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Introduction
Terminology

 Code generation

 Wikipedia: 

„Code generation is the process by which a compiler‘s code generator 

converts a syntactically-correct program into a series of instructions that can 

be executed by a machine.“

 Code Generation in Action (Herrington 2003):  

„Code generation is the technique of using or writing programs that write 

source code.“

 Code generation (http://en.wikipedia.org)

 Compiler Engineering: component of the synthesis phase

 Software Engineering: program to generate source code

 Résumé: Term Code Generation is overloaded!
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Introduction
Code Generation - Basic Questions

 How much is generated?

 Which parts can be automatically generated from models?

 Full or partial code generation?

 What is generated?

 Which kind of source code to generate?

 The less code to generate, the better!

 How to generate?

 Which languages and tools to use for developing code generators?

 GPLs vs. DSLs
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Introduction
Code Generation in MDA (just an example)
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Introduction
What kind of code is generated?

 Model-to-Text, whereas text may be distinguished in
 Program code

 Documentation

 Test cases

 Model serialization (XMI)

 Direct translation to machine code possible, but inconvenient, error-
prone and hard to optimize
 Reuse existing code generators

 Using existing functionality (frameworks, APIs, components)

 Motto: The less code to generate, the better!
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Introduction
Example: Platform for Web application development

 Example: developing a code generator for Web applications

 What options exist for the to be generated code?

 Dimensions of Web applications: Content, Hypertext, Presentation

 Programming languages: Java, C#, Ruby, PHP, …

 Architectures: 2-layer, 3-layer, MVC, ActiveRecords, …

 Frameworks: JSF, Spring, Struts, Hibernate, Ruby on Rails,  ASP, …

 Products: MySQL, Tomcat, WebLogic, …

 Which combinations are appropriate?

 Experience gained in earlier projects

 What has proven useful?

 Reference architectures
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Introduction
What kind of code is generated?

Production code Test code
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Introduction
Overview of generation techniques
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Introduction
Why code generation?

 Code generation enables

 Separation of application modeling and technical code

 Increasing maintainability, extensibility, portability to new hardware, 

operating systems, and platforms 

 Rapid prototyping

 Early and fast feedback due to demonstrations and test runs

 Code generation enables to combine redundant code fragments in 

one source

 Example: DDL, Hibernate, and Java Beans

 may be specified in one UML Class Diagram
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Introduction
Why code generation? – in contradiction to MDE? (1/2)

 Often no “real” model simulation possible

 UML environments mostly do not provide simulation features

 However, they provide transparent transformation to C, C#, Java, …

 UML Virtual Machines

 Interpreter approach – spare code generation for certain platforms

 Gets a new twist with fUML!

 Semantics of modeling languages, especially DSMLs, often 
defined by code generation 

class Car {

public String  color;

public int door;

public int engine;

}

Car

Color : String
Door : Integer
Engine : Integer

DSL

Code Generator

Java
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Introduction
Why code generation? – in contradiction to MDE? (2/2)

 Runtime environments are designed for programming languages 

 Established frameworks available (Struts, Spring, Hibernate, …)

 Systems depend on existing software (Web Services, DB)

 Extensions for code level often required (Logging)

 Disadvantage: using models and code in parallel 

 No single source of information – OUCH!

 Having the same information in two places may lead to inconsistences, e.g., 

consider maintainability of systems
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Introduction
Example: MiniUML_2_MiniJava

MiniUML Metamodel

MiniUML Model
class Student extends Person{

private String regNo;

public void setRegNo(…){…}

public String getRegNo(){…}

}

MiniJava Code

MiniJava Grammar

Model2Text

NamedElement

type : Type

type 0..1                   

Relationship

0..1                   
superClass

minCard : Integer
maxCard : Integer

*
*

– String

– Boolean

– …

«enumeration»

Type
ClassDec := Modifier “class” Identifier [“extends”

Identifier] ClassBody;

AttributeDec := Modifier Type Identifier“;”;

MethodDec := Modifier ReturnType Identifier “(”
ParamList “)” “{” MethodBody “}”;

Identifier := {“a”-”z” | “A”-”Z” | “0”-”9”};

Class
Attribute

name: String

Person

Student

regNo : String
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PROGRAMMING LANGUAGES 

BASED CODE GENERATION
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Programming languages
Introduction – Code generation with Java based on EMF

