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Cauchy Stresses:

(a) A solid under displacement constraints and external loads;
(b/c) Internal stresses in a constrained and loaded solid

   
0

, lim ,
A

P P
A 


    



F
t t n t nCauchy Stress (“True Stress”):

It can be shown that    ,P Pt n T n

where T is the Cauchy Tensor Field 

In an implicit Cartesian basis   ij
   T  ij i j

  e t e1, 2,3
i

i e where

Over the boundary surface: Tn f
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Equilibrium

 div ,
T

dV B


    T b 0we have

For any finite portion of the body dA dV
 

  f b 0

and since this must hold for  

B 

dA dV
 

  Tn b 0

Using Gauss Divergence Theorem: div dV dA
 

    n

where  is either  a scalar, vector or tensor field 

(Integral Equilibrium Equation)


div ,

,

T
P B

P B

    


  

T b 0

Tn f

(Differential 
Equilibrium 
Equation)

3

, 1

div
ijT

i

i j j
x









T ewhere

Equilibrium of moments around three coordinate axis provides T
T T

So the transposition symbol can be omitted in the equilibrium equation, which then 
expresses both force and moment equilibrium! 

Theorem of Virtual Work

 div 0 P B     u T b

A body is in equilibrium, if, and only f
div P B

P B

   


   f

T b 0

Tn f

Thus equilibrium can be expressed by

Thus, for any virtual displacement u  in B  
u

u 0compatible with the boundaries 

Applying Green’s divergence Theorem for the first term:

   div :
T

dV dA dV  
  

     u T u Tn T E

 div 0dV 


    u T b u

: ,dV dA dV   
  

      T E u t u b u

That is int ext
,W W    u

1

2

T T       E F F E is the tensor of virtual displacements

 
 

 
    

 

u
F u

x
is the gradient of the virtual transformation
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T

A solid under plane stress state



Equilibrium:

0

,

0

xyx

x

yx y

y

b
x y

P B

b
x y



 

 
  

 
  

    
  

Plane Stress State

Parametric Surfaces

A parametric surface can be described by a position vector field  1 2
, r r

(we´ll refer to an implicit Cartesian coordinate system (x,y,z), so that no distinction will be done 
between covariant and contravariant base vectors, as it would be required for more general curvilinear 
coordinate systems…)
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Parametric Surfaces

Some solids can be descripted by parametric surfaces, plus a ‘thickness’ scalar 
parametric field  given 

,
2 2

h h
z

 
  
 

Such that:    1 2 3 1 2
: , ,

P
P B z      x r e

where:

and:
min

0 h  

MEMBRANES: 1h 

 1 2
,h h  

 

g1 
dA 

g2 g3 

Keeping 

Parametric Surfaces

constant, 1, 2  

we define an in infinite set of coordinate 
curves, with associate tangent vectors 

1 2

3

1 2






g g
g

g g

(In general,              )1 g

A unit vector field, always normal to te surface, is given by

Differential area elements are given by  1 2 1 2 3
detdA      g g g g g G









r
g

, , , 1, 2,3
ij ij i j

a a i j     G g gWhere                                                         is the METRIC TENSOR
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dr 

r 
r + dr 

O 

A differential displacement over the surface is given by  

Parametric Surfaces

2

1 2

11 2

d d d d 



  
  

 
  
 


r r

r g

Denoting

(squared) length of an infinitesimal displacement:  
2

2

, 1

ds d d d d   

 

 


   r r g g

, 1, 2a      g g we have  
2 2

2

1 1

ds a d d  

 

 
 



‘FIRST FUNDAMENTAL FORM 
OF THE SURFACE’

where 







r
g

 

r0 

O 

r(s) 



g3 

ds 



1 = 1
0 

2 = 2
0 

Normal Curvature

We consider a curve drawn onto the surface, parametrized by the arc-length:

 : s   r r

The curvature of       is given by 
3d

ds  

•

   
gτ ν

τ



26/10/2017

6

 

r0 

O 

r(s) 



g3 

ds 



1 = 1
0 

2 = 2
0 

 O 

r(s) 

O 
C0 

C0 
g3 

g3 g3 + dg3 

r(s) + dr 

ds 




 + d

dg3 

d 



 (s)



P0 

P0 

g3 =  


g3 + dg3 

g3 

 + d



d 

dg3 



C 

P 

C 

ds 
P 

Normal Curvature

And since 3

3 3

d
s

ds 

•

     
g τ

g τ g

So that, in any case 3

1

 

•  
    

 

τ
g τ τ

3d

ds  

•

   
gτ ν

τ

Normal Curvature

Thus 
3

1




•

  g τ may now be positive or negative, depending on the curve being 
concave or convex with respect to the surface orientation!

 

2 2
3

3 2
1 1

1 1
d d

ds
  

  

  
 

•

 

  
      

    


g
g τ g

2
3 3

3

1

dd

ds ds



 





•




 




g g
g

2 2

1 1

d dd

ds ds ds

 


 

 

 


  


 

r r
τ g

Denoting 3
, 1, 2b b  



 





  


g
g

2 2

1 1

2 2

1 1

1
b d d

a d d

  

 

  

 

 




 

 

 

 



 ‘FIRST FUNDAMENTAL FORM OF THE SURFACE’

‘’SECOND FUNDAMENTAL FORM OF THE SURFACE’
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Principal Curvatures

Expanding these forms

2 2

11 1 12 1 2 22 2

2 2

11 1 12 1 2 22 2

21

2

b d b d d b d

a d a d d a d

   


    

 
 

 

We arrive at 0A B   , which always holds! 

Therefore   , 1, 20
A B

A B A
d d d d   

 


 
   


   

    
   

Defining
 

 

2 2

1 2 11 1 12 1 2 22 2

2 2

1 2 11 1 12 1 2 22 2

, 2

, 2

A A d d a d a d d a d

B B d d b d b d d b d

     

     

    


   

(that is, for any direction defined by                 ) 1 2
,d d 

 1 2
,d d 

Principal Curvatures

Furthermore, in the directions for which k is extremum:

, 1, 20
d 

 










That is, in the directions for which k is extremum:

, 1, 20
A B

d d 

 
 


 

 
 

Proceeding with the derivations: 

 

 

11 1 12 2 11 1 12 2

12 1 22 2 12 1 22 2

0

0

a d a d b d b d

a d a d b d b d

    

    

   


   



26/10/2017

8

Principal Curvatures

Or, in matrix form: 11 12 11 12 1

12 22 12 22 2

0

0

b b a a d

b b a a d






        
         

       

(*)

This system has non-trivial solutions only if 
11 11 12 12

12 12 22 22

det 0
b a b a

b a b a

 

 

    
  

   

     2 2 2

11 22 12 11 22 12 12 11 22 11 22 12
2 0a a a a b a b b a k b b b      ‘Characteristic equation’:

The roots of the characteristic equations are: 
2

,I II M M G
K K K   

where: 

2

11 22 12

2

11 22 12

G I II

b b b
K

a a a
 


 


Is the GAUSSIAN CURVATURE

and where:   11 22 12 12 11 22

2

11 22 12

21 1

2 2
M I II

a b a b b a
K

a a a
 

 
  


Is the MEAN CURVATURE

Principal Curvatures

The surface is 
SINCLASTIC

  0
G

K P    0
G

K P 

The point is ELLIPTIC The point is PARABOLIC

Relationships between Gaussian 
and Mean Curvatures:

0
G

K P   0
G

K P  

The surface is SIMPLE 

or DEVELOPABLE

The point is HIPERBOLIC

0
G

K P  

The surface is 
ANTICLASTIC

;
2 2 2

I II I II I II

M G

I II

K K
     

 
 

  
   

  

  

  0
G

K P 
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Principal Directions  & Curvature Lines

Substituting kI and kII in (*) we find the two mutually orthogonal direction             ,

for which the curvature radiuses are extrema; 
 ,

I II
 

These directions are called PRINCIPAL DIRECTIONS, and curves that follow the 
principal directions are called CURVATURE LINES.

