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Cauchy Stresses:

(a) A solid under displacement constraints and external loads;
(b/c) Internal stresses in a constrammed and loaded solid

. , _AF
Cauchy Stress (“True Stress”): t=t(P,n)= A';'\Toﬂ: -t(P,-n)

It can be shown that t(P,n)=T(P)n
where T s the Cauchy Tensor Field

In an implicit Cartesian basis (e;) i=1,23 [T]= [o-ij] where oy =¢ t(e))

Over the boundary surface: Tn=f



Equilibrium

For any finite portion of the body QcB I fdA+ J- bdv =0
Q Q
j TndA+ Ib AV =0 (integral Equititrium Eguation)
aQ Q
Using Gauss Divergence Theorem: _[diV‘I‘ av = J YndA
w/lerz b )

s either a scalar, vector or tensor field

we have j(divTT +b)dV =0, VQcB

Q

divT" +b=0, VPeB (Differential
and since this must hold for Q) € Equil ér/um
Tn=f, VPedB Eguation)

3. 00
where divTT =) —le
i OX;
. j
Equilibrium of moments around three coordinate axis provides T =T'

So the transposition symbol can be omitted in the equilibrium equation, which then
expresses both force and moment equilibrium!

Theorem of Virtual Work

divT+b=0 vPeB
Tn=f VP edB,

A body is in equilibriam, i, and only F {
Thus, for any virtual displacement S\ compatible with the boundaries (6u=0 in &B,)
Su-(divT+b)=0 VvPeoB
[6u-(divT +b)dv =0 Vsu
Q
Applying Green’s divergence Theorem for the first term:

[ou-(divTT)dv = [ su-(Tn)dA-[T:sEdV
Q oQ Q

Thus equilibrium can be expressed by IT 1OEdV = I5U 'tdA+_[5U ‘bdv, Voéu
Q Q Q

That s OW, = oW,

ext?

You

1
SE = 5[5 F+6FT ] =S8E" /s the tensor of virtual displacements

SF=Vdu= [%} 15 the gradient of the virtual transformation
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Plane Stress State

o,=0 o, 7y O
T,=7,=0 T= Ty O, 0
b,=1,=0 0 0

A solid under plane stress state

or
%+—Xy+b =0

Y ox oy
Equilibrium: VP € B,
or, 0o
“r T =0
OX oy

Parvametric Surfaces

0, = constant

0, = constant

A parametric surface can be descrived by a position vector field ¥ =T (011 92 )

(we'll refer to an implicit Cartesian coordinate system (x,4.z), so that no distinction will be done
between covariant and contravariant base vectors, as it would be required for more general curvilinear

coordinate systems...)



Parametric Surfaces

Some solids can be descripted by parametric surfaces, plus a ‘thickness’ scalar
parametric field given

h=h(6,6,)

Such that: NP eB 1 X, =r(6,,0,)+12¢e,(0,,6,)

MEMBRANES: h <<1

Parvametric Surfaces

Keeping 0, =constant, a =12

we define an in infinite set of coordinate _or / 1
curves, with associate tangent vectors «~ %9 (tn general, |jg,|#1)
a
. . . _ 9.x9,
A unit vector field, always normal to te surface, is given by  Q, = m
0, %0,

Differential area elements are given by — dA = ||g1 X gz|| =(09,x9,)-9, =detG

Where (3:[@&, a;=0,0;, i,j=123 & the METRIC TENSOR
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Parametric Surfaces

A differential displacement over the surface is given by

2
ar= " do,+ 2 d0,=3 g.do,
00, o0, &
where g, =i
20,

2
(squared) length of an infinitesimal displacement: (ds)2 =dr-dr=>'g,-9,d6,d6,

a,p=1
2 2
Deroting  8,,=0,°9, @B=12 wehae (ds) =) Y a,do,do,
a=1p=1

FIRST FUNDAMENTAL FORM
OF THE SURFACE’

Normal Curvature

We consider a curve drawn onto the surface, parametrized by the arc-length:

Yo r=r(s)

c dr v
=— =+

The curvature of YV /s given by T = E = -
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Normal Curvature
s Ot v _ 0
ds p p

And since g, Lt Vs . g,=—=+4%

: T 1
So that, in any case 93'T=(—-]T=—
P

Normal Curvature
Thus K= i o may now be positive or negative, depending on the curve being
- P Mo the surface orientation!
o _dgy &g, 40, dr & ordg, & do
3:_322 3_ﬂ T="= __“:zga -
ds 4500, ds ds 5060, ds o3 ° ds
1 . 1 2 2 93
K=—= = g, dg, de
po (ds) {Zﬂz( aeﬁ] /
0
Denoting b, =b, =49, % a,p=12

