Escola de Engenharia de Lorena — EEL/USP

HIDROLOGIA E HIDRÁULICA APLICADAS (LOB1216)

Aula 8 Precipitações

Prof. MSc. Paulo Ricardo Amador Mendes

Grandezas características e unidades de medida

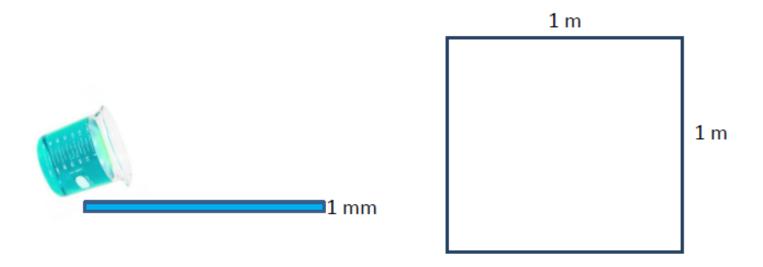
 Altura pluviométrica ou altura de precipitação (h): quantidade de água por unidade horizontal de área.

 Duração (t) intervalo de tempo decorrido entre o instante em que se iniciou a precipitação e seu término (minutos ou horas)

Grandezas características e unidades de medida

 Intensidade (i) ou velocidade de precipitação: i= h/t é medida em mm/min; mm/h ou L/s/ha

 Frequência: número de ocorrências de uma determinada precipitação (com h e t dados) no decorrer de um intervalo de tempo fixo. Em Engenharia importa o tempo de retorno T (anos), quando uma (i) e (t) de precipitação será igualada ou ultrapassada

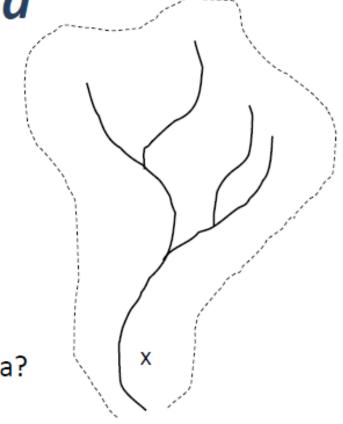

Grandezas características e unidades de medida

- A medida da chuva é feita pontualmente em estações meteorológicas, tanto automáticas como convencionais.
- A unidade de medida da chuva é a altura pluviométrica (h), que normalmente é expressa em milímetros (mm), .
 Altura que atingiria sem que exista evaporação, infiltração ou escoamento.
- A altura pluviométrica (h) é dada pela seguinte relação:

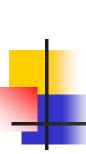
h = Volume precipitado / Área de captação

Medida de chuva

Se 1 litro de água for captado por uma área de 1 m², a lâmina de água coletada terá a altura de 1mm. Em outras palavras, 1mm = 1L / 1m². Portanto, se um pluviômetro coletar 52 mm, isso corresponderá a 52 litros por 1m².



 $h = 1L / 1m^2 = 1.000 \text{ cm}^3 / 10.000 \text{ cm}^2 = 0.1 \text{ cm} = 1 \text{mm}$


Importância

- Área da bacia = 10 km²
 10km² = 10.000.000 m²
- Total = 26,4 mm
 1 mm = 1litro/m²

Qual o volume de água produzido na bacia?

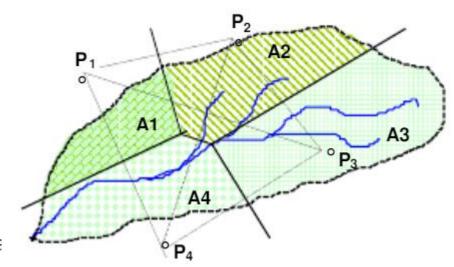
Volume total = 264.000.000 litros ou 264.000 m³

