UNIVERSIDADE DE SÃO PAULO ESCOLA SUP. DE AGRICULTURA LUIZ DE QUEIROZ DEPTO. ECONOMIA, ADMINISTRAÇÃO E SOCIOLOGIA

LES 687 - Economia dos Recursos Naturais e Ambientais I Aula 09/17

Prof. Ricardo Shirota

Piracicaba / SP - 2017 -

Sumário da Aula

- Mercado Competitivo e a Alocação de Recursos
 - Teoria do bem-estar social
 - O ótimo social (uso eficiente de recursos)
 - O ótimo social (distribuição eficiente de produtos)

20-out-17

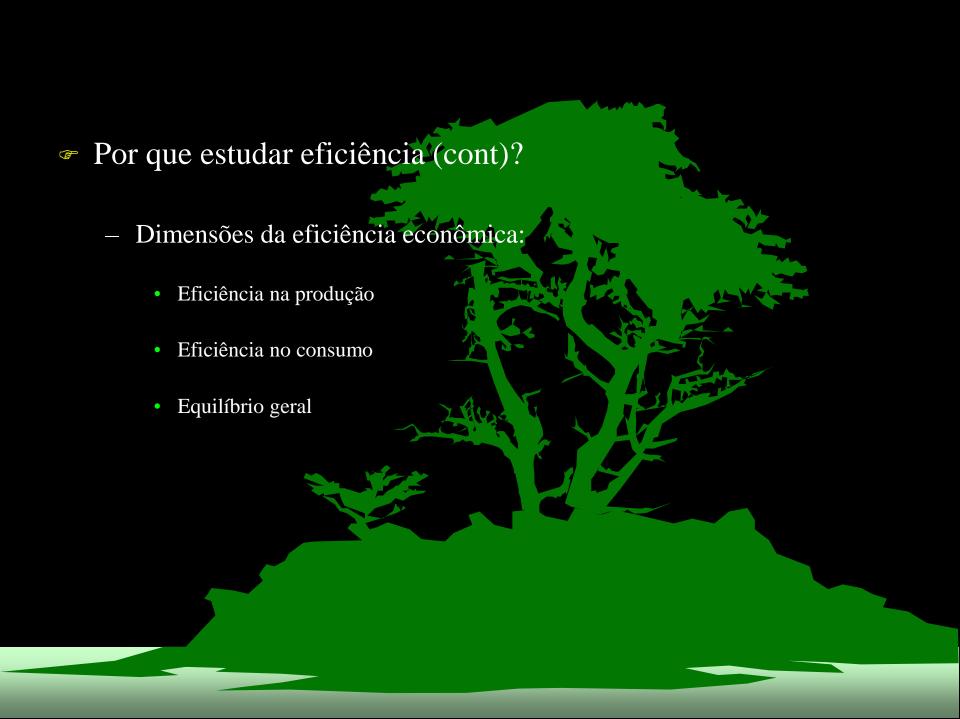
Teoria do Bem-Estar

- Parte de microeconomia que estuda à eficiência na utilização dos recursos e as suas implicações distributivas
 - Como utilizar os recursos disponíveis na economia/sociedade de maneira a maximizar o bem-estar dos indivíduos?
 - Maximizar a produção
 - Maximizar a utilidade

20-out-17

Por que estudar eficiência?

- Uma das definições da economia é "... a ciência que estuda a alocação eficiente dos recursos escassos em fins alternativos".
- Toda decisão tem "trade-offs"
- A decisão de "qual uso" deve levar em consideração todos os custos e benefícios e os resultados (benefícios) líquidos das alternativas
- Problemas:
 - Quais são os recursos? Quais são os usos alternativos?
 - Quanto alocar de cada recurso em cada alternativa?
 - Qual o critério utilizar (para medir a eficiência)?
- Economia de recursos:
 - Como alocar os recursos disponíveis?
 - Existência das "falhas de mercado"



Conceito:

 Produzir, de forma "ótima" (a maior quantidade possível de bens/serviços) dada a quantidade de recursos disponíveis (fatores de produção), respeitando as funções de produção (tecnologia)

Objetivo da Sociedade

- Maximizar o "bem-estar" das pessoas:
- Como medir o "bem-estar"?
 - Função Utilidade:

$$U_j = U_j (y_{1j}, y_{2j}, y_{3j}, ..., y_{nj})$$

- Em que:
 - U_i é o nível de bem-estar do indivíduo j;
 - $U_i(y)$ é a função utilidade do indivíduo j; e,
 - y_{ii} é a quantidade do bem/serviço i consumida pelo indivíduo j.

Objetivo da Sociedade

Como produzir (e em qual quantidade) os y_{ij} para atender os "desejos" de todos?

```
Indivíduo 1: U_1 = U_1 (y_{11}, y_{21}, y_{31}, ..., y_{n1})
```

Indivíduo 2:
$$U_2 = U_2 (y_{12}, y_{22}, y_{32}, ..., y_{n2})$$

Indivíduo 3:
$$U_3 = U_3 (y_{13}, y_{23}, y_{33}, ..., y_{n3})$$

•

•

Indivíduo m:
$$U_m = U_m (y_{1m}, y_{2m}, y_{3m}, ..., y_{nm})$$

Função de Produção de y_i (representa a tecnologia de produção)

- Max y_i , tal que:

$$y_i = f_i (x_{1i}, x_{2i}, x_{3i}, ..., x_{ni})$$

Como produzir (e em qual quantidade) os y_i?

Bem/serviço 1:
$$y_1 = f_1(x_{11}, x_{21}, x_{31}, ..., x_{n1})$$

Bem/serviço 2:
$$y_2 = f_2(x_{12}, x_{22}, x_{32}, ..., x_{n2})$$

Bem/serviço 3:
$$y_3 = f_3(x_{13}, x_{23}, x_{33}, ..., x_{n3})$$

•

$$y_m = f_m (x_{1m}, x_{2m}, x_{3m}, ..., x_{nm})$$

Problema:

As quantidades de x_i são limitadas:

$$\sum_{i=1}^{n} x_{1i} \leq x_{1}^{Max}$$

É preciso decidir como distribuir x_i para a produção de y₁, y₂, y₃, ..., y_n.

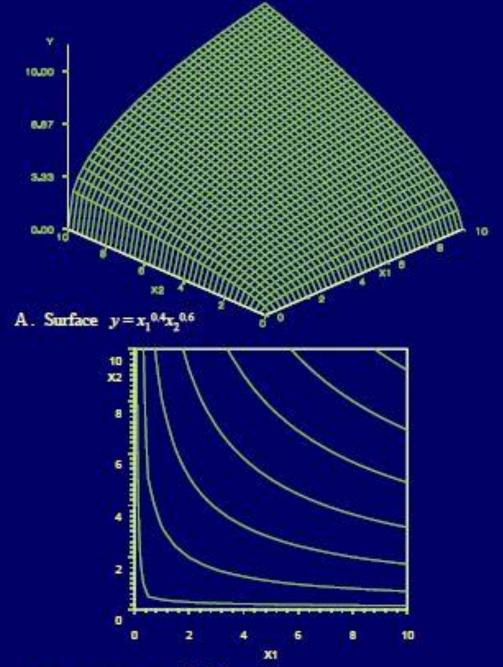
Como resolver?

Modelo simplificado 1:

– <u>Um</u> produto e <u>dois</u> insumos:

$$y = f(x_1, x_2)$$

Análise gráfica

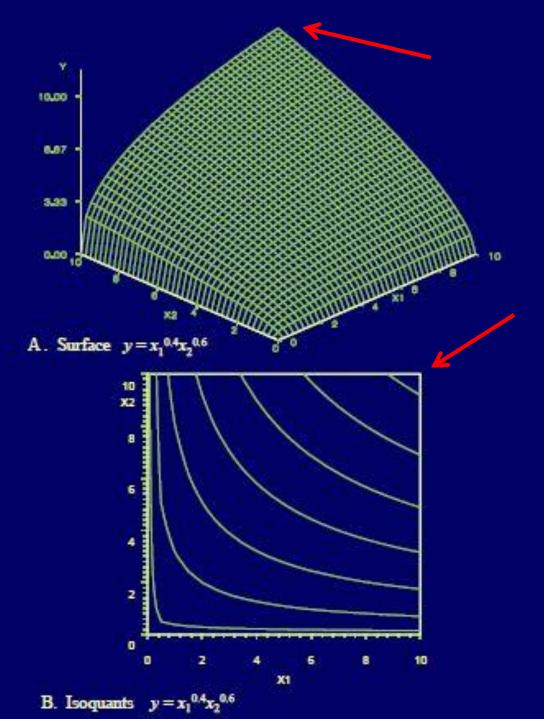


B. Isoquants $y = x_1^{0.4} x_2^{0.6}$

Modelo simplificado 1: solução "trivial"

 A máxima quantidade de y é obtida c/ o uso de todos os insumos (se a função for não decrescente)

Análise gráfica



Modelo simplificado 2:

– <u>Dois</u> produtos e <u>dois</u> insumos:

$$y_1 = f_1(x_{11}, x_{21})$$

$$y_2 = f_2(x_{12}, x_{22})$$

Modelo simplificado:

- Considere a seguinte situação:
 - Duas empresas produzem dois produtos utilizando dois insumos (escassos)

$$y_1 = f_1 (x_{11}, x_{21})$$

 $y_2 = f_2 (x_{12}, x_{22})$

 Dois indivíduos consomem os dois produtos para atender as suas necessidades

$$U_1 = U_1 (y_{11}, y_{21})$$

 $U_2 = U_2 (y_{12}, y_{22})$

Modelo simplificado:

- Considere a seguinte situação:
 - Duas empresas produzem dois produtos utilizando dois insumos (escassos)
- Objetivo:
 - Produzir a máxima quantidade dos dois bens
 - Utilizar os insumos eficientemente (sem "desperdícios")

Modelo simplificado:

