f\& MORGAN CLAYPOOL PUBLISHERS

CHAPTER 9

MODEL-TO-TEXT
TRANSFORMATIONS

—

Teaching material for the book P oo 5
Model-Driven Software Engineering in Practice Model-Driven Software
by Marco Brambilla, Jordi Cabot, Manuel Wimmer. Engincrcingin Feuerice

Morgan & Claypool, USA, 2012.

Marco Brambilla
Jordi Cabot
Manuel Wimmer

Copyright © 2012 Brambilla, Cabot, Wimmer.

Content

= Introduction
= Programming Languages based Code Generation
= M2T Transformation based Code Generation

= Mastering Code Generation

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

INTRODUCTION

www.mdse-book.com

Introduction

Terminology

= Code generation
= Wikipedia:
,Code generation is the process by which a compiler's code generator

converts a syntactically-correct program into a series of instructions that can
be executed by a machine.”

= Code Generation in Action (Herrington 2003):
,Code generation is the technique of using or writing programs that write
source code.”

= Code generation (http://en.wikipedia.org)
= Compiler Engineering: component of the synthesis phase
= Software Engineering: program to generate source code

= Résumeé: Term Code Generation is overloaded!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction

Code Generation - Basic Questions

= How much is generated?
= Which parts can be automatically generated from models?
= Full or partial code generation?

- What is generated?
= Which kind of source code to generate?
= The less code to generate, the better!

- How to generate?

= Which languages and tools to use for developing code generators?
= GPLs vs. DSLs

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction

Code Generation in MDA (just an example)

Rational Unified Process MDA Artifacts
CIM
Manual
\-f Development
+
Model2Model
PIM Transformation

Model2Model
Transformation

Model | | Model

Model2Text

Transformation
JSP DAO SQL
Code Code Code

Implementation

Test&Deployment

Feedback

I -

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction

What kind of code is generated?

= Model-to-Text, whereas text may be distinguished in
= Program code
= Documentation
= Test cases
= Model serialization (XMI)

= Direct translation to machine code possible, but inconvenient, error-
prone and hard to optimize

= Reuse existing code generators
= Using existing functionality (frameworks, APls, components)
= Motto: The less code to generate, the better!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction

Example: Platform for Web application development

- Example: developing a code generator for Web applications

= What options exist for the to be generated code?

= Dimensions of Web applications: Content, Hypertext, Presentation
Programming languages: Java, C#, Ruby, PHP. ...
Architectures: 2-layer, 3-layer, MVC, ActiveRecords, ...
Frameworks: JSF, Spring, Struts, Hibernate, Ruby on Rails, ASP. ...
Products: MySQL, Tomcat, WebLogic, ...

= Which combinations are appropriate?

= Experience gained in earlier projects
= What has proven useful?

= Reference architectures

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction

What kind of code is generated?

_ Sequence

Class State charts Object diagrams

diagrams b1:B a:A| |b:B| |c:C

AR—:B : __ml, ;I

1? /0..1 b2:B e M3 m .

1.+ | | |
C 1 \ :

Production code}< ““““““““““ + Test code

Picture based on Berhard Rumpe: Agile Modellierung mit UML. Springer, 2012.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction

Overview of generation techniques

QVT Aspectd
ATL Citt Java, Java,
Templates .Net .Net
‘ Model Code Byte Code Reflection
. Transformation Transformation Rewriting

\j ______ N l Object Code | "

)) Running

Model : Source Code___ |1 3 or ! A
N ; - Bvte Code [P y Program
: Source Code l ! Compilation y
i Generation :

Acceleo XPand MofScript

_ Code Generation in MDE

Based on Markus Vdlter. A catalog of patterns for program generation. In Proceedings of the 8th
European Conference on Pattern Languages of Programs (EuroPLoP’03), pages 285-320, 2003.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction

Why code generation?

