
Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

Copyright © 2012 Brambilla, Cabot, Wimmer.

www.mdse-book.com

MODEL-TO-TEXT

TRANSFORMATIONS

CHAPTER 9

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Content

 Introduction

 Programming Languages based Code Generation

 M2T Transformation based Code Generation

 Mastering Code Generation

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

INTRODUCTION

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Terminology

 Code generation

 Wikipedia:

„Code generation is the process by which a compiler‘s code generator

converts a syntactically-correct program into a series of instructions that can

be executed by a machine.“

 Code Generation in Action (Herrington 2003):

„Code generation is the technique of using or writing programs that write

source code.“

 Code generation (http://en.wikipedia.org)

 Compiler Engineering: component of the synthesis phase

 Software Engineering: program to generate source code

 Résumé: Term Code Generation is overloaded!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Code Generation - Basic Questions

 How much is generated?

 Which parts can be automatically generated from models?

 Full or partial code generation?

 What is generated?

 Which kind of source code to generate?

 The less code to generate, the better!

 How to generate?

 Which languages and tools to use for developing code generators?

 GPLs vs. DSLs

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Code Generation in MDA (just an example)

Requirements

Analysis

Design

Implementation

Test&Deployment

CIM

PIM

PSM

Code

Feedback

CIM

PIM

Web

Model

DAO

Model

SQL

Model

JSP

Code
DAO

Code

SQL

Code

Manual

Development

+

Model2Model

Transformation

Model2Model

Transformation

Model2Text

Transformation

Rational Unified Process MDA Artifacts

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
What kind of code is generated?

 Model-to-Text, whereas text may be distinguished in
 Program code

 Documentation

 Test cases

 Model serialization (XMI)

 Direct translation to machine code possible, but inconvenient, error-
prone and hard to optimize
 Reuse existing code generators

 Using existing functionality (frameworks, APIs, components)

 Motto: The less code to generate, the better!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Example: Platform for Web application development

 Example: developing a code generator for Web applications

 What options exist for the to be generated code?

 Dimensions of Web applications: Content, Hypertext, Presentation

 Programming languages: Java, C#, Ruby, PHP, …

 Architectures: 2-layer, 3-layer, MVC, ActiveRecords, …

 Frameworks: JSF, Spring, Struts, Hibernate, Ruby on Rails, ASP, …

 Products: MySQL, Tomcat, WebLogic, …

 Which combinations are appropriate?

 Experience gained in earlier projects

 What has proven useful?

 Reference architectures

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
What kind of code is generated?

Production code Test code

Class

diagrams
State charts

OCL

Object

diagrams

Sequence

diagrams

A B

C
1..*

1

1 *

1

0..1
z1 z2

z3

z4

e
e‘

e‘

a:A b:B c:C
m1

m2
m3

b1:B

c1:C

c2:C

b2:B

Picture based on Berhard Rumpe: Agile Modellierung mit UML. Springer, 2012.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Overview of generation techniques

Model Source Code

Object Code

or

Byte Code

Running

Program

Model

Transformation

Source Code

Generation

Code

Transformation

Byte Code

Rewriting
Reflection

C++

Templates
Java,

.Net
Java,
.Net

AspectJ

ATL

QVT

Code Generation in MDE

Acceleo XPand MofScript

Compilation

Java,

.Net

Based on Markus Völter. A catalog of patterns for program generation. In Proceedings of the 8th

European Conference on Pattern Languages of Programs (EuroPLoP’03), pages 285–320, 2003.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Why code generation?

 Code generation enables

 Separation of application modeling and technical code

 Increasing maintainability, extensibility, portability to new hardware,

operating systems, and platforms

 Rapid prototyping

 Early and fast feedback due to demonstrations and test runs

 Code generation enables to combine redundant code fragments in

one source

 Example: DDL, Hibernate, and Java Beans

 may be specified in one UML Class Diagram

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Why code generation? – in contradiction to MDE? (1/2)

 Often no “real” model simulation possible

 UML environments mostly do not provide simulation features

 However, they provide transparent transformation to C, C#, Java, …

 UML Virtual Machines

 Interpreter approach – spare code generation for certain platforms

 Gets a new twist with fUML!

 Semantics of modeling languages, especially DSMLs, often
defined by code generation

class Car {

public String color;

public int door;

public int engine;

}

Car

Color : String
Door : Integer
Engine : Integer

DSL

Code Generator

Java

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Why code generation? – in contradiction to MDE? (2/2)

 Runtime environments are designed for programming languages

 Established frameworks available (Struts, Spring, Hibernate, …)

 Systems depend on existing software (Web Services, DB)

 Extensions for code level often required (Logging)

 Disadvantage: using models and code in parallel

 No single source of information – OUCH!