 Code generation may be realized using a traditional general purpose 

programming language, e.g., Java, C#, …

 Models are de-serialized to an in-memory object graph 

 Pre-defined XMI de-serialzer provided by meta-modeling frameworks

 Out-of-the-box support in EMF

 Model API eases processing of models

 Generated automatically from metamodels

 In EMF: .ecore -> .genmodel -> Java code

 If metamodel not available, you may use reflection 
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Programming languages
Model APIs for processing models

 Example: Ecore-based metamodel and automatically generated

Java code (shown as UML Class Diagram)

Attribute

atts0..*

Class

name : String

name : String

type : Type

Operation

ops0..*

name : String

returnType : Type

Ecore2Java

Attribute

Class

Operation

getName() : String

setName(String) : void

getAtts() : EList<Attribute>

getOps() : EList<Operation>

getName() : String

setName(String) : void 

…

getName() : String

setName(String) : void 

…

MM in Ecore Model API
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Programming languages
Code generation with Java: phases of code generation

1. Load models

 Load XMI file into memory

2. Process models and produce code

 Process models by traversing the model structure

 Use model information to produce code 

 Save code into String variable

3. Write code

 Persist String variable to a file using streams



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages
Code generation with Java: Process and Architecture

Model

Code Generator

XMI Parser FileStream API

Code

String code;

Model API

e.g., UML e.g., JavaJava

Object Graph

M2T

(1) Load (2) Produce (3) Write
Process

Architecture

EMF
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Programming languages
Running Example solved in Java

ResourceSet resourceSet = new ResourceSetImpl();
Resource resource = resourceSet.getResource(URI.create("model.miniUML"));
TreeIterator treeIter = resource.getAllContents();

while (treeIter.hasNext()) {
Object object = treeIt.next();
if (!object instanceof Class) continue;

Class cl = (Class) object;
String code = "class „ + cl.getName() + "{";
// generate Constructor: code += …
// generate Attributs: code += …
// generate Methods: code += …
code += "}";

try {
FileOutputStream fos = new FileOutputStream(cl.getName() +".java“);
fos.write(code.getBytes());
fos.close();

} catch (Exception e) {…}
}

Query values via 

model API

Create a file for

each class

Get all model

elements

(1) Load

(2) Produce

(3) Write
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Programming languages
Summary

 Advantages

 No new languages have to be learned

 No additional tool dependencies

 Disadvantages

 Intermingled static/dynamic code

 Non-graspable output structure

 Lack of declarative query language

 Lack of reusable base functionality 
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M2T TRANSFORMATION

BASED CODE GENERATION
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M2T Transformation Languages…
…are Template based

 Templates are a well-established technique in software 
engineering
 Application domains: Text processing, Web engineering, … 

 Example:

 Components of a template-based approach
 Templates

 Text fragments and embedded meta-markers

 Meta-markers query an additional data source
 Have to be interpreted and evaluated in contrast to text fragments

 Declarative model query: query languages (OCL, XPath, SQL)

 Imperative model query: programming languages (Java, C#)

 Template engine
 Replaces meta-markers with data at runtime and produces output files

Dear Homer Simpson,

Congratulations! You have won …

E-Mail Text

Dear «firstName» «lastName»,

Congratulations! You have won …

Template Text
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M2T Transformation Languages
Core Architecture

 Template-based approach at a glance

«context class»

public class «name» { String id, … }

Template 

Engine

Query

Result

Input

public class Person { String id, …}

Template

Text fragment

Meta-marker

Output1 Output2

…public class Customer { String id, …}

Person

Customer

…

Source 

Model

Produced Text
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M2T Transformation Languages
Benefits

 Separated static/dynamic code
 Templates separate static code, i.e., normal text, from dynamic code that is 

described by meta-markers

 Explicit output structure
 Primary structure of the template is the output structure

 Computation logic is embedded in this structure

 Declarative query language
 OCL is employed to query the input models

 Reusable base functionality
 Support for reading in models, serialize text to files, …
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M2T Transformation Languages
Approaches

 A bunch of template languages for M2T transformation 

available 

 JET, JET2

 Xpand, Xtend

 MOFScript

 Acceleo

 XSLT

 …
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Acceleo
Introduction

 Acceleo is a mature implementation of the OMG M2T 
transformation standard

 Acceleo website: http://www.eclipse.org/acceleo/

 M2T Transformation standard: http://www.omg.org/spec/MOFM2T

 Template-based language

 Several meta-markers for useful for code generation available

 Powerful API supporting 

 OCL 

 String manipulation functions

 …

 Powerful tooling supporting

 Editor, debugger, profiler, traceability between model and code, … 

http://www.eclipse.org/acceleo/
http://www.omg.org/spec/MOFM2T
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Acceleo
Language Concepts

