
Naive	Bayes
Naive	Bayes	is	a	very	simple	but	powerful	classification	method.	For	a	given	object	x,	Naive	Bayes	calculates	x's	probability	to	belong	to	each
class	yi	(i = 1, ⋯, k),	using	the	Bayes'	theorem:

P (yi | x) =
P(yi) P (x1, ⋯, xm | yi)

P (x1, ⋯, xm) .

Additionally,	it	assumes	that	the	features	are	independent	from	each	other	(which	is	the	reason	why	it	is	called	naive):

P(x1, ⋯, xm | yi) = ∏m
j = 1P (xj | yi).

So,	we	obtain:

P(yi | x) =
P (yi) ∏m

j = 1P (xj | yi)
P (x1, ⋯, xm) .

For	a	given	object	x,	Naive	Bayes	will	output	the	the	Maximum	a	Posteriori	(MAP)	estimate:

ŷ = arg maxy P (y | x) = arg maxy

P (y) ∏m
j = 1P (xj | y)

P (x1, ⋯, xm) .

Note	that	P (x1, ⋯, xm)	is	constant.	Thus,	we	can	drop	it	to	obtain:

ŷ = arg maxy P (yi) ∏m
j = 1P (xj | y).

Practical	example

First	of	all,	we	do	all	the	necessary	imports	and	load	the	Mushroom	dataset.

In	[1]:

import	pandas	as	pd
import	matplotlib.pyplot	as	plt

from	sklearn.preprocessing	import	LabelEncoder
from	sklearn.model_selection	import	train_test_split
from	sklearn.naive_bayes	import	BernoulliNB
from	sklearn.metrics	import	accuracy_score,	roc_curve,	auc

#	setting	random	seed
seed	=	10

data	=	pd.read_csv('data/mushroom.csv')

#	We	drop	the	'stalk-root'	feature	because	it	is	the	only	one	containing	missing	values.
data	=	data.drop('stalk-root',	axis=1)
data.head()

Out[1]:

cap-
shape

cap-
surface

cap-
color bruises? odor gill-

attachment
gill-

spacing
gill-
size

gill-
color

stalk-
shape ...

stalk-
color-
above-

ring

stalk-
color-
below-

ring

veil-
type

veil-
color

ring-
number

ring-
type

0 x s n t p f c n k e ... w w p w o p

1 x s y t a f c b k e ... w w p w o p

2 b s w t l f c b n e ... w w p w o p

3 x y w t p f c n n e ... w w p w o p

4 x s g f n f w b k t ... w w p w o e

5	rows	×	22	columns

Unfortunately,	scikit-learn	does	not	implement	the	classical	Naive	Bayes	algorithm	which	calculates	the	conditional	probabilities	P(xj | yi)	as	the
proportion	of	objects	from	class	yi	that	assume	each	particular	categorical	value	for	feature	j.	However,	scikit-learn	contains	the	BernoulliNB
class	which	assumes	that	data	is	distributed	according	to	multivariate	Bernoulli	distributions.

So,	for	the	Mushroom	dataset,	we	can	transform	each	categorical	feature	to	dummy	variables.	Note	that	such	a	conversion	clearly
violates	the	indepence	assumption	between	features.	However,	Naive	Bayes	has	been	proven	to	achieve	good	performance	in
several	applications	where	indepence	is	violated	(for	example,	in	text	classication).

In	[2]:

#	Creating	a	new	DataFrame	representation	for	each	feature	as	dummy	variables.
dummies	=	[pd.get_dummies(data[c])	for	c	in	data.drop('label',	axis=1).columns]

#	Concatenating	all	DataFrames	containing	dummy	variables.
binary_data	=	pd.concat(dummies,	axis=1)

#	Getting	binary_data	as	a	numpy.array.
X	=	binary_data.values

#	Getting	the	labels.
le	=	LabelEncoder()
y	=	le.fit_transform(data['label'].values)

#	Splitting	the	binary	dataset	into	train	and	test	sets.
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size=0.34,	stratify=y,	random_state=seed)

#	Creates	a	BernoulliNB.	binarize=None	indicates	that	there	is	no	need	to	binarize	the	input	data.
nb	=	BernoulliNB(binarize=None)
nb.fit(X_train,	y_train)
y_pred	=	nb.predict(X_test)
accuracy	=	accuracy_score(y_test,	y_pred)

print('BernoulliNB	accuracy	score:	{}'.format(accuracy))

In	[3]:

#	Getting	the	probabilities	for	each	class.
y_prob	=	nb.predict_proba(X_test)

#	Calculating	ROC	curve	and	ROC	AUC.
false_positive_rate,	true_positive_rate,	thresholds	=	roc_curve(y_test,	y_prob[:,	1])
roc_auc	=	auc(false_positive_rate,	true_positive_rate)

#	Plotting	ROC	curve.
lw	=	2
plt.plot(false_positive_rate,	true_positive_rate,	color='blue',	lw=lw,	label='ROC	curve	(area	=	{:.4f})'.format(roc_auc)
)
plt.plot([0,	1],	[0,	1],	color='red',	lw=lw,	linestyle='--',	label='Random	classifier')
plt.xlim([0.0,	1.0])
plt.ylim([0.0,	1.05])
plt.xlabel('False	Positive	Rate')
plt.ylabel('True	Positive	Rate')
plt.title('ROC')
plt.legend(loc="lower	right")

plt.show()

BernoulliNB	accuracy	score:	0.9464350343829171