To show that indeed               , we  consider that along the coordinate lines                

(since                   ),  so for curvature lines we haveconstant 

0d  I II
 

 

 

11 1 12 2 11 1 12 2

12 1 22 2 12 1 22 2

0

0

I

II

a d a d b d b d

a d a d b d b d

    

    

   


   

0 0

0 0  

12 12

12 12

12

0

0

0

I

II

I II

a b

a b

a





 

 


 

 

That is

12 1 2 1 2
0

I II
a       g g g gNow, if                                                                    , that is, indeed the curvature lines are

mutually orthogonal! 

0
I II

  If                        , the  vicinity of the point is locally spherical, 

and all directions are principal ones.

When curvatures lines are used as coordinate lines, 
xpressions for the principal  curvatures are simplified:

11 22

11 22

;
I II

b b

a a
  

Determination of the Curvature Lines may be complicated, but, by assuming they are 
known, they may be taken as coordinate lines, respect to which the equilibrium of 
membranes is simpler to express!

s  We also keep the arc-length along the curvature lines as parameter, that is

Curvature Lines

And we define, at each point,  a local Cartesian coordinate system such that 

3 1 2

1, 2,
s





 





  

r
e

e e e

 

e1 

e2 
O 

e3 
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Curvature Lines
• It can be shown that necessary 

and sufficient conditions for 
coordinates lines be curvature 
lines are:

3

3

1, 2 ; 2,1

0

,

0









 




 


 


  

 

e
e

e
e

3
1, 2 ; 2,10 ;



 


 


 


e
e• Reciprocal conditions are:

Torsion
The TORSION of a curve is defined such  that 3

s s



 




  
 

ee
e

 1 2
,e eIt expresses ‘how fast’ the osculating plane           rotates, in the vicinity of  a point 

2
e

3
e

2
e

3
e

2 2
de e

3 3
de e

2

2 1 3 1

1

d ds ds
s




  


e
e e

1
ds

Torsion

(a) Lines with torsion (b) curvature lines (without torsion) 

Curvature lines do not present any torsion, since the previous conditions require that, 
for them: 

1, 2 ; 2,1;
s





  





e
0
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A gridshell composed of metal plates that run along asymptotic lines 
(lines of zero normal curvature) – TUM, 2017

E. Schling, D. Hitrec, J. Schikore, R. Barthel.  DESIGN AND CONSTRUCTION OF THE ASYMPTOTIC PAVILION, 
STRUCTURAL MEMBRANES 2017, Munich.

Euler’s Theorem & Curvature Tensor

The curvature of a line making an angle       with a curvature line is 

2 2
cos sin

I II
     



Eulers Theorem highlights the tensor nature of the curvatures around a point… 

The components of the Surface Curvature Tensor on a point, in an intrinsic 
orthogonal coordinate system are given by:  

1

2

K

 

 

 
       

Kthat is

 
3

, 1, 2K
s






  





e
g

,
I II

  are the eigenvalues of          and             its eigenvectors  K ,
I II

 
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Then its divergence vector is  
2 2

3

1 1

div
T

s




   

 
  

  
 T e K : T e

If       is resolved as a SURFACE TENSOR  
2 2

1 2

1 1

,s s T  

  

  T T e eT

 
2 2

1 1

tr
T

K T 

  

 K : T K T

K is the Surface Curvature Tensor• where

• and where the scalar product between tensors       and      :TK

DIVERGENCE OF A SURFACE TENSOR

(where we consider orthogonal coordinates lines with arc-length parameters 

-- not necessarily curvature lines!   )

s

Equilibrium of Membranes - I

(a) External and boundary loads in a membrane, 
with h<<1 (constant); 33


(b) A transversal cut showing 

the variation of          

(usually disregarded!) 