SECOND FUNDAMENTAL FORM OF THE SURFACE’

FIRST FUNDAMENTAL FORM OF THE SURFACE’




Princpal Curvatures
2 2
Expanding these forms K= i = by, d 912 +2b,06,d0, +b, dF, 3
p a,d6"+2a,d60d6,+a,db,

A=A(d6,,do,)=a,d6’+2a,d6,do, +a,,d6,’

Defining
{B = B(d@l,dez) = bnd@l2 +2b,d6,déo, +b,, dl922

We arvive at AK' —_ B = 0 , which always holds!

(that is, for any divection defined by (d 6,,d6, ) )

OA oK oB
= K+ A - =0 a, =12
odé, odg, odé

a

Therefore ﬁ( Ax—B )

v(do,,do,)

Principal Curvatures

Furthermore, in the directions for which k is extremum:

oK
odé,

0 a,f=12

That is, in the directions for which k is extremum:

oA oB
——xk—-——=0 a,f=12
odé, 0do,

Proceeding with the derivations:

(a,d6, +a,d6,)x—b, d6, —b,d6, =0
(a,d6, +a,,d6, )k b, d6, +b,, d6, =0
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Princpal Curvatures
Or, m matrix /b’m.' (|:b11 b12:|—l(|:a11 a12:|]|:d01:| = |:O:| (*)
blZ b22 a12 a22 d 02 0
This system has non-trivial solutions only if  det [[bﬂ TKey b, mxa, D =0
b, —xa, b, —xa,

‘Characteristic equation’ (t’:\na22 -a,’ ) x* —(ayb,, —2a,b, +b,a,, )k + (bnb22 -b,’ ) =0

The roots of the characteristic equations are: K= K v T K,\Z,I -K G
bubzz — blzz
where: Kg =Kk, = 2 Is the GAUSSIAN CURVATURE
a8, — &y,
and where: K, =~ (x, +1,) = - Pz ~ 23D *00dn ey prgan curvATURE
2 1 2 a. — 2
a’ll 22 a‘12
Principal Curvatures
KG(P)>O KG(P):0 KG(P)<0
U U U
The point is ELLIPTIC The point is PARABOLIC The point s HIPERBOLIC
Ke>0 VPeQ Ke=0 VPeQ Ky <0 VPeQ
U U U
The surface is The surface is SIMPLE The surface is
SINCLASTIC or DEVELOPABLE ANTICLASTIC
[ [ [ ——
— —— e
Relationships between Gaussian K. — K tKy P+ py SK - Pty
and Mean Curvatures: M T 2 T 2Py =pPRe¢ » P= 2
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Principal Directions & Curvature Lines

Substituting k, and k, in (%) we find the two mutually orthogonal divection (¢, y D ),
for which the curvature radiuses are extrema;

These directions are called PRINCIPAL DIRECTIONS, and curves that follow the
principal divections are called CURVATURE LINES.

70 show that indeed ¢, L ¢, . we consider that along the coordinate lines A0, =0

(stnce 6, = constant), so for curvature lines we have

0
(8,06 +a,00,)x, b, 6 ~b,00,=0 {aur«. b, =0
A
(2,46, + 2, 0, ), ~b,, d6, +b,,d¢, =0 2,y —b, =0
0 0 a’lZ(KI_KII)ZO
Now, if K #K, = 8,=0,-0,= 0= 9, 1 g, - that is, indeed the curvature lines are
mutually orthogonal!
When curvatures lines are used as coordinate lines, _ b“ _ bzz
xpressions for the principal curvatures are simplified: k= al_ R Ty
1 22

L the vicinity of the point is locally spherical,

# Kk =k, %0
and all divections are principal ones.

Cumnvature Lines

Determination of the Curvature Lines may be complicated, but, by assuming they are
known, they may be taken as coordinate lines, respect to which the equilibrium of

membranes is simpler to express!

