QFL – 0605 – Química Geral – Licenciatura em Física Exp. nº 10 – Determinação de Variação de Entalpia de Reação 24/10/2017

Objetivos

- Este experimento é continuação do experimento 07: Determinação da Energia de Dissolução de Cloretos de Metais Alcalinos. Alguns conceitos teóricos serão reforçados e outros novos serão apresentados. Um dos objetivos é fazer uma conexão entre termoquímica e eletroquímica.
 - Determinar a capacidade calorífica de um calorímetro.
 - Determinar a variação de entalpia da reação entre zinco metálico e íons de Cu(II).

Procedimento

I. Determinação da capacidade calorífica do calorímetro

Meça, numa proveta, 100mL de solução ~ 1,0mol/L de ácido clorídrico (anote a molaridade correta dada no rótulo do frasco) e coloque no calorímetro. Junte 2 gotas do indicador fenolftaleína, agite com cuidado e anote a temperatura quando ela se tornar constante.

Meça, numa proveta, 100mL de solução ~ 1,0mol/L de hidróxido de sódio (anote a molaridade correta dada no rótulo do frasco) e meça a temperatura da solução, que deve ser aproximadamente a mesma do ácido, podendo-se tolerar uma diferença de até 0,2°C.

Adicione com cuidado a solução de hidróxido de sódio à solução ácida contida no calorímetro, feche rapidamente o mesmo e agite para misturar. Anote a temperatura máxima alcançada. Terminada a leitura, anote a cor da solução.

III. Determinação do ΔH de reação entre Zn⁰ e íons de Cu(II).

Meça em uma proveta 100 mL de solução de sulfato de cobre(II) aproximadamente 0,1 mol/L e anote a molaridade correta dada no rótulo do frasco. Coloque no calorímetro, agite e anote a temperatura quando ela ficar constante.

Pese 6,6 g de zinco em pó em uma balança de plataforma e adicione-o à solução de sulfato de cobre, feche rapidamente o calorímetro, agite para misturar e anote a temperatura máxima alcançada.

Terminada a leitura, filtre a mistura contida no calorímetro usando um funil e papel de filtro. Coloque o sólido e o líquido filtrado nos recipientes indicados. Anote a cor do líquido filtrado.

Cálculos

- Capacidade calorífica do calorímetro: é calculada através do balanço energético da reação de neutralização de hidróxido de sódio e ácido clorídrico:

$$Na^{+}(aq) + OH^{-}(aq) + H^{+}(aq) + Cl^{-}(aq) \longrightarrow H_{2}O + Na^{+}(aq) + Cl^{-}(aq)$$

 $\Delta H_{neutr.} = -57,3 \text{ kJ/mol}$

$$q_{reação} = q_{solução} + q_{calorímetro}$$

 $q_{reação}=$ calor liberado(em módulo) na reação = n_{H2O} . $\left|\Delta H\right|_{neutr.}$ $\left|n_{H2O}=n^{\underline{0}}\right|$ de moles de água formado = $n^{\underline{0}}$ de moles de H^+ ou de OH^- que reagiu, dependendo da cor final da solução

$$\Delta T = variação de temperatura = |T_{final} - T_{inicial}|$$

 $q_{solução}$ = calor absorvido pela solução = m.c. ΔT c = calor específico da solução [Tabela 6 da ref.(1)]

 $q_{calorimetro} = calor$ absorvido pelo calorimetro = $C.\Delta T$ C = capacidade calorifica do calorimetro

ΔH da reação Zn⁰ com íons de Cu(II):

$$\begin{array}{ccc} Zn^0 + Cu \; (II) & \longrightarrow & Zn \; (II) + Cu^0 \\ \\ n \; \left| \; \Delta H_r \, \right| \; = \; q_{reaç\~ao} = q_{solu\~c\~ao} \; + \; q_{calor\'imetro} \, + q_{s\'olido} \end{array}$$

Bibliografia

1. E. Giesbrecht et alii., PEQ, "Experiências de Química"- Técnicas e Conceitos Básicos", parte III, página 79, Ed. Moderna e EDUSP, 1979.

Comentários

- 1. Comparação de dados: Calcule o valor de ΔH de reação entre $Zn^0/Cu(II)$ a partir dos ΔH^0 de formação dos reagentes e produtos tabelados. Supor que a dependência do ΔH de reação com a temperatura seja desprezível. Compare o valor teórico obtido com o valor experimental. Comente.
- **2.** Determina a entropia da reação a partir do valor experimental de ΔH desta reação, e do potencial da pilha de Daniell, que será medido no próximo experimento.

Dados Auxiliares:

Densidade e Calor Específico

Solução	Concentração	Densidade (g/mL)	Calor específico
	(mol/L)		$(J/g {}^{\circ}C)$
LiCl	2,00	1,05	3,59
	1,00	1,03	3,97
	0,50	1,01	4,05
NaCl	2,00	1,08	3,80
	1,00	1,04	3,89
	0,50	1,01	4,01
KCl	2,00	1,09	3,47
	1,00	1,05	3,80
	0,50	1,02	3,97
ZnSO ₄	0,10	1,02	4,02

Capacidade calorífica molar dos metais: c_m = 25,11 J/mol. °C