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Possible Generalization of 
Boltzmann-Gibbs Statistics 
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With the use of a quantity normally scaled in multifractals, a generalized form 
is postulated for entropy, namely Sq==-k[1-Zwt pq]/(q-1),  where q e ~  
characterizes the generalization and {Pi} are the probabilities associated with W 
(microscopic) configurations (WE N). The main properties associated with this 
entropy are established, particularly those corresponding to the microcanonical 
and canonical ensembles. The Boltzmann-Gibbs statistics is recovered as the 
q ---, 1 limit. 

KEY WORDS:  Generalized statistics; entropy; multifractals; statistical 
ensembles. 

Multifractal concepts and structures are quickly acquiring importance in 
many active areas of research (e.g., nonlinear dynamical systems, growth 
models, commensurate/incommensurate structures). This is due to their 
utility as well as to their elegance. Within this framework, the quantity that 
is normally scaled is pq, where Pi is the probability associated with an event 
and q is any real number. (1) I shall use this quantity to generalize the 
standard expression of the entropy S in information theory, namely 

k w S = -  Z i = l p i l n p i ,  where WEN is the total number of possible 
(microscopic) configurations and {pi} is the associated probabilities. I 
postulate for the entropy 

Sq~k 1 -  Ew '  p] 
q - 1  (qE~)  (t) 
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where k is a conventional positive constant and Z W l p i =  1. It is 
immediately verified that 

$1 - lira Sq=k lira 1 - Z w l  & e x p [ ( q -  1) ln  & ]  
q ~ l  q ~ l  q - 1  

W 

= - k  • p~lnp~ (1')  
i = 1  

where I have used the replica-trick type of expansion.  Figure 1 illustrates 
definition (1). One  can rewrite Sq as follows: 

k w 
S u _  ~. p i ( l _ p q  1) (2) 

q - l i = l  

which makes  evident that  Sq ~ 0 in all cases. It  vanishes for W =  1, Vq, as 
well as for W >  1, q > 0, and only one event with probabi l i ty  one (all the 
others having vanishing probabili t ies) .  

M i c r o c a n o n i c a l  E n s e m b l e .  We want  to extremize S u with the 
condi t ion Z W ~ p ~ =  1. By introducing a Lagrange  parameter ,  it is 
s t ra ightforward to obta in  that  Sq is extremized, for all values of q, in the 
case of  equiprobability, i.e., Pi = 1/W, Vi, and consequent ly  

H / q - q -  1 
(3) Sq=k 1 - q  

Sq 
k 

Fig. 1. 
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Plot of Sq({Pi} ) for  W=2 and typical values of q (numbers on curves). Notice the 
monotonic influence of q, a fact that reappears in a variety of properties. 
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It is immediately verified that 

S 1 ~-  k In W (Y) 

thus recovering the celebrated Boltzmann expression. Figure 2 illustrates 
Eq.(3). The Sq given by Eq. (3) diverges if q~<l and saturates [at 
Sq = k / ( q - 1 ) ]  if q > 1, in the W--* oo limit. It is straightforward to prove 
that the extremum indicated in Eq. (3) is a maximum (minimum) for q > 0 
(q<0) ;  for q = 0 ,  S q ( { p i } ) = k ( W -  1) for all {Pi}. Finally, Eq. (3) implies 

S q  _ e (1  q) S l /k  - -  1 

(4) 
k 1 - q  

C o n c a v i t y .  Let us extend here a property already mentioned, 
namely that q > 0 (q < 0) implies that the extremum of S u is a maximum 
(minimum). Let {Pi} and {p~} be two sets of probabilities corresponding 
to a unique set of W possibilities, and 2 such that 0 < 2 < 1. Define an inter- 
mediate probability law as follows: 

pT==_2pi+(1-2)p; (Vi) (5) 

Sq 
m 
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Fig. 2. Value of the entropy at its extremum for typical values of q (numbers on curves). The 
dashed line indicates the W--, oo asymptote of S2/k. 
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and also 

Aq=-gq({p;'}) - [)~Sq({Pi})+ (l -)~) Sq({p;})] (6) 

It is straightforward to prove that Aq >10 if q > 0, Aq ~ 0 if q < 0, and A q  : 0 
if q = 0. The equalities hold for q r 0 for p~ = p;, Vi. 