= Code generation enables
= Separation of application modeling and technical code

= Increasing maintainability, extensibility, portability to new hardware,
operating systems, and platforms

= Rapid prototyping
= Early and fast feedback due to demonstrations and test runs

= Code generation enables to combine redundant code fragments in
one source

= Example: DDL, Hibernate, and Java Beans
- may be specified in one UML Class Diagram

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction

Why code generation? — in contradiction to MDE? (1/2)

= Often no “real” model simulation possible
= UML environments mostly do not provide simulation features
= However, they provide transparent transformation to C, C#, Java, ...
= UML Virtual Machines

= Interpreter approach — spare code generation for certain platforms
= Gets a new twist with fUML!

= Semantics of modeling languages, especially DSMLs, often
defined by code generation

DSL Java
Car class Car {
E&color : String public String color;
E&Door : Integer Code Generator public int door;
E&Engine : Integer public int engine;
}

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction

Why code generation? — in contradiction to MDE? (2/2)

= Runtime environments are designed for programming languages
= Established frameworks available (Struts, Spring, Hibernate, ...)
= Systems depend on existing software (Web Services, DB)
= Extensions for code level often required (Logging)

- Disadvantage: using models and code in parallel
= No single source of information — OUCH!

= Having the same information in two places may lead to inconsistences, e.g.,
consider maintainability of systems

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction

Example: MiniUML_2_ MiniJava

MiniUML Metamodel «enumeration> MiniJava Grammar
Type
NamedElement }_/p ClassDec Modifier “class” Identifier | “extends
name: String — String Identifier | ClassBody
N — Boolean
- AttributeDec Modifier Type Identifier™;
| .| * cl MethodDec Modifier ReturnType Identifier “(
Relationship g ass ® S Attribute ParamList “)” “{” MethodBody “}
minCard : Integer
maxCard : Integer 0.1 superClass | type : Type Identifier a’-"z A”->Z -9
0.1
type
yp I
MiniUML Model MiniJava Code
class Student extends Person{
Person > Model2Text | ,
5 private String regNo;
Zr : public void setRegNo(..){..}
public String getRegNo(){..}
Student }
regNo : String

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

PROGRAMMING LANGUAGES
BASED CODE GENERATION

www.mdse-book.com

Programming languages

Introduction — Code generation with Java based on EMF

= Code generation may be realized using a traditional general purpose
programming language, e.g., Java, C#, ...

- Models are de-serialized to an in-memory object graph
= Pre-defined XMI de-serialzer provided by meta-modeling frameworks
= Qut-of-the-box support in EMF

- Model API eases processing of models

= Generated automatically from metamodels
= In EMF: .ecore -> .genmodel -> Java code

= |f metamodel not available, you may use reflection

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages

Model APlIs for processing models

- Example: Ecore-based metamodel and automatically generated
Java code (shown as UML Class Diagram)

MM in Ecore Model API
Class
—& Class >
name : String getName() : String
|” EcoreZJ ava setName(String) : void
getAtts() : EList<Attribute>
0.* |, atts 0.* |ops getOps() : EList<Operation>
Attribute Operation Attribute Operation
name : String name : String
type : Type returnType : Type getName() : String getName() : String
setName(String) : void setName(String) : void

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages

Code generation with Java: phases of code generation

1. Load models
= Load XMl file into memory

2. Process models and produce code
= Process models by traversing the model structure
= Use model information to produce code
= Save code into String variable

3. Write code
= Persist String variable to a file using streams

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages

Code generation with Java: Process and Architecture

ﬂ\ M2T >
(1) Load (2) Produce (3) Write

Code Generator

——————————————————————

Object Graph

/—> XMI Parser | Model API |FileStream API—\

Model EMF Code

e.g., UML Java e.g., Java

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages

Running Example solved in Java

ResourceSet resourceSet = new ResourceSetImpl(); (1) Load
Resource resource = resourceSet.getResource(URI.create("model.miniUML"));
Treelterator treelter = resource.getAllContents();

_
- Get all model
L elements

while (treeIter.hasNext()) {
Object object = treelIt.next();
if (!object instanceof Class) continue;

Class cl = (Class) object;

String code = "class ,, + cl.getName() + "{";
// generate Constructor: code += ..

