
Decision	Trees
Decision	Trees	are	classification	methods	that	are	able	to	extract	simple	rules	about	the	data	features	which	are	inferred	from	the	input
dataset.	Several	algorithms	for	decision	tree	induction	are	available	in	the	literature.	Scikit-learn	contains	the	implementation	of	the	CART
(Classification	and	Regression	Trees)	induction	algorithm.

Practical	examples
Fist	of	all,	we	do	all	necessary	imports.

In	[1]:

import	pandas	as	pd
import	graphviz

from	sklearn.preprocessing	import	LabelEncoder
from	sklearn.tree	import	DecisionTreeClassifier,	export_graphviz
from	sklearn.model_selection	import	train_test_split
from	sklearn.metrics	import	accuracy_score

#	Setting	random	seed.
seed	=	10

Dataset	with	continuous	features

Next,	we	load	the	Iris	dataset,	extract	its	values	and	labels	and	split	them	into	train	and	test	sets.

In	[2]:

#	Loading	Iris	dataset.
data	=	pd.read_csv('data/iris.csv')

#	Creating	a	LabelEncoder	and	fitting	it	to	the	dataset	labels.
le	=	LabelEncoder()
le.fit(data['Name'].values)

#	Converting	dataset	str	labels	to	int	labels.
y	=	le.transform(data['Name'].values)

#	Extracting	the	instances	data.
X	=	data.drop('Name',	axis=1).values

#	Splitting	into	train	and	test	sets.
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size=0.34,	stratify=y,	random_state=seed)

Then,	we	will	fit	and	test	a	DecisionTreeClassifier.	Scikit-learn	does	not	implement	any	post-prunning	step.	So,	to	avoid	overfitting,	we	can
control	the	tree	size	with	the	parameters	min_samples_leaf,	min_samples_split	and	max_depth.

In	[3]:

#	Creating	a	DecisionTreeClassifier.
#	The	criterion	parameter	indicates	the	measure	used	(possible	values:	'gini'	for	the	Gini	index	and
#	'entropy'	for	the	information	gain).
#	The	min_samples_leaf	parameter	indicates	the	minimum	of	objects	required	at	a	leaf	node.
#	The	min_samples_split	parameter	indicates	the	minimum	number	of	objects	required	to	split	an	internal	node.	
#	The	max_depth	parameter	controls	the	maximum	tree	depth.	Setting	this	parameter	to	None	will	grow	the
#	tree	until	all	leaves	are	pure	or	until	all	leaves	contain	less	than	min_samples_split	samples.
tree	=	DecisionTreeClassifier(criterion='gini',
																														min_samples_leaf=5,
																														min_samples_split=5,
																														max_depth=None,
																														random_state=seed)

tree.fit(X_train,	y_train)

y_pred	=	tree.predict(X_test)
accuracy	=	accuracy_score(y_test,	y_pred)
print('DecisionTreeClassifier	accuracy	score:	{}'.format(accuracy))

Finally,	we	can	plot	the	obtained	tree	to	visualize	the	rules	extracted	from	the	dataset.

DecisionTreeClassifier	accuracy	score:	0.9615384615384616

In	[4]:

def	plot_tree(tree,	dataframe,	label_col,	label_encoder,	plot_title):
				label_names	=	pd.unique(dataframe[label_col])

				#	Obtaining	plot	data.
				graph_data	=	export_graphviz(tree,
																																	feature_names=dataframe.drop(label_col,	axis=1).columns,
																																	class_names=label_names,
																																	filled=True,
																																	rounded=True,
																																	out_file=None)

				#	Generating	plot.
				graph	=	graphviz.Source(graph_data)
				graph.render(plot_title)
				return	graph

tree_graph	=	plot_tree(tree,	data,	'Name',	le,	'Iris')
tree_graph

Dataset	with	categorical	features

Unfortunately,	the	DecisionTreeClassifier	class	does	not	handle	categorical	features	directly.	So,	we	might	consider	to	transform	them	to
dummy	variables.	However,	this	approach	must	be	taken	with	a	grain	of	salt	because	decision	trees	tend	to	overfit	on	data
with	a	large	number	of	features.

Out[4]:

PetalWidth	<=	0.8
gini	=	0.6666
samples	=	98

value	=	[33,	32,	33]
class	=	Iris-setosa

gini	=	0.0
samples	=	33

value	=	[33,	0,	0]
class	=	Iris-setosa

True

PetalLength	<=	4.85
gini	=	0.4999
samples	=	65

value	=	[0,	32,	33]
class	=	Iris-virginica

False

PetalWidth	<=	1.45
gini	=	0.1207
samples	=	31

value	=	[0,	29,	2]
class	=	Iris-versicolor

PetalWidth	<=	1.75
gini	=	0.1609
samples	=	34

value	=	[0,	3,	31]
class	=	Iris-virginica

gini	=	0.0
samples	=	22

value	=	[0,	22,	0]
class	=	Iris-versicolor

gini	=	0.3457
samples	=	9

value	=	[0,	7,	2]
class	=	Iris-versicolor

gini	=	0.4898
samples	=	7

value	=	[0,	3,	4]
class	=	Iris-virginica

gini	=	0.0
samples	=	27

value	=	[0,	0,	27]
class	=	Iris-virginica

In	[5]:

#	Loading	Mushroom	dataset.
data	=	pd.read_csv('data/mushroom.csv')

#	We	drop	the	'stalk-root'	feature	because	it	is	the	only	one	containing	missing	values.
data	=	data.drop('stalk-root',	axis=1)

#	Creating	a	new	DataFrame	representation	for	each	feature	as	dummy	variables.
dummies	=	[pd.get_dummies(data[c])	for	c	in	data.drop('label',	axis=1).columns]

#	Concatenating	all	DataFrames	containing	dummy	variables.
binary_data	=	pd.concat(dummies,	axis=1)

#	Getting	binary_data	as	a	numpy.array.
X	=	binary_data.values

#	Getting	the	labels.
le	=	LabelEncoder()
y	=	le.fit_transform(data['label'].values)

#	Splitting	the	binary	dataset	into	train	and	test	sets.
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size=0.34,	stratify=y,	random_state=seed)

#	Creating	a	DecisionTreeClassifier.
tree	=	DecisionTreeClassifier(criterion='gini',
																														min_samples_leaf=5,
																														min_samples_split=5,
																														max_depth=None,
																														random_state=seed)

tree.fit(X_train,	y_train)

Now,	we	will	apply	the	obtained	tree	on	the	test	set.

In	[6]:

y_pred	=	tree.predict(X_test)
accuracy	=	accuracy_score(y_test,	y_pred)
print('DecisionTreeClassifier	accuracy	score:	{}'.format(accuracy))

We	can	observe	that	the	above	decision	tree	is	pretty	accurate.

Now,	let's	check	its	depth.

In	[7]:

print('DecisionTreeClassifier	max_depth:	{}'.format(tree.tree_.max_depth))

What	if	we	fit	a	decision	tree	with	a	smaller	depth?

In	[8]:

#	Creating	a	DecisionTreeClassifier.
tree	=	DecisionTreeClassifier(criterion='gini',
																														min_samples_leaf=5,
																														min_samples_split=5,
																														max_depth=3,
																														random_state=seed)

tree.fit(X_train,	y_train)
y_pred	=	tree.predict(X_test)
accuracy	=	accuracy_score(y_test,	y_pred)
print('DecisionTreeClassifier	accuracy	score:	{}'.format(accuracy))

Out[5]:

DecisionTreeClassifier(class_weight=None,	criterion='gini',	max_depth=None,
												max_features=None,	max_leaf_nodes=None,
												min_impurity_split=1e-07,	min_samples_leaf=5,
												min_samples_split=5,	min_weight_fraction_leaf=0.0,
												presort=False,	random_state=10,	splitter='best')

DecisionTreeClassifier	accuracy	score:	0.9992761491132827

DecisionTreeClassifier	max_depth:	6

DecisionTreeClassifier	accuracy	score:	0.9659790083242852

We	can	observe	that	the	new	tree	is	almost	as	accurate	as	the	first	one.	Apparently	both	trees	are	able	to	handle	the	mushroom	data	pretty
well.	The	second	three	might	be	preferred,	since	it	is	a	simpler	and	computationally	cheaper	model.

Finally,	we	plot	the	second	tree.

In	[9]:

#	Appending	'label'	column	to	binary	DataFrame.
binary_data['label']	=	data['label']

tree_graph	=	plot_tree(tree,	binary_data,	'label',	le,	'Mushroom')
tree_graph

Out[9]:

n	<=	0.5
gini	=	0.4994

samples	=	5361
value	=	[2777,	2584]

class	=	p

f	<=	0.5
gini	=	0.2845

samples	=	3040
value	=	[522,	2518]

class	=	e

True

r	<=	0.5
gini	=	0.0553

samples	=	2321
value	=	[2255,	66]

class	=	p

False

h	<=	0.5
gini	=	0.4826
samples	=	880

value	=	[522,	358]
class	=	p

gini	=	0.0
samples	=	2160

value	=	[0,	2160]
class	=	e

gini	=	0.3739
samples	=	695

value	=	[522,	173]
class	=	p

gini	=	0.0
samples	=	185

value	=	[0,	185]
class	=	e

y	<=	0.5
gini	=	0.0251

samples	=	2284
value	=	[2255,	29]

class	=	p

gini	=	0.0
samples	=	37

value	=	[0,	37]
class	=	e

gini	=	0.0035
samples	=	2250

value	=	[2246,	4]
class	=	p

gini	=	0.3893
samples	=	34

value	=	[9,	25]
class	=	e