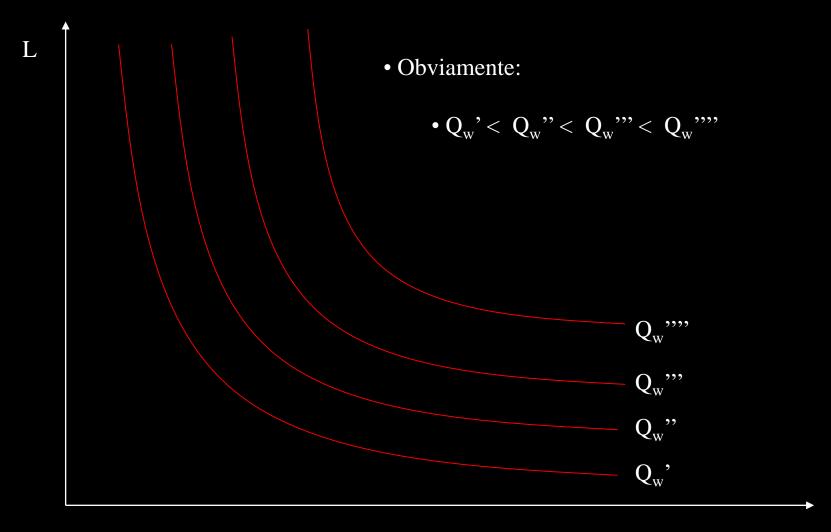
- Dois fatores de produção
 - Terra (D)
 - Trabalho (L)
- Dois bens
 - Vinho (W)
 - Pão (B)

Modelo simplificado:

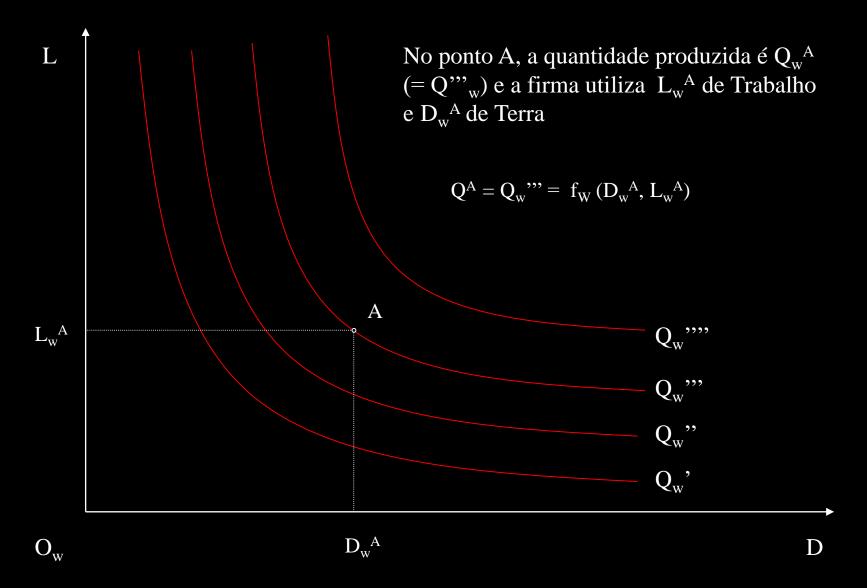
- Duas tecnologias de produção (representadas, matematicamente, por funções de produção):
 - Vinho: $Q_W = f_w (D_w, L_w)$
 - Pão: $Q_B = f_B (D_B, L_B)$
- Limitação de recursos
 - Terra: $D^{\max} \rightarrow D^{\max} \ge D_W + D_B$
 - Trabalho: $L^{\max} \rightarrow L^{\max} \ge L_W + L_B$

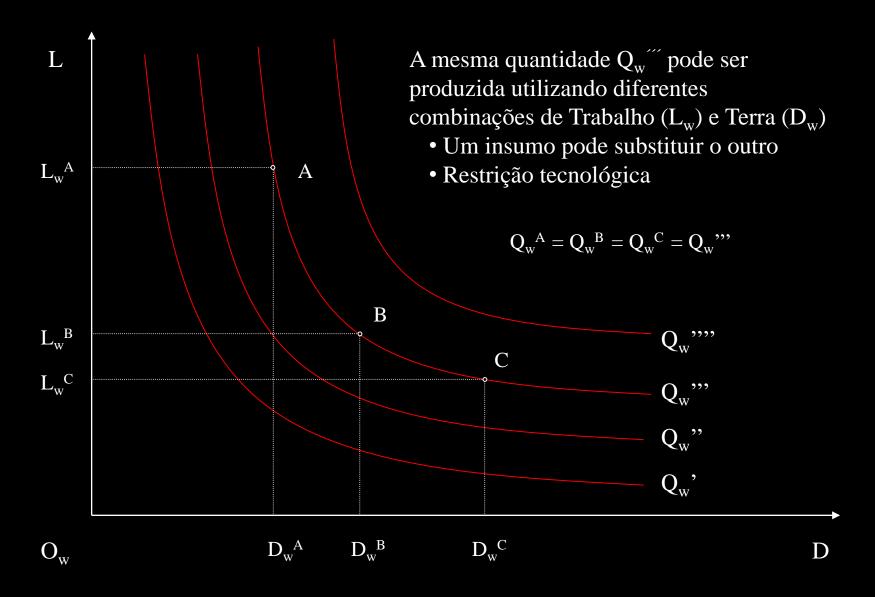
Mapa de Isoquanta (determinada pela função de produção)

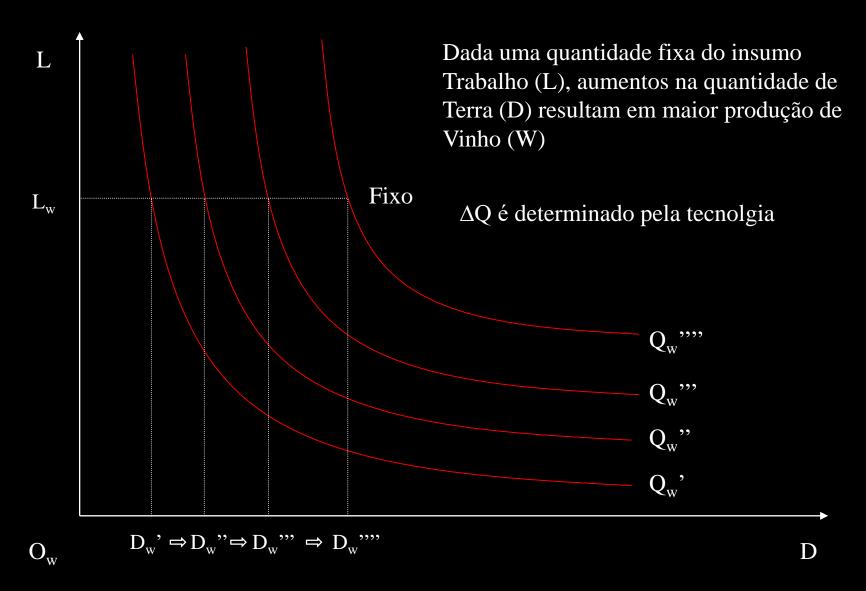
- Isoquanta:
 - Pontos na função de produção (combinações de L e D) que resultam na mesma produção (quantidade)
 - O seu formato é determinado pela função de produção (i.e., pela tecnologia)
- Análise gráfica