// generate Attributs: code += .. \fQuery values via}
// generate Methods: code += .. \L model AP
code += "}";

(2) Produce

try {
FileOutputStream fos = new FileOutputStream(cl.getName() +".java®);

fos.write(code.getBytes());
fos.close();
} catch (Exception e) {..} Create a file for
} each class

(3) Write

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Programming languages

Summary

- Advantages

= No new languages have to be learned

= No additional tool dependencies

- Disadvantages

= Intermingled static/dynamic code
= Non-graspable output structure
= Lack of declarative query language

= Lack of reusable base functionality

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

M2T TRANSFORMATION
BASED CODE GENERATION

www.mdse-book.com

M2T Transformation Languages...

...are Template based

- Templates are a well-established technique in software
engineering

= Application domains: Text processing, \Web engineering, ...
= Example:

E-Mail Text Template Text
Dear Homer Simpson, Dear «firstName» «lastName»,
Congratulations! You have won ... Congratulations! You have won ...

= Components of a template-based approach

= Templates
= Text fragments and embedded meta-markers

= Meta-markers guery an additional data source
= Have to be interpreted and evaluated in contrast to text fragments
= Declarative model query: query languages (OCL, XPath, SQL)
= Imperative model query: programming languages (Java, C#)

= Template engine
= Replaces meta-markers with data at runtime and produces output files

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

M2T Transformation Languages

Core Architecture

- Template-based approach at a glance

Meta-marker

Template
Source «context class» /
Model public class «name» { String id, ... }
Person i

Customer Query

Input !

Text fragment

«\ Template &
N’ Engine @ﬁ

Outputl Produced Text Output2

public class Person { String id, ...}

public class Customer { String id, ...}

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

M2T Transformation Languages

Benefits

- Separated static/dynamic code

= Templates separate static code, i.e., normal text, from dynamic code that is
described by meta-markers

= Explicit output structure
= Primary structure of the template is the output structure
= Computation logic is embedded in this structure

- Declarative query language
= OCL is employed to query the input models

- Reusable base functionality
= Support for reading in models, serialize text to files, ...

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

M2T Transformation Languages

Approaches

= A bunch of template languages for M2T transformation
available
= JET, JET2
= Xpand, Xtend
= MOFScript
= Acceleo
= XSLT

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Acceleo

Introduction

= Acceleo is a mature implementation of the OMG M2T
transformation standard

= Acceleo website: hitn:/www.eclhipse ora/acceleo/
= M2T Transformation standard: "ito://vwwww.oma.ora/spec/MOEMZ2T

- Template-based language
= Several meta-markers for useful for code generation available

= Powerful API supporting
= OCL
= String manipulation functions

= Powerful tooling supporting
= Editor, debugger, profiler, traceability between model and code, ...

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

http://www.eclipse.org/acceleo/
http://www.omg.org/spec/MOFM2T

Acceleo

Language Concepts

= Module concept is provided

= Imports the metamodels for the input models
= Act as container for templates

- Atemplate is always defined for a particular meta-class

= Plus an optional pre-condition to filter instances
= Templates may call each other

= Templates may extend each other
= Templates contain text and provided meta-markers

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Acceleo

Language Concepts

- Several meta-markers (called tags) are supported

- File Tag: To open and close files in which code is generated

= For/If Tag: Control constructs for defining loops and conditions
= Query Tag: Reusable helper functions

- Expression Tag: Compute values that are embedded in the
output

= Protected Tag: Define areas that are not overridden by future
generation runs

Marco Brambilla, Jordi Cabot, Manuel Wimmer. B

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

<
Import metamodel
ACCG I eo (root package)

Example

Query

[module generateJavaClass('http://smvcml/1.0%)]
[query public getter(att : Attribute) : String = 'get'+att.name.toUpperFirst() /]

[query public returnStatement(type: String) : String = if type = 'Boolean’
then 'return true;' else "..." endif /] [Open output file]