h ds A
 

 Tn b

Equilibrium of Forces:

T
T T (Equilibrium of Momentum)

Applying the divergence theorem div 0 ,h dA


 
    

 
 T b

divh P     T b 0 (Equilibrium of Forces)
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 11 12 12 22

1 2 3 1 1 2 2 3

1 2 1 2

h f f p
s s s s

          
                   

e e K : T e e e e 0

 h pK : T

Similar to a plane stress state

1 1 2 2 3
b b p   b e e e

Remembering the expression of the divergence of a surface tensor equation

And denoting the external loads as 

Surface stresses equilibrate transversal load by 
means of curvature!

11 12

1

1 2

12 22

2

1 2

h b
s s

h b
s s

 

 

  
   

   


   
      










Equilibrium of Membranes - I

 1 11 12 11 22

1 11 2 22 12 12

2 12 22 1 2

tr 2 2h h h p
     

     
     

       
            

      

 

21 

h 

2 

22 

11 

(a) External and boundary loads  
in a membrane; 

(b) a membrane element under a 
surface stress field

The previous derivation might seems too much abstract, so we recast the 
membrane equilibrium in a more ‘engineering’ approach:

;N h N N h       

We consider        and          constant through thickness h. and 

define the Surface Stresses [N/m]:
 

Equilibrium of Membranes - II
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1 

2 

0

11 1 e

0

22 2 e

0

12 2 e

0

21 1 e
0

1N

0

2N

0

1 1 1d  N N N

0

2 2 2d  N N N

2ds

1ds

1 2 2 1 1 2
d ds d ds ds ds  N N b 0Forces:

12 21
N NMoments:

1 11 1 12 2

2 21 1 22 2

N N

N N

 


 

N e e

N e e

We again consider coordinates lines with

length parameters s
(not necessarily curvature lines!)

And express Equilibrium:

We define:

Dividing  (*)  by            : 
1 2

ds ds

(*)

1 2

1 2

d d

ds ds
  

N N
b 0

(**)

Equilibrium of Membranes - II

b

 1 11 1 12 2

11 1 12 2 1 11 2 12

1 1 1 1 1 1

d N Nd
N N N N

ds ds s s s s

   
     

   

N e e
e e e e

But                     and 
1

1 3

1
s







e
e

Therefore  1 11 12

1 2 1 11 12 3

1 1 1

N N
k N N

ds s ds


  
   



N
e e e

Likewise

Now:

2

3

1
s




 


e
e

 2 21 22

1 2 2 22 21 3

2 2 2

N N
k N N

ds s ds


  
   



N
e e e

Substituting in (**):

   11 12 21 22

1 2 1 11 12 3 1 2 2 22 21 3

1 1 2 2

N N N N
k N N k N N

s ds s ds
 

   
        

 
e e e e e e b 0

Equilibrium of Membranes - II
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Differential Equilibrium in Membranes
Denoting                              , considering that N12=N21 

and collecting the terms according to the intrinsic basis:
1 1 2 2 3

b b p   b e e e

11 12

1

1 2

12 22

2

1 2

11 22

12

1 2

2

N N
b

s s

N N
b

s s

N N
N p

 

  
 

 
  

 
 


  










Similar to a plane 
stress state! 

“General Membrane Equation”

11 12

1

1 2

12 22

2

1 2

11 22

I II

N N
b

N N
b

N N
p

 

 

 

  
 

 
  

 
 


 










Similar to a plane 
stress state! 

“General Membrane Equation 
in Principal Directions”

If        are principal directions:  
 0 

Differential Equilibrium in Membranes

If  the membrane is under a uniform and isotropic stress field 

11 22 0

12 21
0

N N

N N

 


 

1 2

0

0

1 1

I II

b b

h p
 

 


  
  

 

Equation of Laplace-Young or

“Soap Films Equation”

Rewriting:
0 0

2I II

M

I II

h h K p
 

 
 

 
  

 

In particular, for a spherical membrane, of radius r and thickness t:

1
M

K
r

 ⇒ 𝜎0 =
𝑝𝑟

2𝑡
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Minimum Surfaces (Plateu’s Problem)

1 2 1 2
A dA d d 

 

    g g

We seek a surface *
 Spanned by a vector field *

x Such that *
A Is a minimum.