AdditiviW. Let us assume two independent systems A and B with 
ensembles of configurational possibilities g2 A = { 1, 2 ..... i,..., WA } and g2 e - 
{1, 2,..., j,..., We}, respectively, the corresponding probabilities being {pA} 
and {p~}. Now consider A w B, the ensemble of possibilities being g2 A ~ e = 
{(1, 1), (1, 2),..., (i,j),..., (WA, We)}; let p ~ e  denote the corresponding 
probabilities. The independence of the systems means that p~ ~ s =  p~p~, 
V(i, j), hence 

E A ~ B  q (p~ ) = (pJ)~ (pT) ~ 
i , j  i 1 

Hence [-using Eq. (1)] 

~qA ~e __ SA + SqS (additivity) (7) 

with 

Sq = k ln[1 + (1 - q)Sq/k] (8) 
1 - q  

In the q ~ 1 limit, Eq. (7) becomes S~ ~ e = S A + Sf,  thus recovering the 
standard additivity of the entropies of independent systems. For arbitrary 
q, Sq reproduces the Renyi entropy. (2) 

To study the case of correlated systems [i.e., n A~B is not equal to ,-0 
(SZwA 1 pA~e)(Zw,  1 p ~ e )  for all (i, j ) ] ,  it is useful to define 

--A ~ B A w B --A - -  Sq P u rq({pJ~e}) sq ({p~ })-s~ pj~e -e A~e 
\ k j = l  i 1 

It is clear from Eq. (7) that independence (no correlation) implies Fq = 0, 
Vq. For arbitrary and fixed {p~ ~ B} implying correlation, it is easy to prove 
that F 1 < 0 (subadditivity of the standard entropies of correlated systems) 
and F0 = 0. For arbitrary values of q, Fq presents a great sensitivity to 
{pj~B}, it might be positive or negative for q>> 1 as well as for q ~  -1 ,  
and typically exhibits more than one extremum. Extensive and systematic 
computer verification indicates that, generally speaking, Fq varies smoothly 
with q, but presents no particular regularities besides F 0 = 0 and F~ ~< 0. 
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When {pA~,} gradually approach vanishing correlation, Fq gradually 
flattens until eventually achieving Fq = O, Vq. 

C a n o n i c a l  E n s e m b l e .  
ditions Z ~ I  Pi = 1 and 

We want to extremize Sq with the con- 

w 

2 Pi~i : Uq (9) 
i = l  

where {e~} and Uq are known real numbers (the same value ei might be 
associated with more than one possible configuration); they will be referred 
to as generalized spectrum and generalized internal energy. I introduce the 
and fl Lagrange parameters and define the quantity 

Sq w w 
Oq---~+~ ~ pi-c~fl(q-1) ~ Pi~i (10) 

k = l  i = 1  

which is written this way for future convenience. Imposing O~q/~Pi = O, Vi, 
one obtains picc [1- f l (q -1)e i ]  I/(q 1); hence, 

[ 1 - fl(q - 1)s~] 1/(q- 1) 
P i -  (11) 

Zq 

with 

W 

Zq ~- Z E1 - - f l ( q -  1 ) ~ 1 ]  1/(q 1) ( 1 2 )  

l = 1  

It is immediately verified that, in the q ~ 1 limit, one recovers 

p i = e  fl~i/Z 1 (11') 

with 

l,v 

Z 1 -  ~ e - ~  (12') 
l = 1  

It is straightforward to see that an alternative manner for obtaining 
the power-law distribution expressed in Eq. (11) is to extremize Sq (or 
equivalently Sq) with the condition Y~w 1 pqei= Uq [instead of Eq. (9)]. 

If A and B are two independent systems with probabilities (spectrum) 
{pA }({e{ } ) and {pT} ( {e~ }), respectively, the probabilities corresponding 
to A w B satisfy p~ U s = pAp~, V(i, j). This implies 

A u g =  [ 1 - f l ( q -  1)eA][1-- f l (q- -  1)ST] (13) 1 - -  f l ( q  - -  1 ) e i j  
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or equivalently 

with 

eo-A,~B=gA +gff (14) 

ln[1 + [3(1 - q)e] 
g -  (15) 

[3(1 - q )  

In the q--+ 1 limit (and/or [ 3 ~ 0  limit), Eq. (14) becomes %.A~B--e( + e ~ , -  
thus recovering the standard energy additivity. The property (14), together 
with the factorization of probabilities, placed in Eq. (9) yields 

UuA~= C A + U~ (16) 

with 

ln[1 + [3(1 - q) Uq] (17) 
U q -  [3(1 - q )  

In the q ~ 1 limit (and/or [3 ~ 0 limit), Eq. (16) becomes U{ ~8 = U{ + Uf, 
thus recovering the standard additivity of the internal energies of indepen- 
dent systems. 