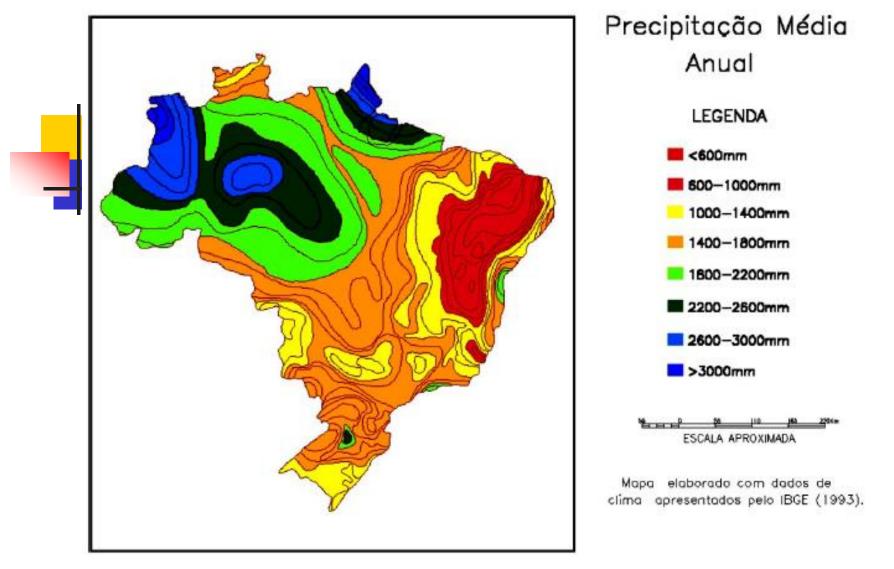
Determinação de uma altura média precipitada sobre uma área

- Média aritmética simples das alturas pluviométricas
- Média ponderada com base nas variações das características

físicas da vazia

Método baseado em isoietas


Fonte: Garcez – Alvarez – Hidrologia – 2da Edição


Determinação de uma altura média precipitada sobre uma área

Média ponderada com base nas variações das características

físicas da vazia

Fonte: Garcez – Alvarez – Hidrologia – 2da

Método baseado em isoietas: distribuição mais uniforme de dados de volume pluviométricos indicado pelas curvas isoietas. O cálculo é feito determinando – se a superfície compreendida entre duas curvas sucessivas e admitindo-se para cada área parcial a altura pluviométrica média das duas isoietas que a delimitam.


INSTRUMENTOS DE MEDIÇÃO DE CHUVA

Instrumento de medição de chuva

Pluviômetros

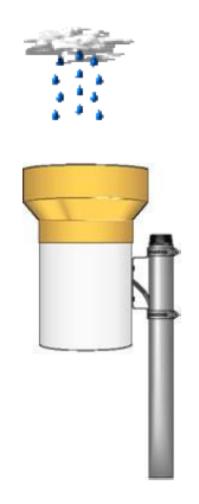
- Os pluviômetros são instrumentos normalmente operados em estações meteorológicas convencionais ou mini-estações termo-pluviométricas.
- O pluviômetro padrão utilizado na rede de postos do Brasil é o Ville de Paris.
- Outros pluviômetros têm durabilidade e precisão, em função da menor área de captação, são menores do que a dos pluviômetros padrões. A área de captação mínima recomendável é de 100 cm².

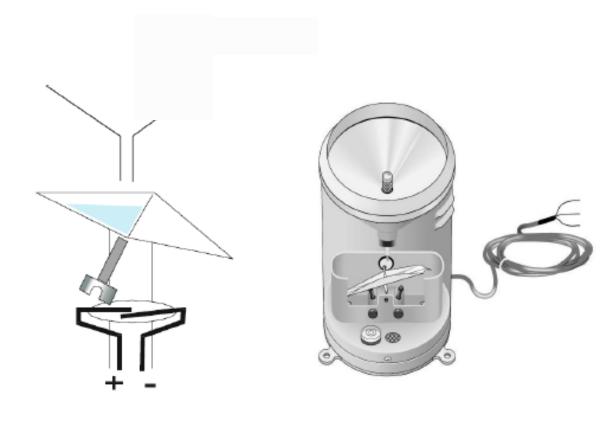
Pluviômetro padrão – Ville de Paris

Os pluviógrafos são dotados de um sistema de registro diário, no qual um diagrama (pluviograma) é instalado. Ele registra a chuva acumulada em 24h, o horário da chuva e a sua intensidade. São equipamentos usados nas estações meteorológicas convencionais.