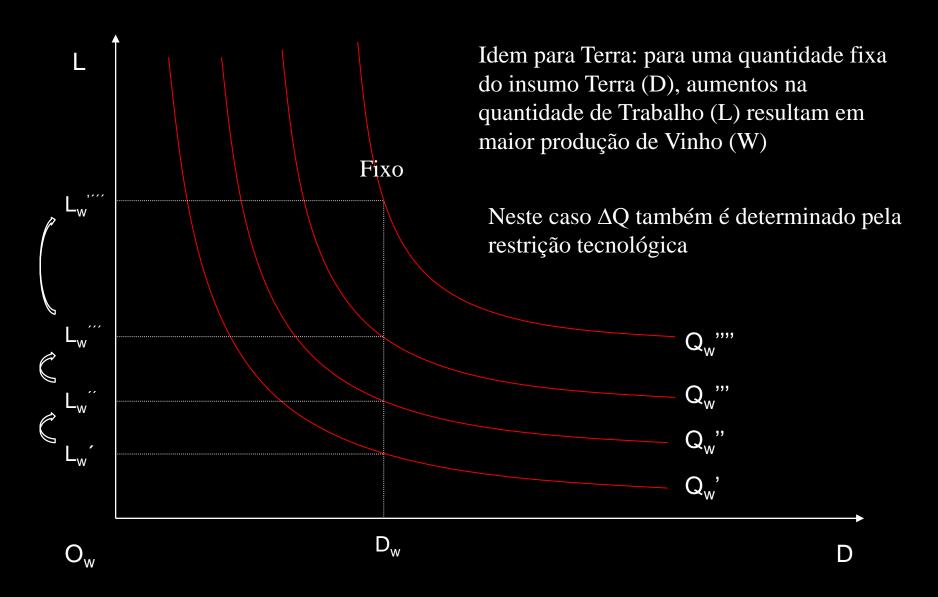


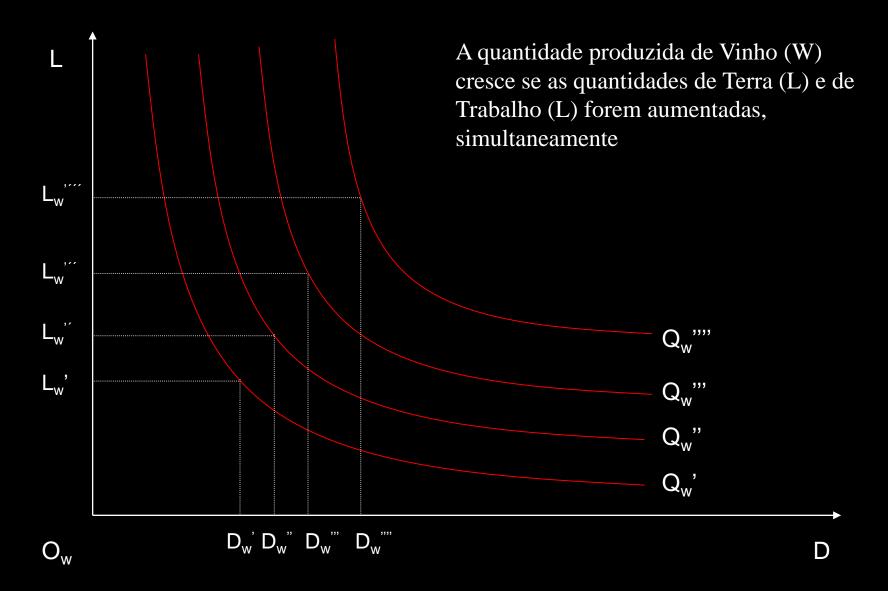
 O_{w}



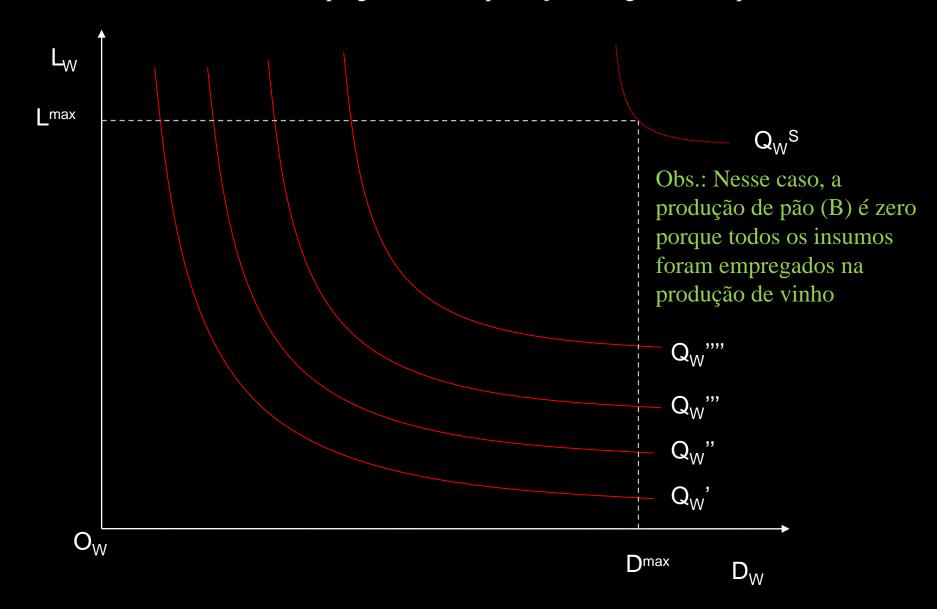


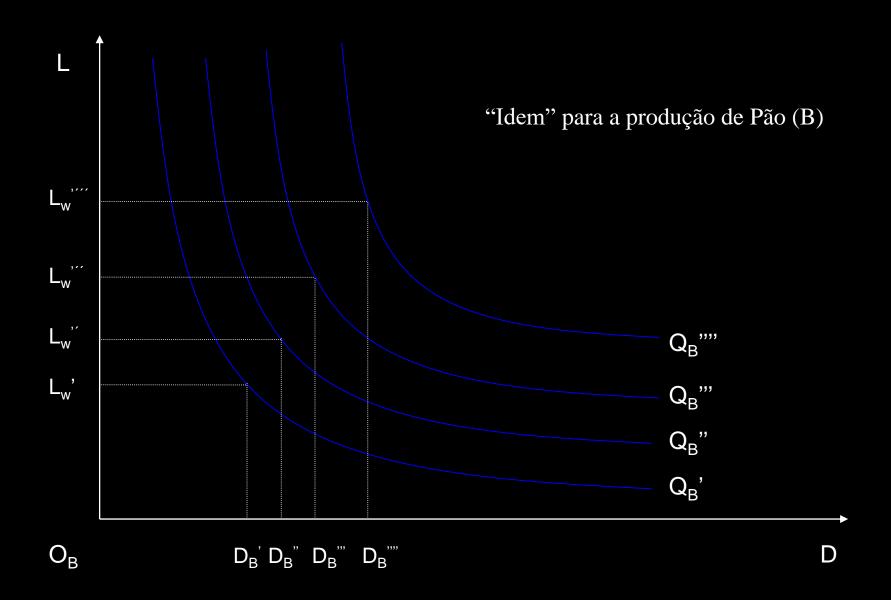


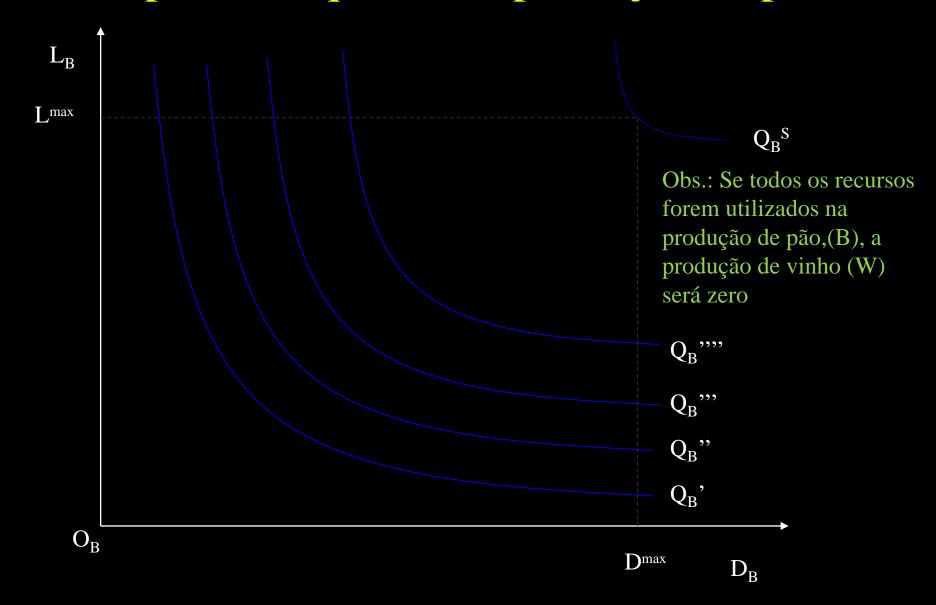


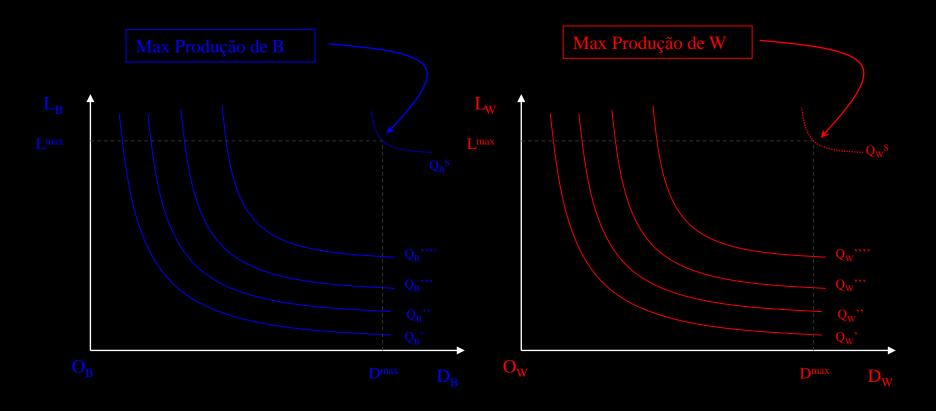


A máxima quantidade de Vinho (Q_W^S) será obtida quando toda Terra e todo o Trabalho forem empregados na sua produção (atingindo a isoquanta mais alta)



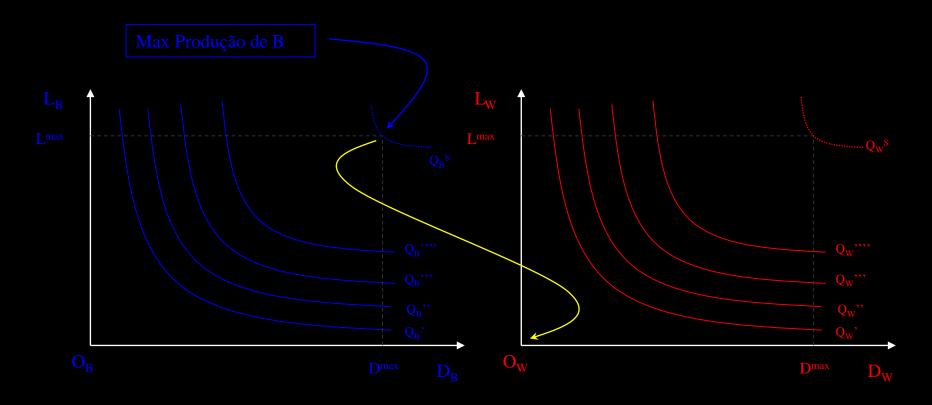






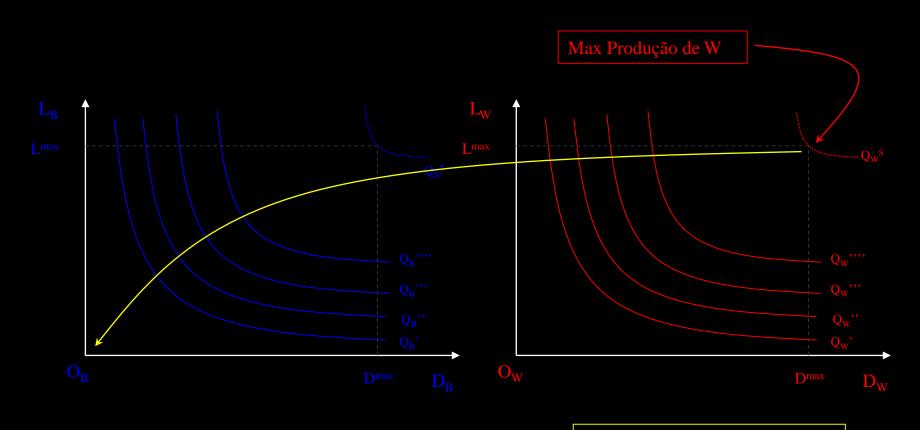
Todos os recursos são utilizados na produção de B

Todos os recursos são utilizados na produção de W



Toda Terra e M.O. é utilizada para produzir Pão: <u>consumidor</u> <u>morre de sede.</u>

Max Produção de B → Min Produção de W

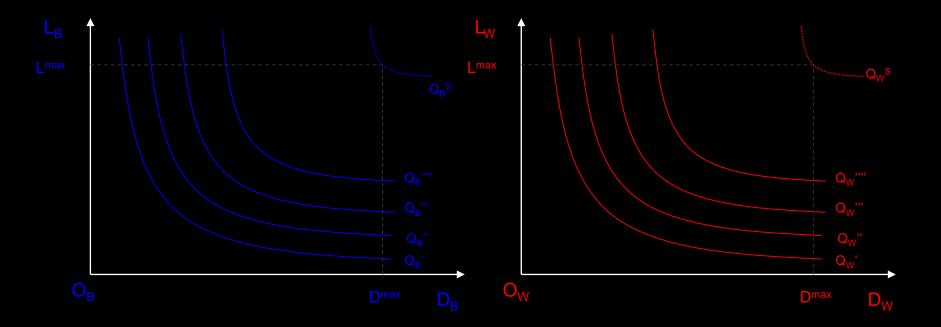


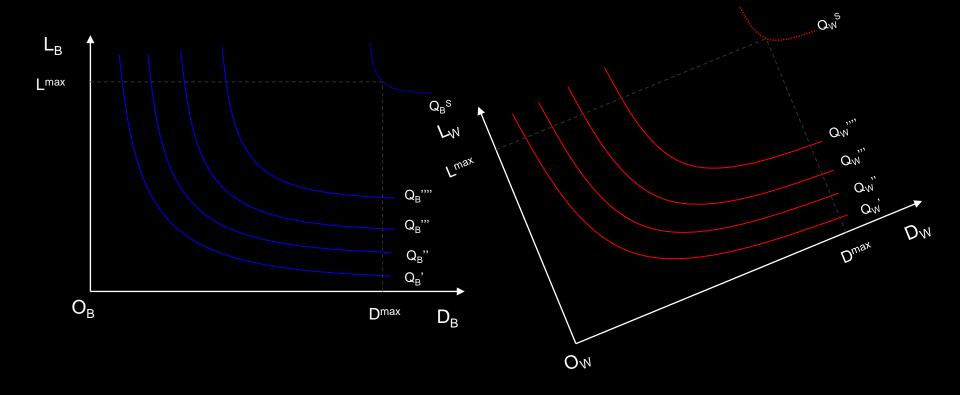
Max Produção de W \rightarrow Min Produção de B