In other words, for every compatible perturbation       u around *
x

*

*
0,

A
A  


  
 x

u u
x

Thus the 1st order condition for *
x To be a minimum is

*

0
A


 xx

With  the equality constraint   ,
P P

P   0x x

Where P
x Spans the prescribe coordinates

Analytical solutions for this nonlinear equation maybe rather difficult! 

The Area of a Surface      with a prescribed closed boundary is given by

Soap Film Analogy
We recast the problem of area minimization in a more nonlinear mechanics fashion:

  *
0,A J dA around  



   u x

Measured with respect to 
*

x

The configuration 

33
0F 

And therefore    
* *

11 22
tr 0 0A dA F F dA    

 

      F u

where  trJ  F is the Jacobian of the 
deformation gradient

 
*





 


F I

u

x
from *

x to * x u

*
x That minimizes the functional A also fulfills the above equation  u

We can always consider coordinate systems for which 3 3
e g , normal to  

So that 

*

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Soap Film Analogy

int
0,W   uTherefore, for self-equilibrated surfaces:

We now consider the problem of finding the membrane geometry x

Compatible with a self-equilibrated Cauchy surface stress field 

(zero external loads, except reactions along the fixed boundaries)

T

Static equilibrium always requires int ext
W W 

But since we assume that external loads are zero (except at fixed boundaries): ext
0W 

When deformations are measured from the equilibrium configuration  x

This condition can be recast as
int

: 0,W h dA  


   T F u

Where h is the membrane thickness and 
 




 


F I
u

x

Soap Film Analogy

We now particularize this condition for a homogeneous and isotropic Cauchy surface 
stress field, such that, in the chosen basis (with             )3 3

e g

1 0 0

0 1 0 , 

0 0 0

P 

 
 

   
 
  

T 1

Even if the membrane presents non-zero deformations in the transversal direction, 
that is             , the virtual work developed by the stress field         is given by 

33
0F  T

 int 11 22
: 0,W h dS h F F dA      

 

     1 F u

Comparing to the condition to minimum area we conclude that *
x x

That is, the geometry compatible to an auto-equilibrated, homogeneous and isotropic 
Cauchy surface stress field also complies to the condition of minimal area!
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Consequence for Minimal Surfaces

Considering the Membranes’ Equation 11 22

I II

N N
p

 
 

And taking into account that for minimum surfaces
11 22 0

0p

N N N




 

We have 0

1 1
0

I II

N
 

 
  

 

Thus I II
  

Or, in words, minimal surfaces have zero mean curvature KM, with negative or zero 
Gaussian curvature KG, that is, they are either anticlastic or flat! 

• Strictly speaking, a soap bubble is not a minimal surface, although it is associated 
to a similar minimization problem (‘minimize the area for a given volume’). 

• Soap films are minimal surfaces, when p=0. 

Ex. 8 - Hyperbolic Paraboloid

Show that a hyperbolic paraboloid (“hypar” )surface IS NOT a minimum surface.

z axy

Hypars are usually mentioned as minimum surfaces in the literature about tension 
structures, and in fact they are practically indistinct to the minimum surface  with the 
same boundary. The analytical expression of  the true minimal surface was given by 
Schwarz in 1890, and is quite more complicated than the hypar expression! 
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Catenoid

The soap film analogy provides a shortcut to deduce the shape of the catenoid, that 
is, the shape of a minimal surface connecting two circular rings of radius R, with 
center on the save axis, and apart of each other by a distant h. 