Pluviógrafos

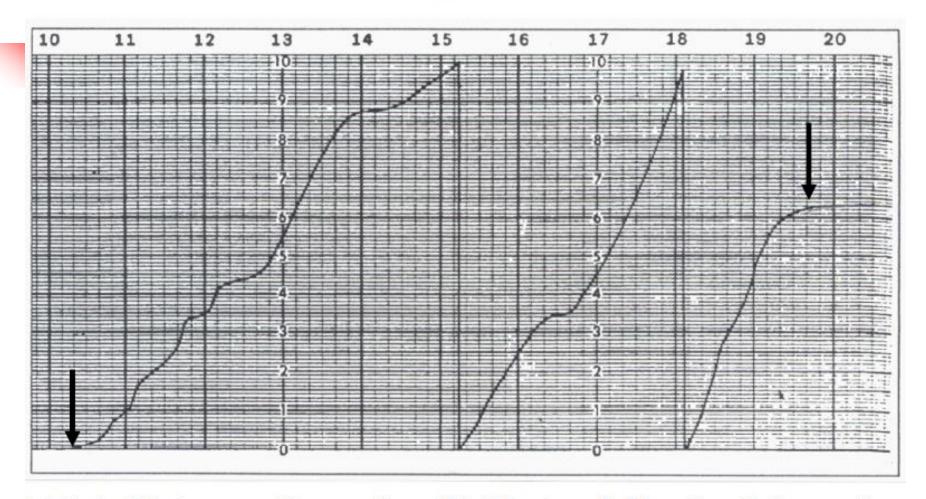
 Fornece uma medida do total de chuva em mm (milímetros)


 assim como, o início e término da chuva (duração e intensidade);


Fonte: www.inmet.gov.br

Pluviômetros digitais

Estação meteorológica automática Registra chuva acumulada em 24h, o horário da chuva e a sua intensidade.



Sistema de báscula coleta o total de chuva e produz pulso elétrico (0,2 mm)

Pluviógrafo Varejão-Silva, 2005

Pluviograma

Total=26,4 mm, Duração= 9h20min=9,3h, I = 2,8 mm/h

1 até 8 de 8. Página 🚹 🔽 📢 🔌 🕨 🔰 I 🥓 🚜 🏹 🏋 🏋 🖟 I 🥞 🔁 🗷 🗐						
Código Adi	Código Plu	Código Flu	Nome da Estação	Responsável	Operadora	
2D-031		58217000	CANINHAS	DAEE-SP	DAEE-SP	
2D-028		58214000	LORENA / PIQUETE	DAEE-SP	DAEE-SP	
2D-036		58216000	FAZENDA SANTO ANTÖNIO	DAEE-SP	DAEE-SP	
2D-029		58214200	COATINGA	DAEE-SP	DAEE-SP	
2D-030		58213000	FAZENDA MONTEZIR	DAEE-SP	DAEE-SP	
		58214300	LORENA	ANA	ANA	
2D-056		58215000	FAZENDA SANTA CATARINA	DAEE-SP	DAEE-SP	

SubBacia	Àrea de Dr	Curso D'água
RIO PARAÍBA DO	32,80	RIO CANINHAS
RIO PARAİBA DO	11.200,00	RIO PARAİBA DO SUL
RIO PARAÍBA DO	60,70	RIBEIRÄO CANAS
RIO PARAİBA DO	14,00	CÓRREGO DOS PASSOS
RIO PARAİBA DO	75,90	RIO TABUÄO OU LORENA
RIO PARAÍBA DO	11.200,00	RIO PARAİBA DO SUL
RIO PARAİBA DO	36,40	RIBEIRÃO DOS MACACOS

Equações de intensidade, duração e frequência

Tipo "Eng^o Otto Pfafstetter"

$$h = T^{\alpha + \frac{\beta}{T^{0,25}}} \left[a \cdot t + b \cdot \log \left(1 + c \cdot t \right) \right]$$

h: precipitação total (mm)

T: período de retorno (anos)

t: duração da chuva (horas)

a: coeficiente que depende da duração da chuva

b: coeficiente que depende da duração da chuva e do local em estudo

a, b, c: valores constantes para cada local em estudo

Precipitações intensas

Precipitação intensa é entendida como a ocorrência extrema, com duração, distribuição espacial e temporal crítica para uma área ou bacia hidrográfica

As durações podem variar de alguns minutos até algumas dezenas de horas (24 horas, por exemplo)

Tabela 3. 2: Chuvas mais intensas já registradas no Mundo (adaptado de Ward e Trimble, 2003).