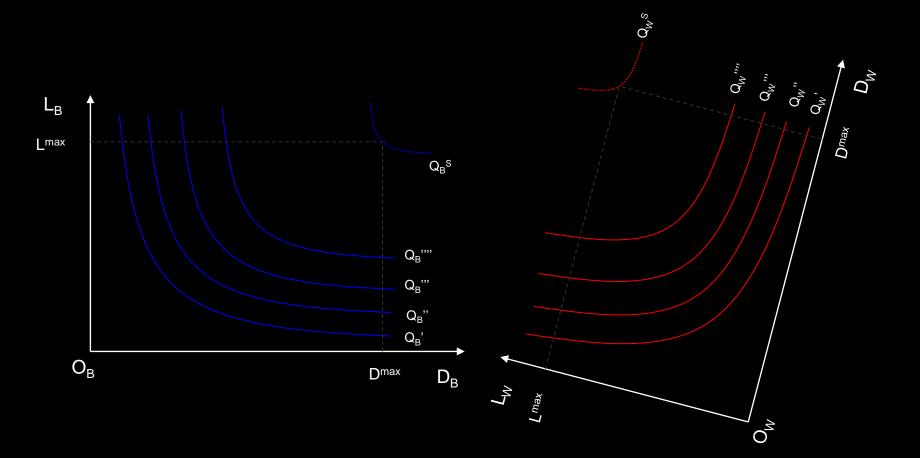
Toda Terra e M.O. é utilizada para produzir Vinho: <u>consumidor morre de fome.</u>

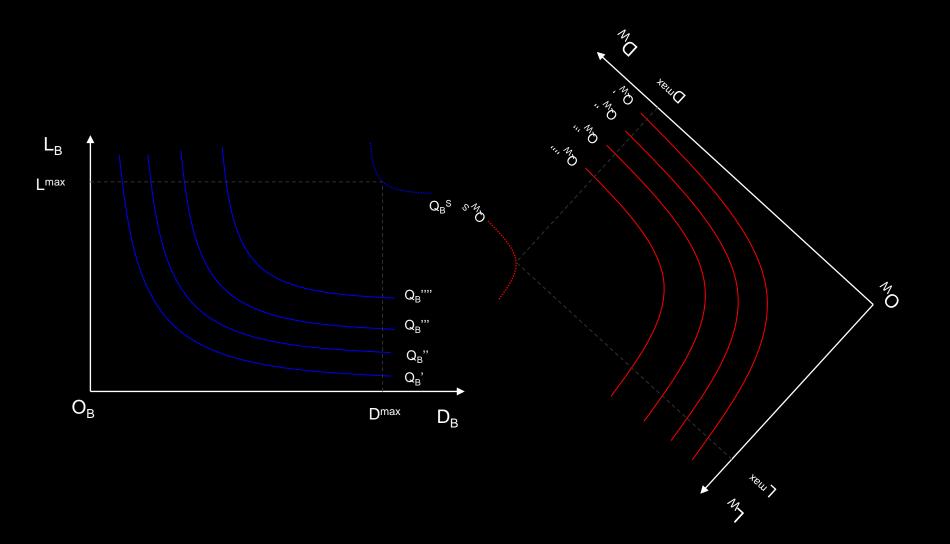
Problema:

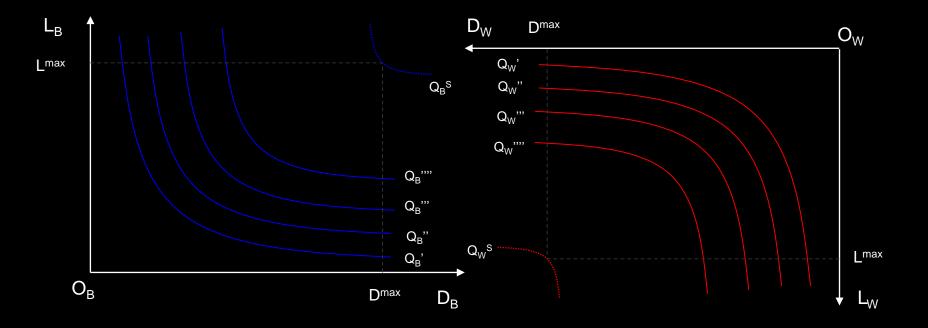
- Qual é a distribuição <u>eficiente</u> dos fatores Terra e
 Trabalho (L^{max} e D^{max}) entre as produções deVinho (W) e Pão (B) ?
 - Problema:
 - Mais L e D para produzir W aumenta sua produção mas diminui a quantidade de B
 - Mais L e D para produzir B aumenta sua produção mas diminui a quantidade de W
 - Haveria combinação (L_W, D_W) e (L_B, D_B) "melhor" do que outros?