I now discuss the main characteristics of the distribution law (11). 
First, notice that this distribution is invariant under the transformation 

[1 -[3(q-  1)et-] ~ [1 -[3(q-  1)et-]]-I -[3(q-  1)eo] 

for all l, e0 being an arbitrary fixed real number. In other words, the 
distribution (11) is invariant under gr [this is in fact a trivial 
consequence of the fact that the distribution can be formally rewritten as 
Pi ~: exp(-[3gi)].  For f l ( q - 1 ) - ~  0, we recover the well-known invariance 
of the Boltzmann-Gibbs statistics under uniform translation of the energy 
spectrum. Figure 3 illustrates distribution (11). Notice that, for q > 1, pi = 0 
for all levels such that s~>~l/[fl(q-1)] (~<~-l/[[f l](q-I)])  if f l>O 
(fl<O), i.e., positive (negative) "temperatures." On the other hand, for 
q < l ,  the levels such that e ; ~ < - l [ f l ( 1 - q ) ]  (~>~1/[-[[31 ( l - q ) ] )  are, if 
fl > 0  (fl < 0), highly occupied, in a way that is clearly reminiscent of the 
Bose-Einstein condensation. 

To better realize the unusual properties of the present statistics, it is 
instructive to analyze the following situation. Assume q > l, fl > O, and {ei} 
such that 0 < el < e2 < "'" < e w (W might even diverge). When 1/[3 is above 
( q -  1)ew, all levels have a finite occupancy probability; when 
(q-1)ew l<l/[3<(q-1)ew,  then pl>p2> "" >pw_~>pw=O. The 
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Fig. 3. The distribution law of Eq. (11 ) as a function of/~i. The curves are parametrized by 
q: q = 1, standard exponential law; q > 1, the distribution pressents a cutoff at ]~ei = 1/(q- 1) 
(with a slope of 0, -1 ,  and - ~  for q<2, q=2, and q>2, respectively) and diverges for 
/~et ~ - ~ ;  q < 1, the distribution diverges at /3e~= - 1 / ( 1 -  q) (the dashed line indicates the 
asymptote for q ~ 0) and vanishes for/3e~ +co. 

probabilities successively vanish while 1//3 decreases. One eventually arrives 
at ( q -  1)g~ < 1//~ < ( q -  1)g2, which implies p~ -- 1. Finally, the tem- 
peratures 1//3 in the interval [0, ( q -  1)e l ]  are physically unaccessible, thus 
generalizing the nonaccessibili ty of 1//3--0 in s tandard  thermodynamics .  A 
simple example will illustrate this and similar facts. 

Application. Consider  two nondegenerate  levels with values el -= 
- 6  and ~ 2 = e + 6  (3 > 0 ;  g-~0). The quant i ty  Uq(/3) is given by Uq= 

g~ Pl + e2P2. A straightforward calculation yields 

[1 - ( q -  1)(g/6- 1)/x] l/(q- ~)-  [1 - ( q -  1)(e/6 + 1)/x] 1/(q ~) 
Yq = - [1 - ( q -  1)(g/6 - 1)/x] 1/(q- 1)+ [1 - ( q -  1)(g/6 + 1)/x] 1/(q- 1) (18) 

with x =  I/f16 and yq=(Uq--8)/c~E [ - 1 ,  1]. Equat ion  ( t8)  is invariant  
under  (x, yq, q - -  1, g/c~) ~ (X, yq, - - ( q - -  l), --e/b) and also under  
(x, yq, q, g/c~) -.,,. ( - x ,  - y q ,  q, - e / 0 ) .  Consequently, it suffices to discuss 
q >~ 1 and g/6 >~ O. In the limit q-- ,  1, one obtains Yl = - t h ( 1 / x ) ,  Vg/6. For  
q ~ 1, yq(X) depends on e/6: see Figs. 4 and 5. 
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Fig. 4. The q = 2 reduced internal "energy" as a function of the reduced "temperature" (see 
text) for a nondegenerate two-level system and typical values of ~/6. The dashed region in (d) 
indicates the unaccessible "temperatures." 

I conclude by recalling that, using the quantity normally scaled for 
multifractals, I have postulated an expression for the entropy that 
generalizes the usual one (recovered for the parameter q ~ 1). By preserv- 
ing the standard variational principle, I have established the 
microcanonical and canonical distributions, as well as several other proper- 
ties. Some of the emerging peculiar characteristics are illustrated through a 
simple example. One of the most interesting is the fact that the unaccessible 
"temperatures" might belong to a finite interval that shrinks on the 
T=  0 point in the q --+ 1 limit. Finally, the fact that Sq/k, [3ei, and BUq are 
additive under one and the same functional form {namely f ( x )  = _ 
In I-1 + ( 1 -  q ) x ] / ( q -  1)} opens the door to the generalization of standard 
thermodynamics through the introduction of appropriate generalized ther- 
modynamic potentials. Applications of these generalized equilibrium 
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Fig. 5. Reduced internal "energy" as a function of the reduced "temperature" (see text) for a 
nondegenerate two-level system and typical values of q (numbers on curves). 

statistics in physics (e.g., fractals, multifractals), information theory, or any 
other branch of knowledge using probabilistic concepts would be extremely 
welcome. 
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