 Having the same information in two places may lead to inconsistences, e.g.,

consider maintainability of systems

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Example: MiniUML_2_MiniJava

MiniUML Metamodel

MiniUML Model
class Student extends Person{

private String regNo;

public void setRegNo(…){…}

public String getRegNo(){…}

}

MiniJava Code

MiniJava Grammar

Model2Text

NamedElement

type : Type

type 0..1

Relationship

0..1
superClass

minCard : Integer
maxCard : Integer

*
*

– String

– Boolean

– …

«enumeration»

Type
ClassDec := Modifier “class” Identifier [“extends”

Identifier] ClassBody;

AttributeDec := Modifier Type Identifier“;”;

MethodDec := Modifier ReturnType Identifier “(”
ParamList “)” “{” MethodBody “}”;

Identifier := {“a”-”z” | “A”-”Z” | “0”-”9”};

Class
Attribute

name: String

Person

Student

regNo : String

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

PROGRAMMING LANGUAGES

BASED CODE GENERATION

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages
Introduction – Code generation with Java based on EMF

 Code generation may be realized using a traditional general purpose

programming language, e.g., Java, C#, …

 Models are de-serialized to an in-memory object graph

 Pre-defined XMI de-serialzer provided by meta-modeling frameworks

 Out-of-the-box support in EMF

 Model API eases processing of models

 Generated automatically from metamodels

 In EMF: .ecore -> .genmodel -> Java code

 If metamodel not available, you may use reflection

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages
Model APIs for processing models

 Example: Ecore-based metamodel and automatically generated

Java code (shown as UML Class Diagram)

Attribute

atts0..*

Class

name : String

name : String

type : Type

Operation

ops0..*

name : String

returnType : Type

Ecore2Java

Attribute

Class

Operation

getName() : String

setName(String) : void

getAtts() : EList<Attribute>

getOps() : EList<Operation>

getName() : String

setName(String) : void

…

getName() : String

setName(String) : void

…

MM in Ecore Model API

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages
Code generation with Java: phases of code generation

1. Load models

 Load XMI file into memory

2. Process models and produce code

 Process models by traversing the model structure

 Use model information to produce code

 Save code into String variable

3. Write code

 Persist String variable to a file using streams

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages
Code generation with Java: Process and Architecture

Model

Code Generator

XMI Parser FileStream API

Code

String code;

Model API

e.g., UML e.g., JavaJava

Object Graph

M2T

(1) Load (2) Produce (3) Write
Process

Architecture

EMF

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages
Running Example solved in Java

ResourceSet resourceSet = new ResourceSetImpl();
Resource resource = resourceSet.getResource(URI.create("model.miniUML"));
TreeIterator treeIter = resource.getAllContents();

while (treeIter.hasNext()) {
Object object = treeIt.next();
if (!object instanceof Class) continue;

Class cl = (Class) object;
String code = "class „ + cl.getName() + "{";
// generate Constructor: code += …
// generate Attributs: code += …
// generate Methods: code += …
code += "}";

try {
FileOutputStream fos = new FileOutputStream(cl.getName() +".java“);
fos.write(code.getBytes());
fos.close();

} catch (Exception e) {…}
}

Query values via

model API

Create a file for

each class

Get all model

elements

(1) Load

(2) Produce

(3) Write

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages
Summary

 Advantages

 No new languages have to be learned

 No additional tool dependencies

 Disadvantages

 Intermingled static/dynamic code

 Non-graspable output structure

 Lack of declarative query language

 Lack of reusable base functionality

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

M2T TRANSFORMATION

BASED CODE GENERATION

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

M2T Transformation Languages…
…are Template based

 Templates are a well-established technique in software
engineering
 Application domains: Text processing, Web engineering, …

 Example:

 Components of a template-based approach
 Templates

 Text fragments and embedded meta-markers

 Meta-markers query an additional data source
 Have to be interpreted and evaluated in contrast to text fragments

 Declarative model query: query languages (OCL, XPath, SQL)

 Imperative model query: programming languages (Java, C#)

 Template engine
 Replaces meta-markers with data at runtime and produces output files

Dear Homer Simpson,

Congratulations! You have won …

E-Mail Text

Dear «firstName» «lastName»,

Congratulations! You have won …

Template Text

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

M2T Transformation Languages
Core Architecture

 Template-based approach at a glance

«context class»

public class «name» { String id, … }

Template

Engine

Query

Result

Input

public class Person { String id, …}

Template

Text fragment

Meta-marker

Output1 Output2

…public class Customer { String id, …}

Person

Customer

…

Source

Model

Produced Text

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

M2T Transformation Languages
Benefits

 Separated static/dynamic code
 Templates separate static code, i.e., normal text, from dynamic code that is

described by meta-markers

 Explicit output structure
 Primary structure of the template is the output structure

 Computation logic is embedded in this structure

 Declarative query language
 OCL is employed to query the input models

 Reusable base functionality
 Support for reading in models, serialize text to files, …