 Module concept is provided

 Imports the metamodels for the input models

 Act as container for templates

 A template is always defined for a particular meta-class

 Plus an optional pre-condition to filter instances

 Templates may call each other

 Templates may extend each other

 Templates contain text and provided meta-markers 
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Acceleo
Language Concepts

 Several meta-markers (called tags) are supported

 File Tag: To open and close files in which code is generated

 For/If Tag: Control constructs for defining loops and conditions

 Query Tag: Reusable helper functions 

 Expression Tag: Compute values that are embedded in the 
output

 Protected Tag: Define areas that are not overridden by future 
generation runs
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Acceleo
Example

[module generateJavaClass('http://smvcml/1.0')]

[query public getter(att : Attribute) : String = 'get'+att.name.toUpperFirst() /]

[query public returnStatement(type: String) : String = if type = 'Boolean'

then 'return true;' else '...' endif /]

[template public javaClass(aClass : Class)]

[file (aClass.name.toUpperFirst()+'.java', false, 'UTF-8')]

package entities;

import java.io.Serializable;

public class [aClass.name/] implements Serializable {

[for (att : Attribute | aClass.atts) separator ('\n')]

[javaAttribute(att)/]

[/for]

[for (op : Operation | aClass.ops) separator ('\n')]

[javaMethod(op)/]

[/for]

}

[/file]

[/template]

…

…

[template public javaAttribute(att : Attribute)]

private [att.type/] [att.name/];

public [att.type/] [att.getter()/]() {

return [att.name/];

}

...

[/template]

[template public javaMethod(op : Operation)]

public [op.type/] [op.name/]() {

// [protected (op.name)]

// Fill in the operation implementation here!

[returnStatement(op.type)/]

// [/protected]

}

[/template]

Import metamodel

(root package)

Template definition

Open output file

Close output file

Expression

Meta class

Loop

Static Text

Protected

Area

Query

Template 

Call
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Acceleo
Protected Areas

 Protected areas are not overriden by the next generator run

 They are marked by comments

 Their content is merged with the newly produced code

 If the right place cannot be found, warning is given!

 Example
public boolean checkAvailability(){

// Start of user code checkAvailability

// Fill in the operation implementation here!

return true;

// End of user code

}
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MASTERING 

CODE GENERATION
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Abstracting Templates

 To ensure that generated code is accepted by developers (cf. Turing 

test for code-generation), familiar code should be generated

 Especially when only a partial code generation is possible!

 Abstract code generation templates from reference code to have 

known structure and coding guidelines considered

 Acceleo supports dedicated refactorings to transform code into 

templates

 E.g., substitute String with Expression Tag
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Generating step-by-step

 Divide code generation process into several steps

 Same applies as for M2M transformations!

 Transformation chains may use a mixture of M2M and M2T 

transformations

 To keep the gap between the models and the code short

 If code generators exists, try to produce their required input format with 

simpler M2M or M2T transformations

 E.g., code generator for flat state machines, transform composite state 

machines to flat ones and run existing code generator
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Separating transformation logic from text

 Separate complex transformation logic from text fragments

 Use queries or libraries that are imported to the M2T transformation

 By doing this, templates get more readable and maintainable

 Queries may be reused
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Mastering code layout

 Code layout is determined by the template layout

 Challenging to produce code layout when several control structures 

such as loops and conditionals are used in the template

 Special escape characters for line breaks used for enhancing the reabability

of the template are provided

 Alternative

 Use code beautifiers in a post-processing step

 Supported by Xpand for Java/XML out-of-the-box
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Model/code synchronization issues

 Protected areas help saving manually added code in succeeding 

generator runs

 Code contained in protected areas is not always automatically

integrated in the newly generated code

 Assume a method is renamed on model level

 Where to place the code of the method implementation?

 Which identifier to use for identifying a protected area?  

 Natural or artificial identifiers?

 Model refactorings may be replayed on the code level before the next 

generator run is started

 Code in protected areas may also reflect the refactorings! 



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Code Generation = M2M + TCS?

 Code Generation achievable through applying a M2M transformations

to a programming language metamodel

 If a TCS is available for the programming language metamodel, the 

resulting model may be directly serialized into text

 Only recommended when 

 programming language metamodel + TCS are already available 

 full code generation is possible

Model

Metamodel

(ModLang)

Model

Metamodel
(ProgLang)

M2M Spec

M2M Exec

TCS Spec
(ProgLang)

TCS

Serialization

«conformsTo» «conformsTo» «conformsTo»

visualizes

symbolizes
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