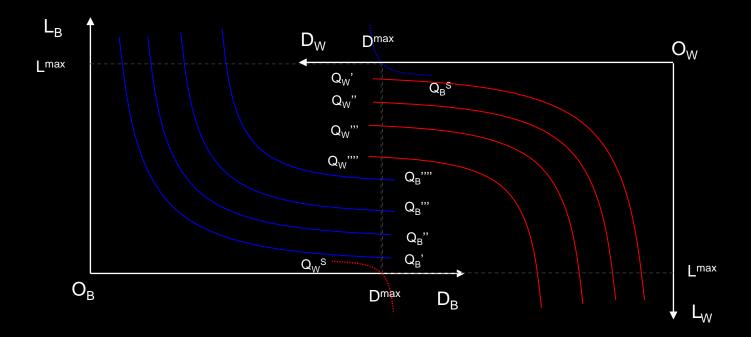


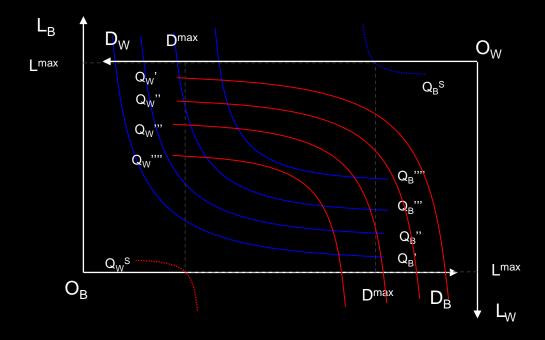


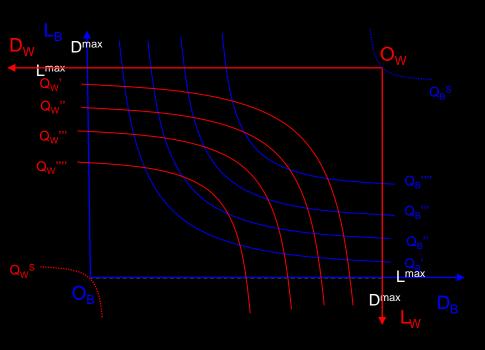


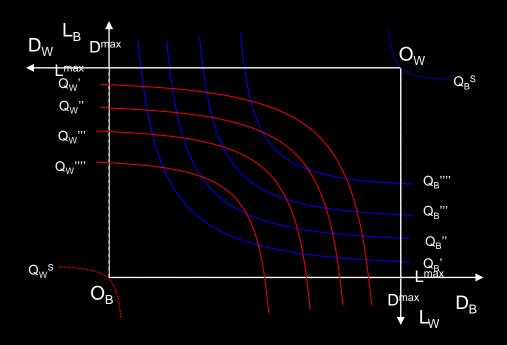


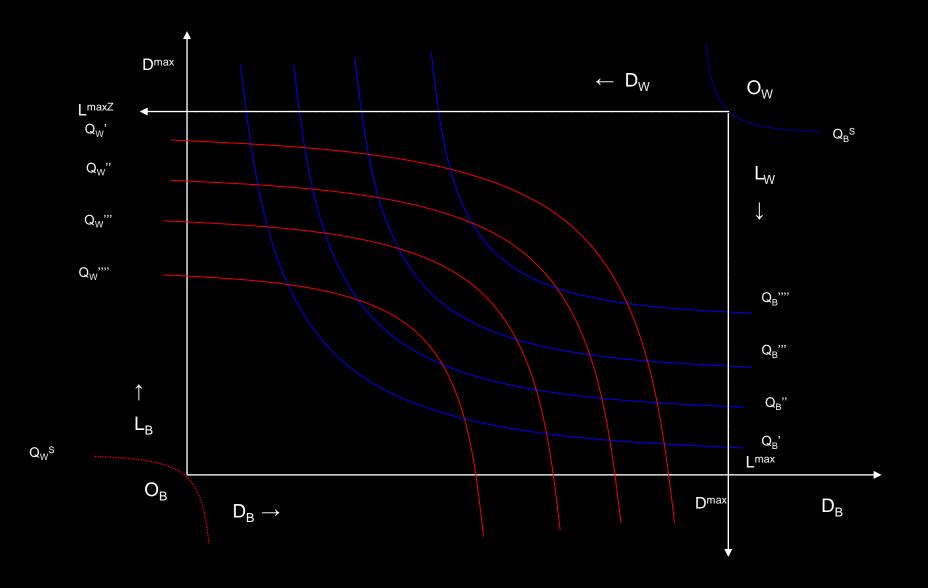


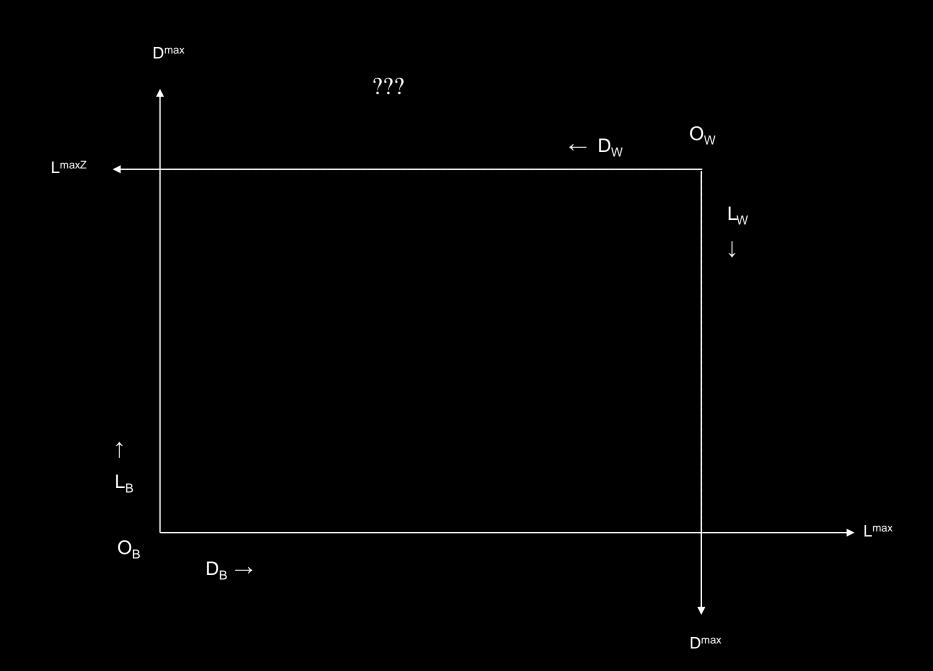












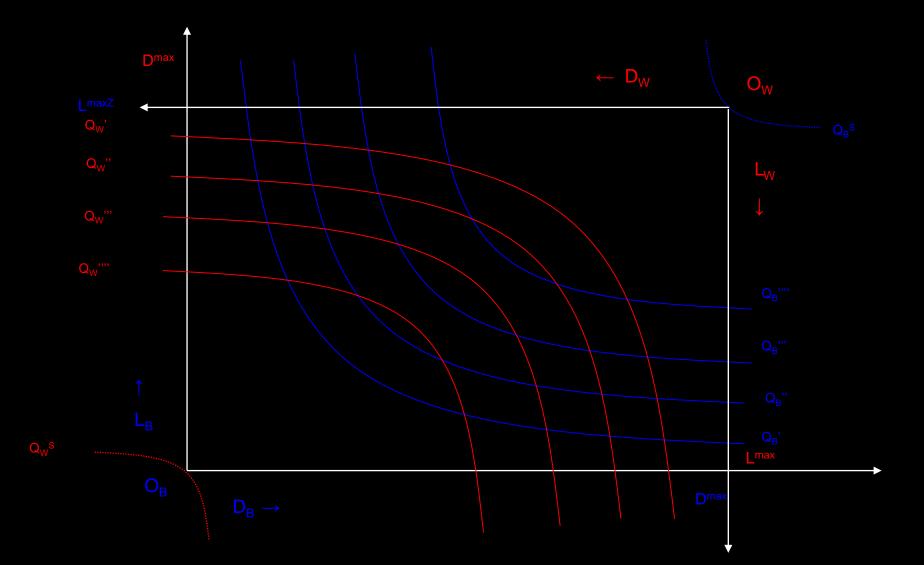
Obs (importante):

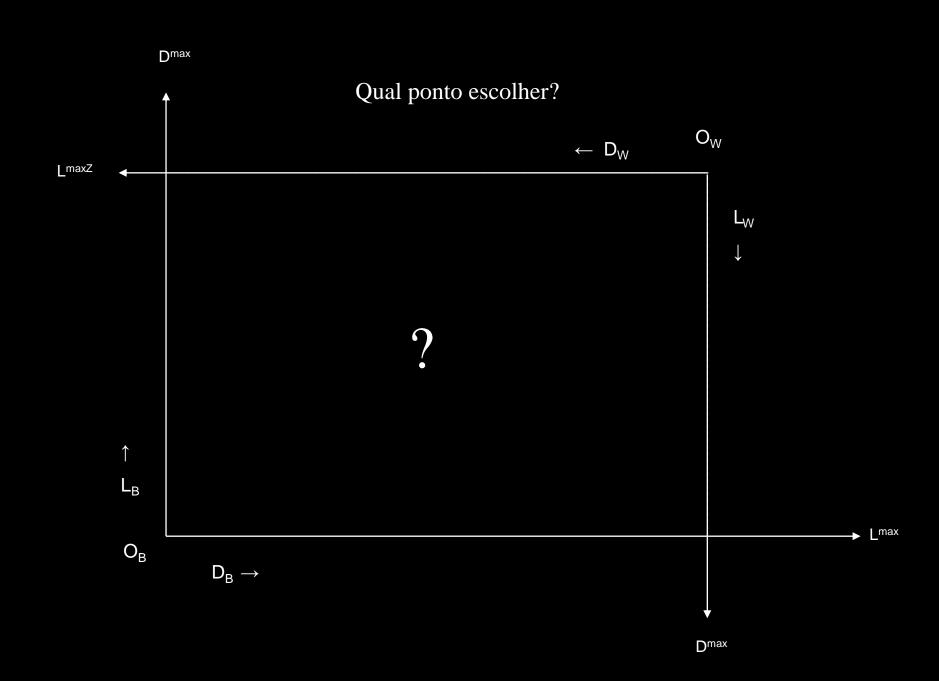
- Cada ponto na Caixa de Edgeworth determina,
 simultaneamente :
 - As quantidades de cada um dos insumos Terra (D) e Trabalho (L) utilizadas na produção de Pão (B) e Vinho (W); e,
 - As quantidades de Pão e Vinho produzidos
- Respeita a limitação da quantidade total de recursos disponível

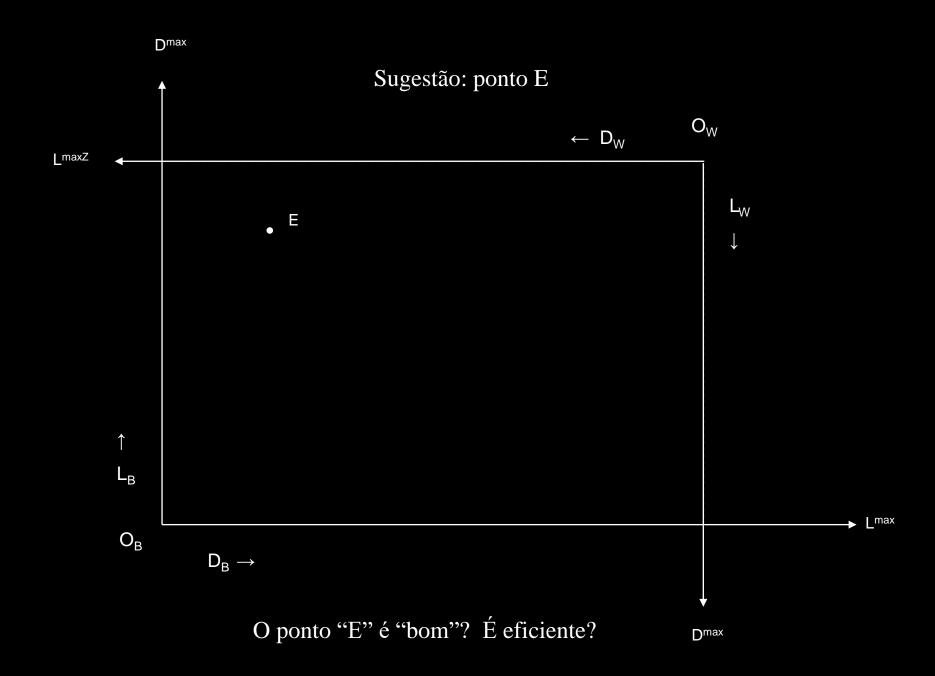
Eficiência na Produção

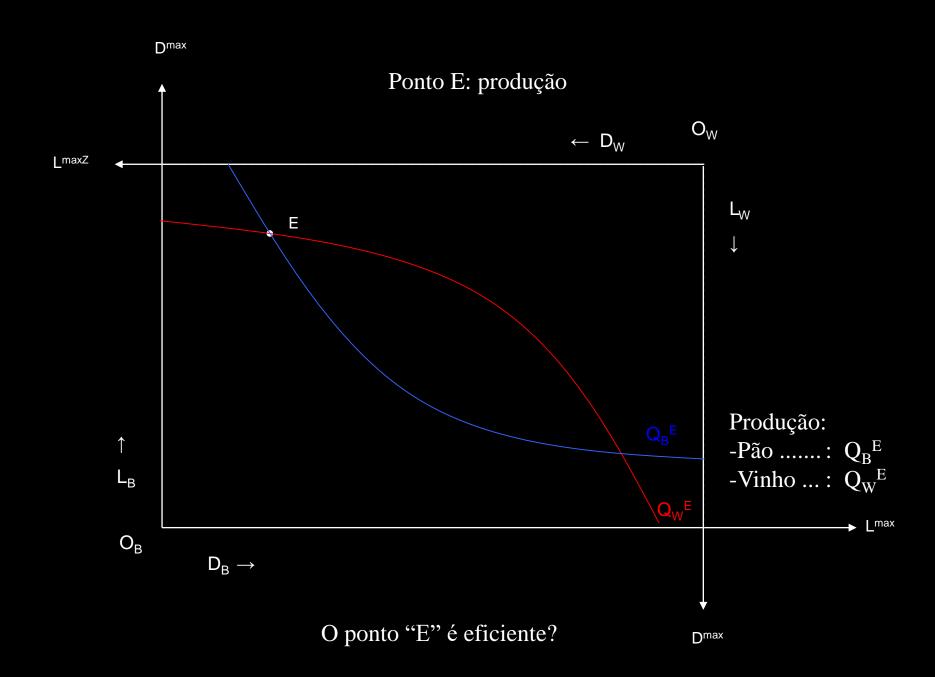
- Escolhas possíveis para:
 - Trabalho (L):
 - $L_{\rm B} \in [0, L^{\rm max}]$
 - $L_{w} \in [0, L^{max}]$
 - $L_B + L_w \le \overline{L^{max}}$
 - Terra (D):
 - $D_R \in [0, D^{max}]$
 - $D_w \in [0, D^{max}]$
 - $D_R + D_w \le D^{max}$.
- Quais são os valores eficientes de L_B, L_W, D_B e D_w?
 - Todos os pontos na Caixa de Edgeworth são igualmente "bons"?
 - Ou, haveria combinações "melhores" do que outras?