[template public javaClass(aClass : Class)] /

[file (aClass.name.toUpperFirst()+'.java’, false, 'UTF-8"]

package entities;
é[Static Text]

public class [aClass.name/] implements Serializable {

Template definition]

Meta class

import java.io.Serializable;

[template public javaAttribute(att : Attribute)]
private [att.type/] [att.name/];

[for (att : Attribute | aClass.atts) separator ('\n")]

[javaAttribute(att)/]
[/for] ﬁ Terg glllate }

[for (op : Operation | aClass.ops) separator (\n")]
[javaMethod(op)/]
[/for]

public [att.type/] [att.getter()/]() {
return [att.name/];
}

[template] Expression

[template public javaMethod(op : Operation)]

} public [op.type/] [op.name/]() {
[/file] Il [protected (op.name)]
[template /I Fill in the operation implementation here!
[Protected [returnStatement(op.type)/]
Area Il [/protected]
i }
Close output file] ftemplate]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Acceleo

Protected Areas

- Protected areas are not overriden by the next generator run

- They are marked by comments

= Their content is merged with the newly produced code
= If the right place cannot be found, warning is given!

- Example
public boolean checkAvailability(){
/[Start of user code checkAvailability
I/ Fill in the operation implementation here!
return true;
// End of user code

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MASTERING
CODE GENERATION

Model-Driven Softwase
Enginoering in Practice

www.mdse-book.com

Abstracting Templates

= To ensure that generated code is accepted by developers (cf. Turing
test for code-generation), familiar code should be generated

= Especially when only a partial code generation is possible!

= Abstract code generation templates from reference code to have
known structure and coding guidelines considered

= Acceleo supports dedicated refactorings to transform code into
templates

= E.g., substitute String with Expression Tag

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Generating step-by-step

= Divide code generation process into several steps
= Same applies as for M2M transformations!

= Transformation chains may use a mixture of M2M and M2T
transformations

= To keep the gap between the models and the code short

= If code generators exists, try to produce their required input format with
simpler M2M or M2T transformations

= E.g., code generator for flat state machines, transform composite state
machines to flat ones and run existing code generator

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Separating transformation logic from text

= Separate complex transformation logic from text fragments
= Use queries or libraries that are imported to the M2T transformation
= By doing this, templates get more readable and maintainable

= Queries may be reused

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Mastering code layout

= Code layout is determined by the template layout

= Challenging to produce code layout when several control structures
such as loops and conditionals are used in the template

= Special escape characters for line breaks used for enhancing the reabability
of the template are provided

= Alternative
= Use code beautifiers in a post-processing step
= Supported by Xpand for Java/XML out-of-the-box

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model/code synchronization issues

= Protected areas help saving manually added code in succeeding
generator runs

= Code contained in protected areas is not always automatically
Integrated in the newly generated code
= Assume a method is renamed on model level
= Where to place the code of the method implementation?
= Which identifier to use for identifying a protected area?
= Natural or artificial identifiers?

= Model refactorings may be replayed on the code level before the next

generator run is started
= Code in protected areas may also reflect the refactorings!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Code Generation = M2M + TCS?

= Code Generation achievable through applying a M2M transformations
to a programming language metamodel

- If a TCS is available for the programming language metamodel, the
resulting model may be directly serialized into text
= Only recommended when
= programming language metamodel + TCS are already available
= full code generation is possible

Metamodel NN Spec> Metamodel | < symbolizes | TCS Spec

(ModLang) (ProgLang) (ProgLang)
/N N /N
«conformsTo»i i «conformsTo» E «conformsTo»
| VT E > «Vvisualizes T(I:S
M | XeC o
ode Model Serialization

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

f\& MORGAN CLAYPOOL PUBLISHERS

MODEL-DRIVEN SOFTWARE
ENGINEERING IN PRACTICE

—

>

Marco Brambilla, oddD —
Jordi Cabot, -
Manuel Wimmer.

Morgan & Claypool, USA, 2012. o
www.mdse-book.com

Www.morganclaypool.com

http://www.mdse-book.com
http://www.morganclaypool.com