We also keep the arc-length along the curvature lines as parameter, that is 0, =S5,

And we define, at each point, a local Cartesian coordinate system such that

or
e, =—,
0s,

e, =€ xe,

a=12




Curvature Lines

It can be shown that necessary 6& e =0
and sufficient conditions for 06 *
coordinates lines be curvature “ , a=12;8=21
lines ave: e . oe, 0
s =
00,

oe
Reciprocal conditions are: ﬁ-eﬁ =0 ; a=12;p=21

a

Torsion
oe, Oe,
The TORSION of a curve is defined such that 6Sa =% —@e,
B a

1t expresses ‘how fast’ the osculating plane (e,,e,) rotates, in the vicinity of a point

Torsion

Curvature lines do not present any torsion, since the previous conditions requive that,

for them:

(a) Lines with torsion (b) curvature lines (without torsion)

26/10/2017
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A ynd;he//composed of metal plates that run along asymptotic lines
(lines of zero normal curvature) — TUM, 2017

E. Schling, D. Hitvec, J. Schikore, R. Barthel. DESIGN AND CONSTRUCTION OF THE ASYMPTOTIC PAVILION,
STRUCTURAL MEMBRANES 2017, Munich.

Euler’s Theorem & Curvature Tensor

The curvature of a line making an angle ¢ with a curvature line is

‘K:Kl cos’ g+ x,, sin2¢‘

Eulers Theorem highlights the tensor nature of the curvatures around a pornt..

The components of the Surface Curvature Tensor on a point, in an Intrinsic
orthogonal coordinate system are given by:

oe
2 _ K B=12
6sﬁ aﬂg3 (0‘,3 )
K —Q
that is K=[K, —{ ! }
(K=

K\ Ky are the egenvalues of K and @, 9, its eigenvectors

26/10/2017
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DIVERGENCE OF A SURFACE TENSOR

a

2
#F T is resolved as a SURFACE TENSOR T =T(s,s,)=> > T e
=1 p=1

®eﬂ

(where we consider orthogonal coordinates lines with arc-length parameters S,
-~ not necessarily curvature lines! )

2 (& oT
Then its divergence vector s divT = > | > — |e, +(K : T)e,
a1\ p=1 88/3

« where K s the Surface Curvature Tensor

«  and where the scalar product between tensors K and T :

K:T= tr(KTT) = iz Ko Tos

a=1 p=

N

Equilibrium of Membranes - /

| FITTIT

ds
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SEE]

(b) A transversal cut showing

(a) External and boundary loads in a membrane,

.. o
with h<<Z (constant); the variation of 3

(usually disreqarded?)
Equilibrium of Forces:

cﬁ hTnds = _[ bA

oQ Q

Applying the divergence theorem (J- h-divT + bj dA=0 ,vQ
Q

h-divT+b=0 VPeQ (Equilibrium of Forces)

T=T1 (Equilibrium of Momentum)

12
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Equilibrium of Membranes - /

Remembering the expression of the divergence of a surface tensor equation
And denoting the external loads as

b=-be, -be, - pe,

oo, Ot or, Oo.
hi| —2+—2 e, +| —2+—2l|e,+(K:T)e, |- fe, - fe,—pe,=0
[( asl 652] 1 [651 as JZ ( )3] ™~1 272 p 3

2

A [f’i . ﬁ] h
0s, 0s,
Similar to a plane stress state
h[@rlz N 00, J _b,
0s, 0s,

h(K:T)=p  Surface stresses equilibrate transversal load by
means of curvature!

K. - O, T
htrﬂ ' go}[ wo D: h(x,00, + K,0, 2¢le):h(o-“+0222¢112]: p
@ K, [T, Oy

P P

Equilibrium of Membranes - I/

The previous derivation might seems too much abstract, so we recast the
membrane equilibrium in a more ‘engineering’ approach:

element

(a) External and boundary loads

(6) a membrane element under a
m a membrane;

Surface stress field

We consider O, and Tap constant through thickness h. and

define the Surface Stresses [N/mJ:

Nmz = hgaa ; No{ﬂ = Nﬂa = hTaﬂ

13
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Equilibrium of Membranes - I/

>y
TNse-N'+dN.  We again consider coordinates lines with
s =N +dN,

length parameters S,
(not necessarily curvature lines!)
Ny==N; +dN, N, = N,e, +N,,e,

We define: {
N, =Nye +Nye,

Forces: dN,ds, +dN,ds, +bds,ds, =0 (¥
And express Equilibrium:
Moments: N, =Ny
dN, dN -
pividing (9 by dsds, © 1+d—2+b=0 )
S, S

1 2

Equilibrium of Membranes - I/

dN oN oe, ON oe
Now: d_l:i(Nuel"'leez):_ue1+N11_l+ e, + N, %
s, ds 0s, 0s, 05 0s,
But % =K.e md a& = —@pe
u 25, 1°3  a o5, P,