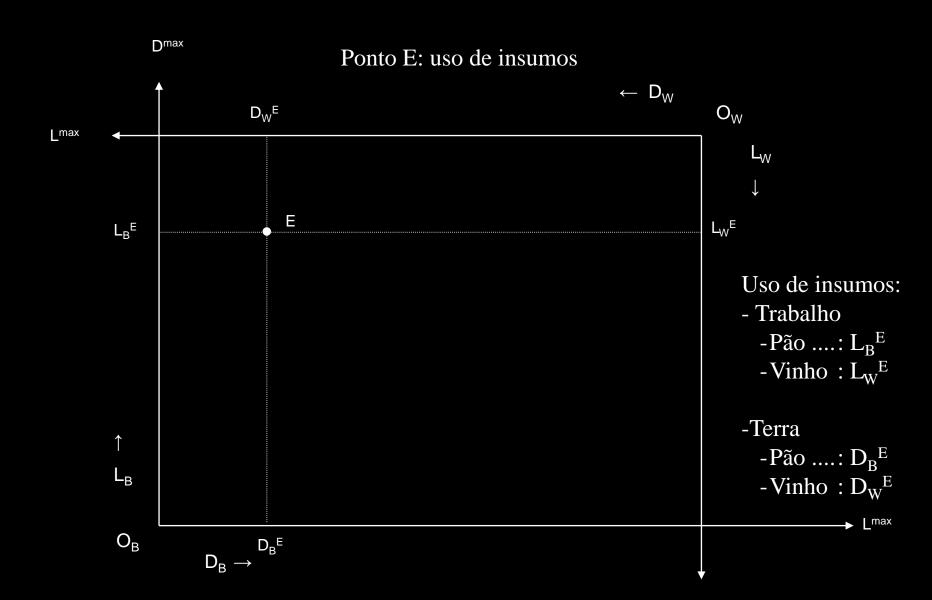
- Qual(is) ponto(s) escolher na área retangular da Caixa de Edgeworth??
 - Todos os pontos são igualmente eficientes?

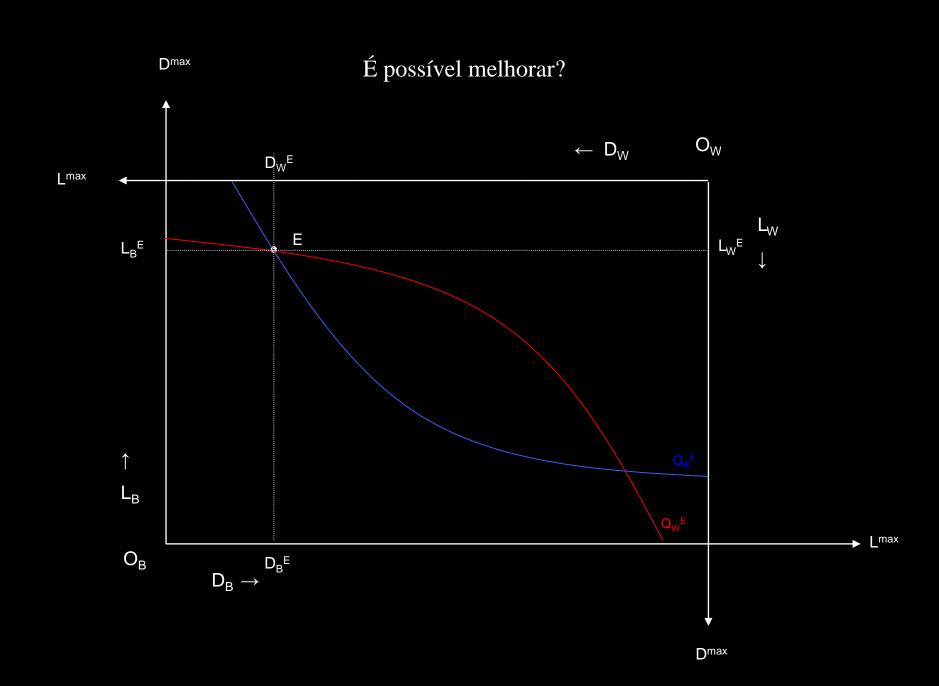


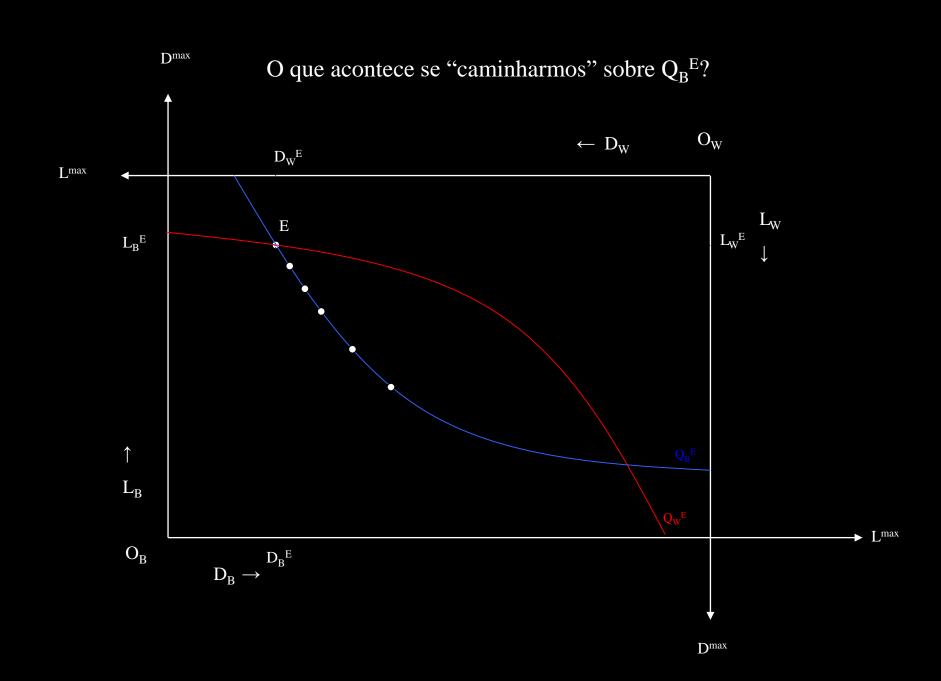








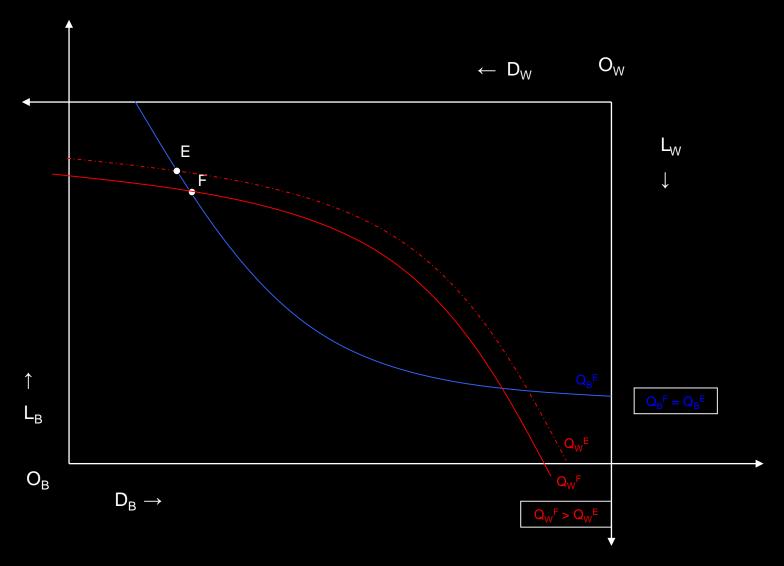




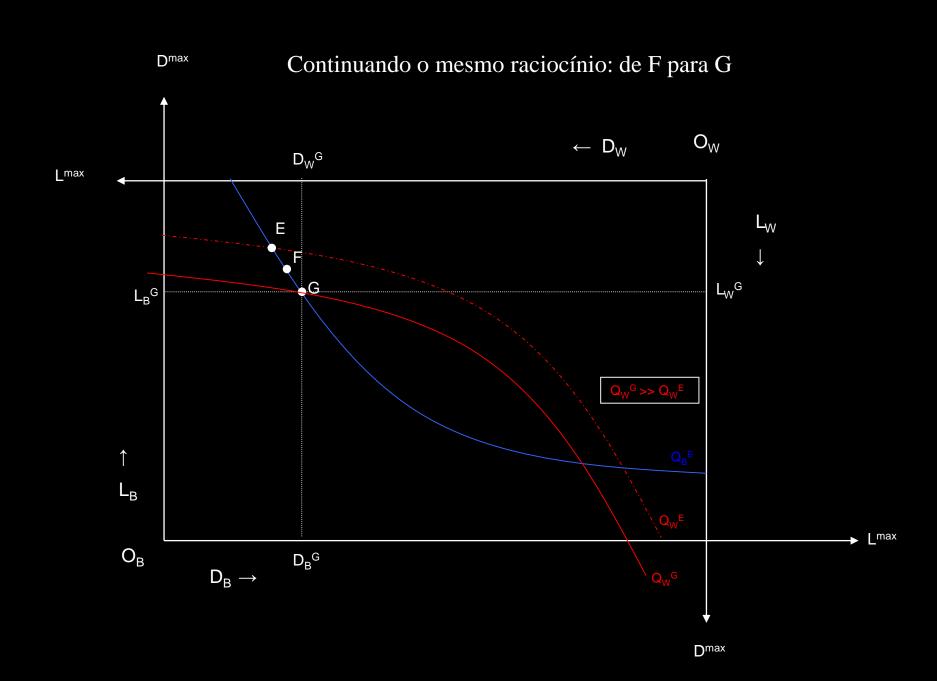
Como "saltar" de E para F?