Symmetry requires that the solution is given by the rotation of a generatrix curve

 y y z

 0 0y 

and that this curve is symmetric at mid-distance between the rings that is,  

We consider the vertical equilibrium of a slice of the surface bounded by to vertical 
radial planes, with and infinitesimal vertical strip spanned by  horizontal angle   d

We denote                    , so far an unknown constant value.  0
0y y

Catenoid

Using the soap analogy, we know that every cross section of the membrane is under a 
uniform surface stress             , where  t  is the membrane thickness.

0
t

Thus vertical equilibrium of a vertical slice from z=0 to z(y) requires: 

 0 0 0
cost y d t yd    

 
0

2
1

y
y

y




 
2

cos 1
dz

y
ds

   And since

We have
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Rearranging:

2 2
0 00

1y z
dz dz C

y yy y

 
    
  
 

From standard calculus

Catenoid

Integrating along z:

Thus, making 
0

y u du y dz

a y

  



Vertical equilibrium requires:  2 2

0

0

ln
z

y y y C
y

   

 2 2

2 2
ln

du
u u a

u a
  




2 2
00

1y

yy y






Denoting:

  2

0

0

ln 1
z

y C
y

    

Catenoid

We successively write:

Remembering the inverse hyperbolic relationship:

   2
ln 1 arcosh    

0

y

y
 

 2

0

0

ln ln 1
z

y C
y

     

We have: *

0 0

arcosh
y z

C
y y

 
  

 

 2 *

0

0 0

ln 1 ln
z z

C y C
y y

       



26/10/2017

21

Also denoting:

  2

0

0

ln 1
z

y C
y

    

Catenoid

We successively write:

Remembering the inverse hyperbolic relationship:

   2
ln 1 arcosh    

0

y

y
 

 2 *

0

0 0

ln 1 ln
z z

C y C
y y

       

We have: *

0 0

arcosh
y z

C
y y

 
  

 

That is:
*

0

0

cosh
z

y y C
y

 
  

 

     * * *

0 0
0 cosh cosh 1 0y y y C C C     

Catenoid
Imposing the boundary condition

That is, the generatrix curve of the minimal surface connecting two circular rings is a 
catenary, and the surface itself is the catenoid!

0

0

cosh
z

y y
y

 
  

 

h

R
 Defining the ratio 

0

0

cosh
2 2

h R
y y R

y

  
   

   
we have 

Which provides        for a given ratio  0
y 

It can be shown that the only surfaces of revolution which are also minimal surfaces are the 
catenoids (Struik, 1950), as it is easy to conclude from the above development , since no 
particular restrictions have been set for  y y z



26/10/2017

22

1

X Y

Z

                                                                                

MAR 13 2011

12:54:40

ELEMENTS

2R

lim
1.3254868h h R 

1

MN

MX

X Y

Z

                                                                                
1

1

MAR 13 2011

12:54:22

AVG ELEMENT SOLUTION

STEP=1

SUB =1

TIME=1

RATIO    (AVG)

DMX =.660E-04

SMN =1

SMX =1

h

1.32h R 1.33h R

The maximum ring separation for a catenoid with equal lower and upper radiuses is

This is known as Goldschmidt limit (1831). 
Carl Wolfgang Benjamin Goldschmidt, ‘Determinatio superficiei minimae rotatione curvae data 
duo puncta jungentis circa datum axem ortae’, Gottingae,  MDCCCXXXI.

Goldschmidt limit 

A family of conoids:
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Ex. 9- Catenoid

Analytically determine the area of a catenoid bounded by two parallel and coaxial 
rings of radius R=1m, separated by a distance h=1m.Compare to numerical results 
obtained by direct area minimization and DRM. 

Consider different degrees of discretization and check convergence of the  numerical 
results to the analytical one. 

Try to find the Goldschmidt limit, considering numerical models with separations just 
below and above hlim=1.32R

Show that for distances h>1.056R, the area of the catenoid is actually greater than 
the area of two independent circular discs bounded by the rings (the solution for the 
minimum area problem with two separate discs is know as Goldschmidt discontinuous 
solution).


