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Abstract What is nowadays ubiquitously referred to as
complexity emerges in a wide variety of natural, artificial,
and social systems. This very rich concept is nontrivial to
understand and is therefore hard to operationally define.
Consequently, along the years, many intertwined character-
izations have been proposed in the literature. Among those,
a powerful and practical one consists in focusing on the
entropic and statistical mechanical aspects of the system.
We attempt here to put this active line of research into a
contemporary perspective.
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Statistical mechanics and its profound connection to
thermodynamics constitute, together with classical, quan-
tum, and relativistic mechanics and electromagnetism,
one of the pillars of contemporary physics. It is primar-
ily due to the genius of L. Boltzmann and J.W. Gibbs.
Consistently, the Boltzmann–Gibbs entropy expression
SBG = k lnW belongs today—together with F = ma,
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E = mc2, Maxwell, and Schroedinger equations—to the
mathematical hardcore that no educated physicist and
chemist, among others, can ignore. Statistical mechanics is
based on mechanics and electromagnetism, but it adds to
its very foundations a nontrivial ingredient, namely theory
of probabilities. It takes into account the fact that there
is, in science, a virtually infinite amount of information
that we cannot know. Not only we cannot measure nor
calculate it, but even more, we do not want to explicitly
handle it in most practical occasions. It is obvious that such
situation does not happen only in physics: it also occurs in
computational sciences, engineering, biology, linguistics,
economics, and in fact in all branches of human knowledge.
This advances the ubiquitous relevance of the concept of
entropy, which naturally emerges in all kinds of problems
concerning generation, communication, and capture of
information, far above its specific and unavoidable use in
statistical mechanics and thermodynamics.

Having made these remarks, let us focus now on com-
plexity and complex systems. And to start with, what is it
that we call “complexity”? S. Lloyd discussed 31 defini-
tions of complexity (quoted by Horgan in his 1995 paper
From Complexity to Perplexity); B. Edmonds advances
in 1999 over 40 definitions of complexity. It is unnec-
essary therefore to insist on the point that complexity,
like beauty and a plethora of other crucial human con-
cepts that have defied philosophers of all kinds and all
times, is very hard to define. A slightly simpler prob-
lem is what is it that we call “complex systems”? In a
kind of similar way to which we can recognize a beau-
tiful piece of art, or a beautiful child, even if we do not
know how to universally define beauty; we do recognize
a complex system, even if we do not know how to neatly
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define complexity. Among its many characterizations, there
is one which, in one way or another, is always there,
namely that a complex system is usually constituted by
many interacting elements, each of which might be thought
(and represented) as considerably simpler than the whole
system.

Consistently, emergence of collective phenomena fre-
quently occurs, which are very hard to predict (sometimes
nearly unthinkable a priori) in terms of the elements of
the system. Motion of galaxies (made by stars), motion
of granular matter (made by grains), nature of hadronic
jets (produced by interactions between quarks and glu-
ons after high-energy collisions of protons, for example),
behavior of crowds (made by individuals), intellectual per-
formances of the brain (made by neurons), behavior of
economical crisis (triggered by relatively simple opera-
tions between traders, banks, customers), evolution of lan-
guages, of species, of cultures, of the Earth’s biosphere
and weather, processing of signals and images—the list is
endless.

For one century and a half, statistical mechanics has
proved to be a very successful theoretical approach to the
connections between sensibly different (space-time) scales
of a great variety of systems (condensed matter physics,
theory of phase transitions and critical phenomena, renor-
malization group, stochastic equations, to mention but a
few). It is therefore natural to try to adapt the concepts and
methods of standard statistical mechanics in order to effi-
ciently deal (improving in particular predictability, which
is of course one of the aims of science, side by side with
understanding) with an enormous variety of important natu-
ral, artificial, and social phenomena that we observe around
us. In this regard, the concept of entropy naturally appears
as the central ingredient to tackle with.

