchhoff stresses,
associated to the Cauchy stresses G at the equilibrium configuration!

R.M.O. Pauletti & P.M. Pimenta,

“The natural force density method for the shape finding of taut structures”
Computer Methods in Applied Mechanics and Engineering

Volume 197, Issues 49-50, 15 September 2008, Pages 4419-4428

TAIS result extends to membranes a conclusion alveady stated by
Bletzinger & Ramm, for the original force density concept (ie., for
cables).

K.-U. Bletzinger & E. Ramm,

“A General Finite element Approach to the Form Finding of Tensile
Structures by the Updated Reference Strategy’

Int. J. Space Struct. 14 (2) (1999) 131-145
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Some solutions:
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Some solutions:
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Iterative Natural Force Density Method:

Although Cauchy stresses at the final configuration cannot be imposed in
a single force density step, 2% P-K stresses can be imposed recursively

~ ! -1 2 -1 2 -1 2 2T \ A
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If an uniform rsotropre 24 P-K stress field is vecursively imposed, the
geometry converges (through a succession of viable shapes) to a minimal
surface, with an uniform sotvopre Cauchy stress field!

G, —> 0,

We note that a sequence of nonlinear structural analyses can also converge to a
minimal surface, but through a succession of non-equilibrium, unviable shapes! This
i5 a clear advantage of the iterative NFDM, which can be stopped at any iteration,
always giving a viable shape!
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Minimal surfaces:

Consider the minimal flat square membrane fixed at the corner and bounded by

border cables:
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The following relationship holds:

T= otlL

2sina

Upper limit condition:
a=0=T=w

Lower limit conditron:

T=\2=141

Exercise 14. Deduce the relationship between the membrane stresses and the normal force
on border cables, and numerically verify the upper and lower limit conditions stated above.

Minimal surfaces:

C. Isenberg, The science of soap films and soap bubbles, Dover Pub. Inc., New York, 1992.
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Minimal surfaces:

S3

Minimal surfaces:

S1
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Costa’s Surface:

The Costa surface is a complete minimal embedded surface of finite topology
(ice., it has no boundary and does not intersect itself). It has genus 1 with

three punctures (Schwalbe and Wagon 1449). Until this surface was
discovered by Costa (1984), the only other known complete minimal
embeddable surfaces in R* with no self-intersections were the plane (genus 0),

catenoid (genus O with two punctures), and helicoid (genus © with two

punctures), and it was conjectured that these were the only such surfaces.
Rather amazingly, the Costa surface belongs to the dihedral group of

symmetries.

Helaman Ferguson, 1999 / 2008 AUSTRALIAN WILDLIFE HEALTH CENTRE

Costa’s Surface:
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http://mathworld.wolfram.com/CompleteMinimalSurface.html
http://mathworld.wolfram.com/EmbeddedSurface.html
http://mathworld.wolfram.com/Boundary.html
http://mathworld.wolfram.com/Intersection.html
http://mathworld.wolfram.com/Puncture.html
http://mathworld.wolfram.com/Plane.html
http://mathworld.wolfram.com/Catenoid.html
http://mathworld.wolfram.com/Puncture.html
http://mathworld.wolfram.com/Helicoid.html
http://mathworld.wolfram.com/Puncture.html
http://mathworld.wolfram.com/DihedralGroup.html

Costa’s Surface:

Symmetry &
Patterns:

A physical model:

Non-minimal surfaces

Diretor Planes 11

Normal Directors n LTI
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Non-minimal surfaces

Local base vectors in global coordinates:

=V k=r—h

' =kxn

9=arcsin((f’><f)-l€)

Minimal and non-minimal conoids
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Comparison with an analytical solution

SLADE GELLIN* & RUY M.O. PAULETTI> - FORM FINDING OF TENSIONED FABRIC
CONE STRUCTURES USING THE NATURAL FORCE DENSITY METHOD (in IASS
2010)

— Alpha = 1 (Th)
= Alpha = 1 (Num)
Alpha = 15 (Th)
» Alpha = 1.5 (Num)|
—— Alpha = 2 (Th)
o Alpha = 2 (Num)
— Alpha =3 (Th)
- Alpha = 3 (Num)
—— Alpha = 4 (Th)
Alpha = 4 (Num)
Alpha = 5 (Th)
Alpha = 5 (Num)

o 05 1 15 2 25 3

zm Radial Coordinate, m

Generatrix Profile Stress Profile

Minimal saddle surface:




Non-minimal saddle surfaces:

Non-minimal saddle surfaces:
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Non-minimal saddle surfaces:
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