Duração	Precipitação (mm)	Local e Data
1 minuto	38	Barot, Guadeloupe 26/11/1970
15 minutos	198	Plumb Point, Jamaica 12/05/1916
30 minutos	280	Sikeshugou, Hebei, China 03/07/1974
60 minutos	401	Shangdi, Mongólia, China 03/07/1975
10 horas	1400	Muduocaidang, Mongólia, China 01/08/1977
24 horas	1825	Foc Foc, Ilhas Reunião 07 e 08/01/1966
12 meses	26461	Cherrapunji, Índia Ago. de 1860 a Jul. de 1861

Curvas IDF

Curva que relaciona a intensidades e durações da precipitações com o tempo de retorno T (probabilidade). Pode-se estimar a frequência (T) com que o evento de chuva intensa poderia se repetir

$$i = \frac{k \cdot T^a}{(t+b)^c}$$
 I: Intensidade pluviometrica
T: período de retorno (anos)
t: duração da chuva (min)

i: intensidade pluviométrica (mm/h)

t: duração da chuva (min)

k, a, b, c: parâmetros relativos ao local (ajuste da equação)

Curvas IDF 200-Intensidade Duração Frequência 150 mm/hord 100meximo 90 80-Intensidade 70 60 50-Tr = 100 40-30 20-Tr= 2 10-04 20 40 100 120 140

chuva

minutos

Duração

$$i(\frac{mm}{h}) = \frac{k \cdot T^a}{(t+b)^c}$$

Observe que a intensidade da chuva diminui com o tempo de duração da precipitação

Observe que a intensidade é menor para ocorrências frequentes (Tr=2,3,5 anos) comparado para ocorrências menos frequentes (Tr=50-100 anos)

Relação intensidade, duração, frequência (i-d-f)

Correlacionando intensidades e durações das chuvas, verifica-se que quanto mais intensa a precipitação, menor será sua duração

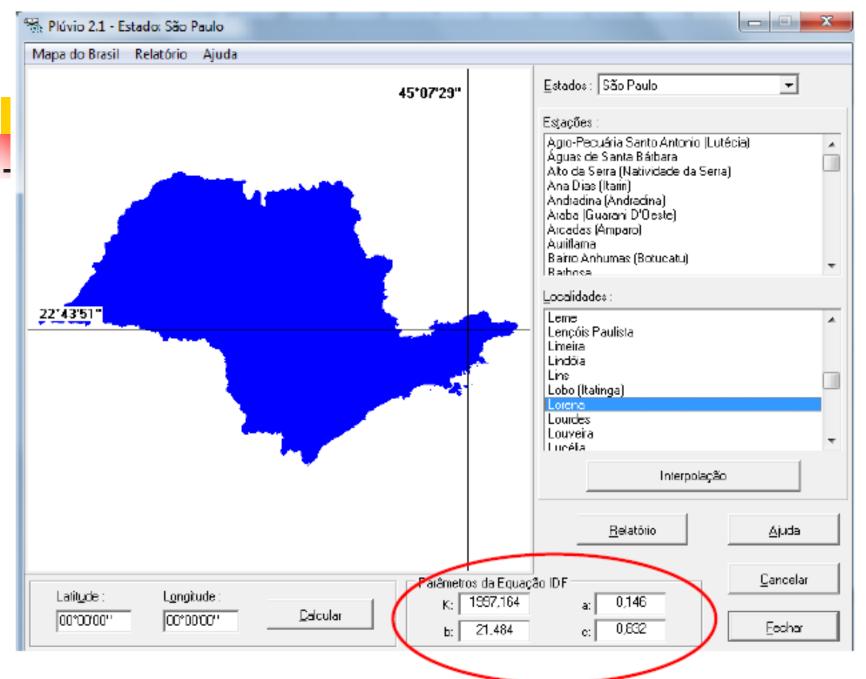
Da mesma forma, quanto menor for a frequência – mais tempo para que aconteça o evento (menor probabilidade) de ocorrência, maior será a intensidade

Dessa forma, as precipitações máximas são retratadas pontualmente pelas curvas intensidade, duração e frequência (i-d-f)

Curvas IDF – Exemplos

Qual o tempo de retorno de uma precipitação ocorrida nas cidade de Lorena e Itajubá, com 50mm e duração de 30min?

$$i = \frac{k \cdot T^a}{\left(t + b\right)^c}$$


i: intensidade pluviométrica (mm/h)

T: período de retorno (anos)

t: duração da chuva (min)

k, a, b, c: parâmetros relativos ao local

(ajuste da equação)

Bibliografia

- CHAVEZ, J.D.R. Precipitações. Apostila da Disciplina LOB1216 – Hidrologia e Hidráulica Aplicadas. Escola de Engenharia de Lorena da Universidade de São Paulo. Departamento de Ciências Básicas e Ambientais. Lorena, 2016.
- PINTO, N.L.S.; HOLTZ, A.C.T.; MARTINS, J.A.; GOMIDE, F.L.S. **Hidrologia Básica**. São Paulo: Blucher, 1976.