In 1865, Clausius introduced in thermodynamics and
named the concept entropy [1]. It was introduced in
completely macroscopic terms, with no reference at all
to the microscopic world, whose existence was under
strong debate at his time, and still so even several
decades later. One of the central properties of this con-
cept was to be thermodynamically extensive, i.e., to be
proportional to the size of the system (characterized
by its total d-dimensional hypervolume). In the 1870s,
Boltzmann [2–4] made the genius connection of the ther-
modynamical entropy to the microcosmos. This connection
was refined by Gibbs a few years later [5–7]. From this
viewpoint, the thermodynamic entropic extensivity became
the nowadays well-known property that the total entropy
of a system should be proportional to N, the total number
of its microscopic elements (or, equivalently, proportional
to the total number of microscopic degrees of freedom).
More precisely, in the N → ∞ limit, it should asymptot-
ically be S(N) ∝ N . The entropic function introduced by

Boltzmann and Gibbs (and later on adapted to quantum
and information-theoretic scenarios by von Neumann and
Shannon, respectively) is given (for systems described
through discrete random variables) by

SBG(N) = −k

W(N)∑

i=1

pi lnpi

⎛

⎝
W(N)∑

i=1

pi = 1

⎞

⎠ , (1)

where k is a conventional positive constant (usually taken
to be the Boltzmann constant kB in physics, and k = 1 in
other contexts) and i runs over all nonvanishing-probability
microscopic configurations of the N-sized system, {pi}
being the corresponding probabilities. In the particular case
of equal probabilities (i.e., pi = 1/W(N), ∀i), we recover
the celebrated Boltzmann formula SBG(N) = k lnW(N).
It is clear that if the microscopic random variables are
probabilistically (strictly or nearly) independent, we have
W(N) ∝ μN (μ > 1; N → ∞); hence, SBG(N) ∝ N ,
thus satisfying the (Clausius) thermodynamic expectation of
extensivity.

But if the random variables are strongly correlated,
W(N) behaves quite differently. For instance, if W(N) ∝
Nρ (ρ > 0; N → ∞), then SBG(N) ∝ lnN , which
makes SBG thermodynamically inadmissible. Let us con-
sider, instead of Eq. (1), the following (nonadditive, as we
shall see hereafter) entropy:

Sq(N) = k
1 − ∑W(N)

i=1 p
q

i

q − 1

×
⎛

⎝
W(N)∑

i=1

pi = 1; q ∈ R; S1 = SBG

⎞

⎠ . (2)

Hence, for the particular case of equal probabilities, we have

Sq(N) = k
[W(N)]1−q−1

1−q
≡ k lnq W(N) (with ln1 W(N) =

lnW(N)). Then, we straightforwardly verify that, for q =
1 − 1

ρ
, we have Sq ∝ N , which is thermodynamically

admissible.
If we consider two probabilistically independent sys-

tems A and B
(
i.e., pA+B

ij = pA
i p

B
j

)
, we easily verify that

Sq (A+B)

k
= Sq (A)

k
+ Sq (B)

k
+ (1 − q)

Sq(A)

k

Sq (B)

k
, which

means that, unless q = 1 (i.e., the BG entropy), Sq is
nonadditive. These few remarks imply a kind of change
of paradigm, namely extensivity and additivity are sensibly
different properties, which makes the functional connection
between the thermodynamic entropy and the microscopic
world nonuniversal. It is thanks to its nonadditivity that
Sq can be thermodynamically extensive for a vast class
of complex systems, where specific strong correlations are
present between the elements of the system. This yields to
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a possible manner of defining what complexity is: A sys-
tem might be said to be complex if correlations between
its elements are such that, in order to guarantee entropic
extensivity, a nonadditive entropy is needed (see [8–11]).
It follows, as a natural consequence, that BG entropy and
statistical mechanics are sufficient but not necessary for
thermodynamics to be valid for large-enough systems.

This simple observation has, amazingly enough, far-
reaching consequences. Indeed, over 4,000 articles sub-
stantially related to this standpoint have been published
worldwide by over 6,000 scientists (see the regularly
updated bibliography, as well as the selected theoreti-
cal, experimental, observational, and computational articles,
in http://tsallis.cat.cbpf.br/biblio.htm). Through analytical,
experimental, observational, and computational results,
these articles contain a plethora of predictions, veri-
fications, and applications in many natural, artificial,
and social systems (see, for instance, recent reviews in
[12, 13]).

Let us stress that we have briefly presented here only a
few, though central, among the many scientific, technologi-
cal, and epistemological issues of complexity. To the study
of this area of knowledge—whose importance can be illus-
trated by Stephen Hawking’s January 2000 declaration “I
think the next century will be the century of complexity”.—
several centers have been created all over the world. We may
mention the Santa Fe Institute in New Mexico and the Max
Planck Institut fuer Physik komplexer Systeme in Dres-
den, among many others. In Brazil, substantial activity is
being dedicated to the subject, in particular by the Instituto
Nacional de Ciencia e Tecnologia de Sistemas Complexos,
which presently aggregates 37 scientists from 18 Brazilian
institutions.
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