% — 6Nll e + aNlZ
1

ds, s ds,

Therefore

€, +(k1N11 _(/’N12)e3

L oN oN oN
Likewise 2 _—__ 2o 1~ 20 4(kN. —pN. )e
ds, s, 1 ds, 2 (2 2~ @ 21) 3

Substituting in (**):

oN oN
aszl el"’?zzez +(k; Ny, —¢N21)€3 +b=0

oN oN
Knel + dslz €, +(k1N11 —(/)N12)93 +

1 1

14
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Differential Equilibrium in Membranes

Denoting b = _b1€1 —bze2 - pe, - considering that N,,=N,,
and collecting the terms according to the intrinsic basis:

% + aN_lz = b1
0s,  0s, Similar to a plane
Stress state!
0s, 0s,
N N
L+ —2 29N, = p| “General Membrane Equation”
P P

If &, are principal divections: ¢ =0

ON,, . ONy,
o0& O& e Similar to a plane
! 2 Stress state!
ON,;, ON,,
2,z
Jg,  Og,
& n & _ “General Membrane Eguation
P P =P n_Prineipal Directions™
| 1

Differentral Equilibrium in Membranes

If the membrane s under a uniform and isotropic stress field

b,=b,=0
N11 = sz =0, .
N =N. =0 = ho i_}_ i B Equation of Laplace-Young or
2= ‘Lo pu =P “Soap Films Equation”
Rewriting: ho, {M] =2ho,K, =p
PP

In particular, for a spherical membrane, of radius v and thickness t:

K -1 b
r 2t

15



Minimum Surfaces (Plateu'’s Problem)

The Area of a Surface ) with a prescrived closed boundary is given by

A=[dA=[]g,xg,|d6, do,
Q Q

We seek a surface Q' Spanned by a vector field X Such that N Is a minimam.

In other words, for every compatible perturbation SU  around X

0A

SA"=—| su=0, Véu
OX |,

X

Thus the 15 order condition for X' To be a minimum is

A
OX

With the equality constraint (X, — X, )=0, VP € 0Q
Where X, Spans the prescribe coordinates

Analytical solutions for this nonlinear equation maybe rather difficult!

Soap Film Analogy

We recast the problem of area minimization in a more nonlinear mechanics fashion:

§A:j(5J)dA=0, véu around x
Q

from X o X +6u

; . o(ou)
_ s the Jacobran of the _
where 5 = tr(é‘F) deformation gradient oF =1+ X

Measured with respect to X

The configuration X' That minimizes the functional A  also Fulfills the above equation N SU

We can always consider coordinate systems for which €, =Q; , normal to Q)

So that oF;, =0

And therefore 5A= [tr(5F)dA=0= [(5F,+6F,)dA=0 Vou
Q Q

26/10/2017
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Soap Film Analogy

We now consider the problem of finding the membrane geometry x*

Compatible with a self-equilibrated Cauchy surface stvess field — T*
(zero external loads, except reactions along the fixed boundarres)

Static equilibrium always regquires oW, = oW,
But since we assume that external loads are zero (except at fixed boundaries): W, =0
Therefore, for self-equilitrated surfaces: oW, =0, Véu

When deformations are measured from the equilibriam configuration X"

This condition can be recast as W, =h [ T*:6F dA=0, Véu

Q

o(dou
Where h is the membrane thickness and  OF =1 + (g < )
X

Soap Film Analogy

We now particularize this condition for a homogeneous and isotropic Cauchy surface
Sstress field, such that, in the chosen basis (with €; =0, )

T*=5|0 1 0|=0l, VPeQ*

Even [F the membrane presents non-zero deformations in the transversal dirvection,
that is 5F,, # 0 , the virtual work developed by the stress field T* is given by

oW, =ch [1:6F dS =ch [ (6F, +05F,)dA=0, Vou
o* o*

Comparing to the condjtion to minimum area we conclude that X* = X

That is, the geometry compatible to an auto-equilibrated, homogencous and (sotroprc
Cauchy surtace stress field also complies to the condition of minimal area!

17
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Consequence for Minimal Surfaces

o o . Nll N 22
Considering the Membranes’ Equation  ——+—==
P Py
o . p=0
And taking into account that for minimum surfaces
u=Nyp=N;
1 1
We have Ng[_+_]_0
P Py
Thus P =Py

Or, in words, minimal surfaces have zero mean curvature K, with negative or zero

Gaussian curvature K, that s, they arve either anticlastic or flat!

«  Soap films are minimal surfaces, when p=o.