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

M2T Transformation Languages
Approaches

 A bunch of template languages for M2T transformation

available

 JET, JET2

 Xpand, Xtend

 MOFScript

 Acceleo

 XSLT

 …

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Acceleo
Introduction

 Acceleo is a mature implementation of the OMG M2T
transformation standard

 Acceleo website: http://www.eclipse.org/acceleo/

 M2T Transformation standard: http://www.omg.org/spec/MOFM2T

 Template-based language

 Several meta-markers for useful for code generation available

 Powerful API supporting

 OCL

 String manipulation functions

 …

 Powerful tooling supporting

 Editor, debugger, profiler, traceability between model and code, …

http://www.eclipse.org/acceleo/
http://www.omg.org/spec/MOFM2T

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Acceleo
Language Concepts

 Module concept is provided

 Imports the metamodels for the input models

 Act as container for templates

 A template is always defined for a particular meta-class

 Plus an optional pre-condition to filter instances

 Templates may call each other

 Templates may extend each other

 Templates contain text and provided meta-markers

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Acceleo
Language Concepts

 Several meta-markers (called tags) are supported

 File Tag: To open and close files in which code is generated

 For/If Tag: Control constructs for defining loops and conditions

 Query Tag: Reusable helper functions

 Expression Tag: Compute values that are embedded in the
output

 Protected Tag: Define areas that are not overridden by future
generation runs

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Acceleo
Example

[module generateJavaClass('http://smvcml/1.0')]

[query public getter(att : Attribute) : String = 'get'+att.name.toUpperFirst() /]

[query public returnStatement(type: String) : String = if type = 'Boolean'

then 'return true;' else '...' endif /]

[template public javaClass(aClass : Class)]

[file (aClass.name.toUpperFirst()+'.java', false, 'UTF-8')]

package entities;

import java.io.Serializable;

public class [aClass.name/] implements Serializable {

[for (att : Attribute | aClass.atts) separator ('\n')]

[javaAttribute(att)/]

[/for]

[for (op : Operation | aClass.ops) separator ('\n')]

[javaMethod(op)/]

[/for]

}

[/file]

[/template]

…

…

[template public javaAttribute(att : Attribute)]

private [att.type/] [att.name/];

public [att.type/] [att.getter()/]() {

return [att.name/];

}

...

[/template]

[template public javaMethod(op : Operation)]

public [op.type/] [op.name/]() {

// [protected (op.name)]

// Fill in the operation implementation here!

[returnStatement(op.type)/]

// [/protected]

}

[/template]

Import metamodel

(root package)

Template definition

Open output file

Close output file

Expression

Meta class

Loop

Static Text

Protected

Area

Query

Template

Call

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Acceleo
Protected Areas

 Protected areas are not overriden by the next generator run

 They are marked by comments

 Their content is merged with the newly produced code

 If the right place cannot be found, warning is given!

 Example
public boolean checkAvailability(){

// Start of user code checkAvailability

// Fill in the operation implementation here!

return true;

// End of user code

}

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MASTERING

CODE GENERATION

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Abstracting Templates

 To ensure that generated code is accepted by developers (cf. Turing

test for code-generation), familiar code should be generated

 Especially when only a partial code generation is possible!

 Abstract code generation templates from reference code to have

known structure and coding guidelines considered

 Acceleo supports dedicated refactorings to transform code into

templates

 E.g., substitute String with Expression Tag

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Generating step-by-step

 Divide code generation process into several steps

 Same applies as for M2M transformations!

 Transformation chains may use a mixture of M2M and M2T

transformations

 To keep the gap between the models and the code short

 If code generators exists, try to produce their required input format with

simpler M2M or M2T transformations

 E.g., code generator for flat state machines, transform composite state

machines to flat ones and run existing code generator

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Separating transformation logic from text

 Separate complex transformation logic from text fragments

 Use queries or libraries that are imported to the M2T transformation

 By doing this, templates get more readable and maintainable

 Queries may be reused

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Mastering code layout

 Code layout is determined by the template layout

 Challenging to produce code layout when several control structures

such as loops and conditionals are used in the template

 Special escape characters for line breaks used for enhancing the reabability

of the template are provided

 Alternative

 Use code beautifiers in a post-processing step

 Supported by Xpand for Java/XML out-of-the-box

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model/code synchronization issues

 Protected areas help saving manually added code in succeeding

generator runs

 Code contained in protected areas is not always automatically

integrated in the newly generated code

 Assume a method is renamed on model level

 Where to place the code of the method implementation?

 Which identifier to use for identifying a protected area?

 Natural or artificial identifiers?

 Model refactorings may be replayed on the code level before the next

generator run is started

 Code in protected areas may also reflect the refactorings!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Code Generation = M2M + TCS?

 Code Generation achievable through applying a M2M transformations

to a programming language metamodel

 If a TCS is available for the programming language metamodel, the

resulting model may be directly serialized into text

 Only recommended when

 programming language metamodel + TCS are already available

 full code generation is possible

Model

Metamodel

(ModLang)

Model

Metamodel
(ProgLang)

M2M Spec

M2M Exec

TCS Spec
(ProgLang)

TCS

Serialization

«conformsTo» «conformsTo» «conformsTo»

visualizes

symbolizes

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

Copyright © 2012 Brambilla, Cabot, Wimmer.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE

ENGINEERING IN PRACTICE
Marco Brambilla,

Jordi Cabot,

Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

www.morganclaypool.com

http://www.mdse-book.com
http://www.morganclaypool.com