«  Strictly speaking, a soap bubble is not a minimal surface, although it is associated
to a stmilar minimization problem (‘minimize the area for a given volume).

Ex. 8 - Hyperbolic Paraboloid

Show that a hyperbolic paraboloid (“hypar” )surface IS NOT a minimum surface.
7 =axy

Hypars are usually mentioned as minimum surfaces in the literature about tension
structures, and in fact they are practically indistinct to the minimum surface with the
same boundary. The analytical expression of the true minimal surface was given by
Schwarz in 1890, and is quite more complicated than the hypar expression!

H.A. Schwarz, Gesammelte mathematische Abhandlungen, 2 vols, Springer.
Berlin, 1890.

18
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Catenord

The soap Ffilm analogy provides a shortcut to deduce the shape of the catenoid, that
15, the shape of a minimal surface connecting two clrcular rings of vadius R, with
center on the save axis, and apart of each other by a distant h.

Symmetry requives that the solution is given by the rotation of a generatrix curve
y=y(2)

and that this curve is symmetric at mid-distance between the rings that is,
y(0)=0

Catenord

We consrder the vertical equilibrium of a slice of the surface bounded by to vertical
radial planes, with and infinitesimal vertical strip spanned by horizontal angle do

We denote Y (0) =Yy S0 far an unknown constant value.

Using the ;‘aag analogy, we know that every cross section of the membrane (s under a
uniform surface stress o\t , where t s the membrane thickness.

Thus vertical equilibrium of a vertical slice from z=0 to z(y) requives:

ooty,da =(otyda)cosd
. dz "2
And since COSH:d—: l+(y)
S

We have Yo=F——
1+(Y')

19



Catenord
y' 1

Rearvanging: —_—=—
VY=Y Yo

y idz=i+C

Integrating along z: || ——= [z =
([ tat
d
From standard calculus j% =In (u +yu?-a’ )
u”—a

=u .. du=y'dz
Thus, making
a=y,

z
Vertical equilibrium requives: 1N ( y+4y - yE ) = 7 +C

0

Catenord

Denoting: 1= Y
0

We successively write: In ( Yo (77 +/n’ 71)) -f.c
Y

0

In yo+ln(77+\/ﬁ)=i+c

0

In(n+\/n271):yi+cfln Y =yi+C*

0 0

Remembering the inverse hyperbolic relationship:
In (77 +4n? 71) =arcosh (7)

We have: arcosh {y] -Lic
Yo Yo

26/10/2017
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Catenord

Also denoting: 1= A

Yo

z
We successively write: |n(yo (774'\/772 —1)):7*'(:

0

In(77+\/772—1):yi+C—ln Yo -t.c

0 0

Remembering the inverse hyperbolic relationship:

In (77 +\/ﬁ) =arcosh(77)

We have:  arcosh [y] -Lic
Yo Yo

That is: Y =Y, cosh [;+C*]

0

Catenord

Imposing the boundary condition

y(0)=y, =y,cosh(C") - cosh(C)=1 - C"=0

y =Y, cosh (ZJ
Yo

That s, the generatrix curve of the minimal surface connecting two circular rings (s a
catenary, and the surface itself is the catenord!

h
Defining the ratio A=—  we have y(hj =y, cosh AR =R
R 2 2y,

Which provides Y, for a given ratio A

It can be shown that the only surfaces of revolution which are also minimal surfaces are the
catenoids (Strutk, 1950), as it is easy to conclude from the above development , since no
particular restrictions have been set for y =y(z)

21
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Goldschmidt limit

The maximum ring separation for a catenoid with equal lower and upper radiuses is
h<h, =1.3254868R

lim

This is known as Goldschmidt limit (1831).

Carl Wolfgang Benjamin Goldschmidt, ‘Determinatio superficier minimae rotatione curvae data
duo puncta fungentis civca datum axem ortae’, Gottingae, MDCCCXXX.

h=1.32R h=1.33R

A family of conords:

Warp:Fill stress ratio

22
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EX. 9- Catenord

Analytically determine the area of a catenoid bounded by two parallel and coaxial
rings of radius R=1m, separated by a distance h=1m.Compare to numerical results
obtained by divect area minimization and DRM.

Consider different degrees of discretization and check convergence of the numerical
results to the analytical one.

Try to find the Goldschmidt limit, considering numerical models with separations just
below and above hy,=1.32R

Show that for distances h>1.056R, the area of the catenord is actually greater than
the area of two independent civcular discs bounded by the rings (the solution for the

minimum area problem with two separate discs is know as Goldschmidt discontinuous
solution).

23