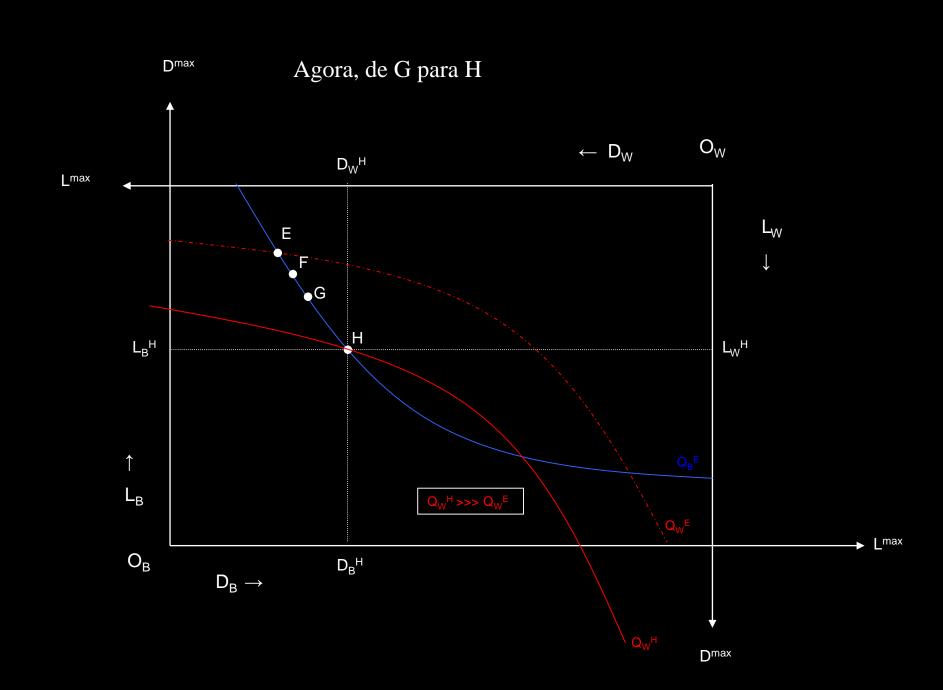
a) Redistribuir o uso do fator Terra: $(\uparrow D_B e \downarrow D_W)$

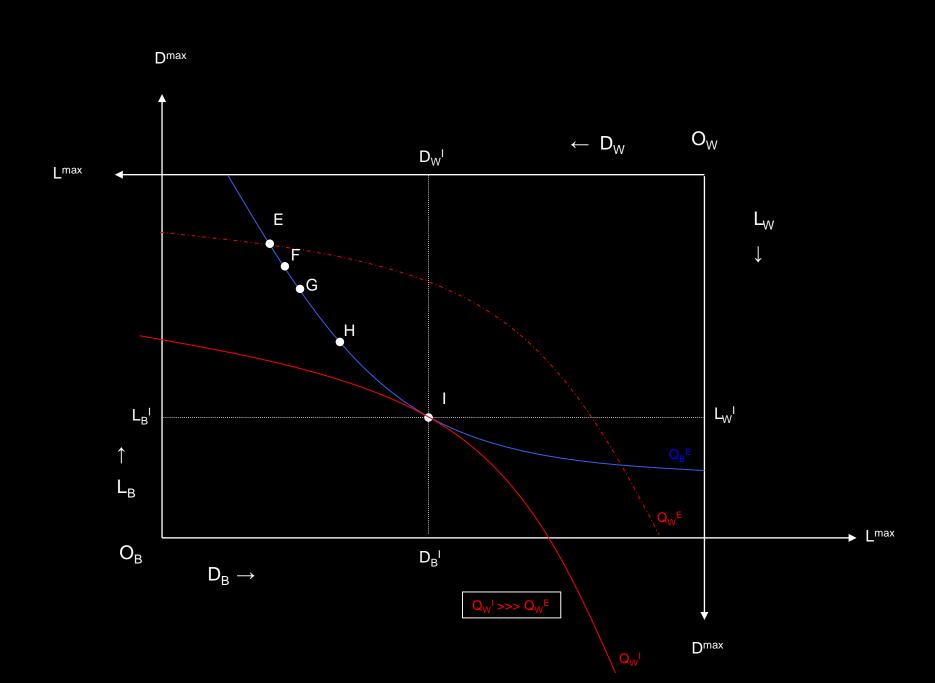
b) E, ao mesmo tempo, redistribuir o Trabalho: ($\downarrow L_B$ e $\uparrow L_W$), "caminhando" sobre Q_B^E $\leftarrow D_W$ O_{W} D_{w}^{F} L_{B}^{F} • O que acontece com a produção de B? L_{B} • E com a produção de W? O_B $D_B \rightarrow$ • Aumento de Q_w • Sem alterar Q_B • Com a mesma quantidade de insumos • Com a mesma tecnologia

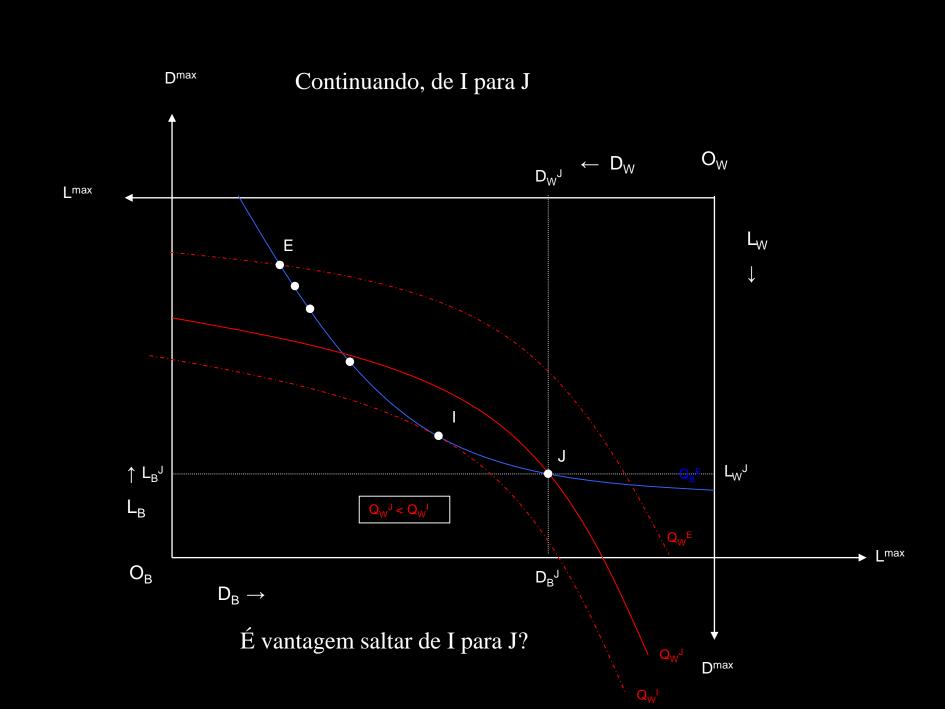


F é melhor do que E: mesma produção de B e maior quantidade de W









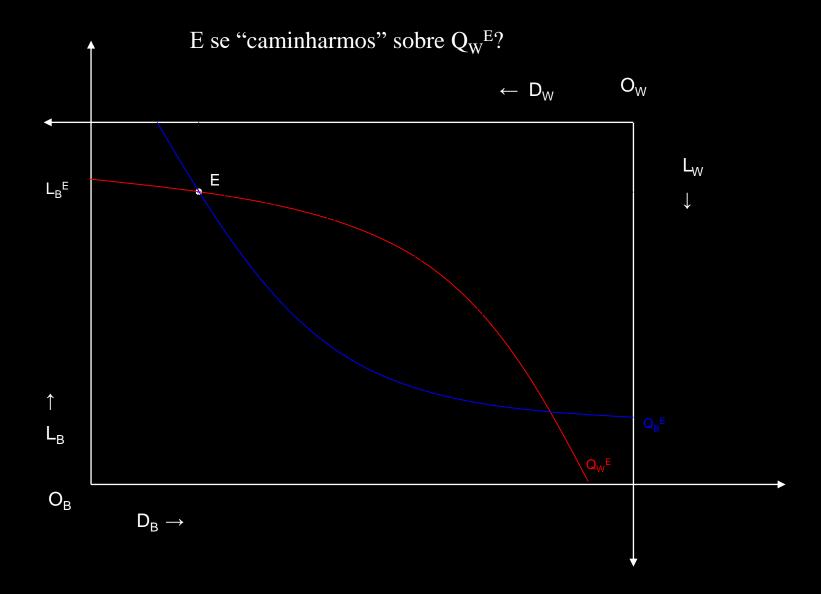
Melhor "ficar" em I !!!

Em I, obtem-se a max Q_W , dado que a produção de pão é $Q_B{}^E$ Dmax Ponto I é muito melhor (mais eficiente) do que o ponto E $\mathsf{D}_\mathsf{W}^{\,\mathsf{I}}$ Lmax $\mathsf{L}_\mathsf{B}^\mathsf{I}$ L_{W}^{I} L_B O_B $\mathsf{D}_\mathsf{B}^\mathsf{I}$ $D_B \rightarrow$

Eficiência na Produção

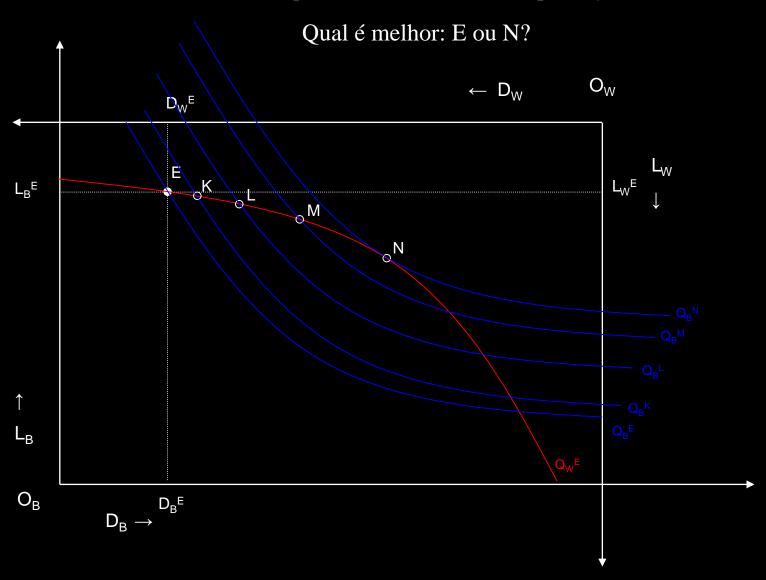
Importante:

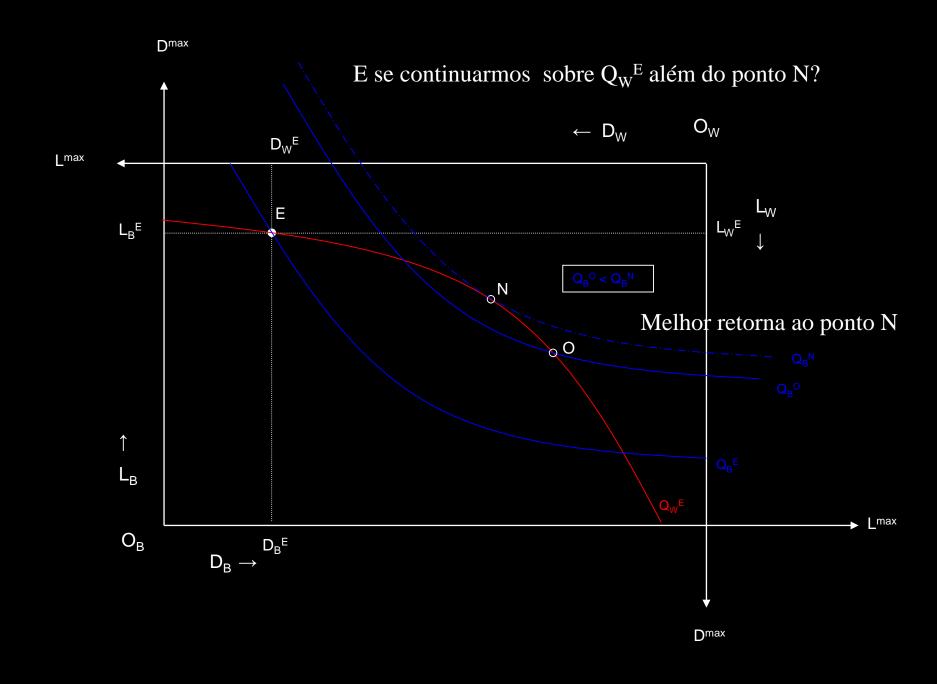
- Iniciando no ponto E, é possível aumentar a produção de Vinho (W) sem prejudicar a produção de Pão (B) e com a mesma quantidade de insumos por meio da "re-alocação" dos fatores trabalho e terra!!!
- Aumenta-se W sem prejudicar B
 - Ponto E não era (Pareto) eficiente



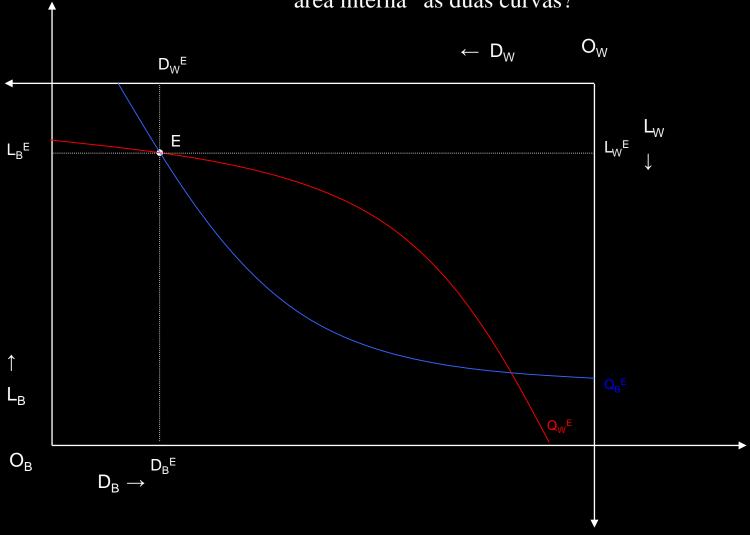
O que está acontecendo c/ a produção de W?

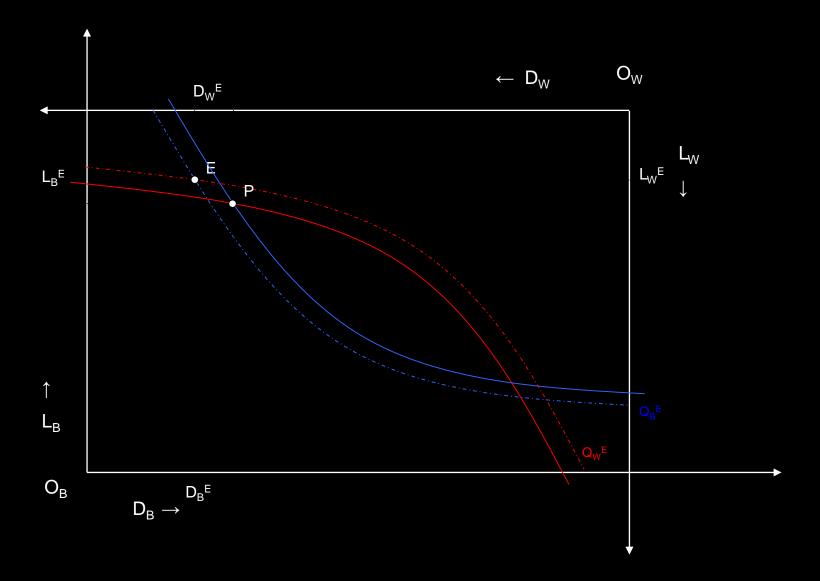
O que está acontecendo c/ a produção de B?

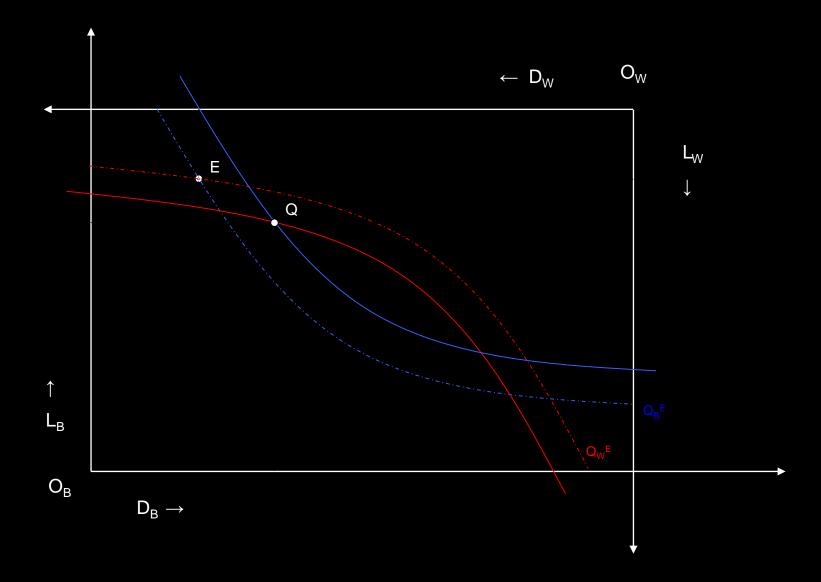


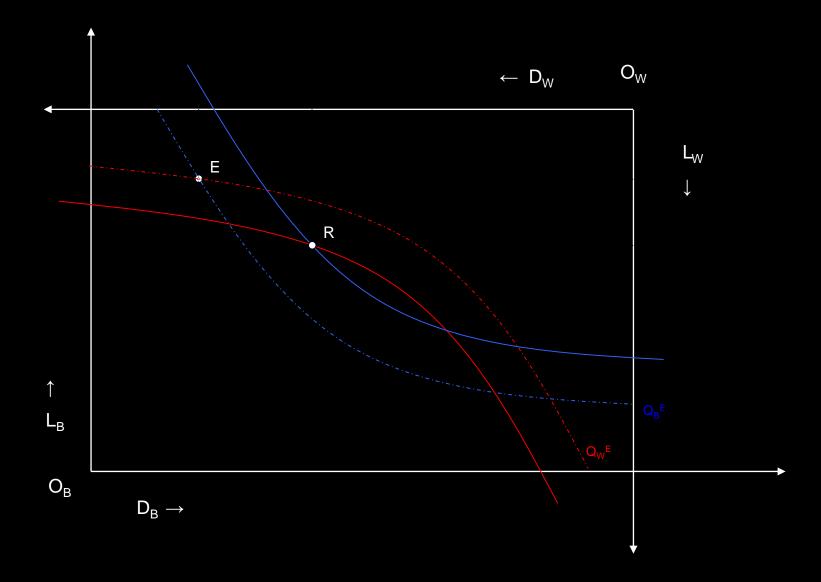


Alternativamente, o que acontece se "caminharmos" em direção à "área interna" às duas curvas?

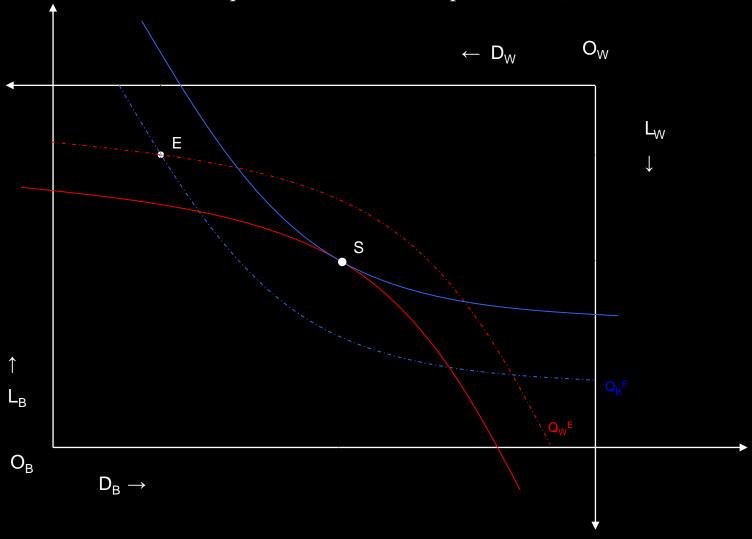




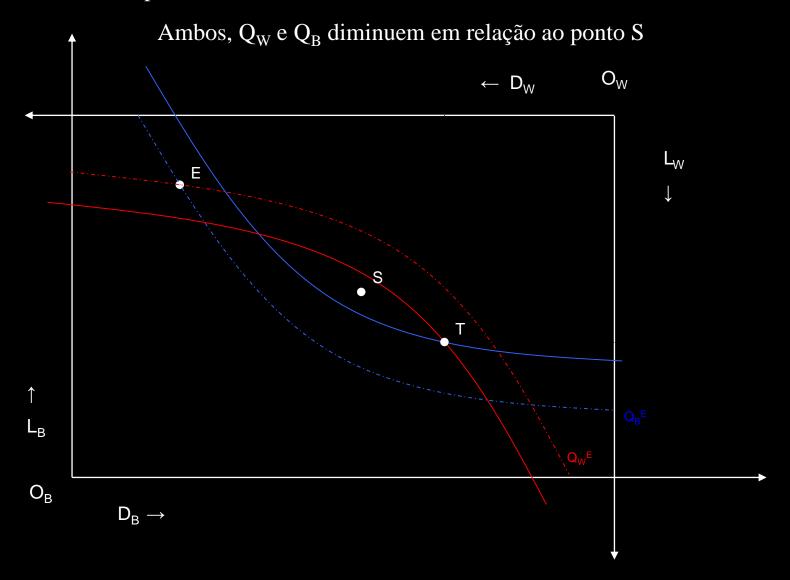


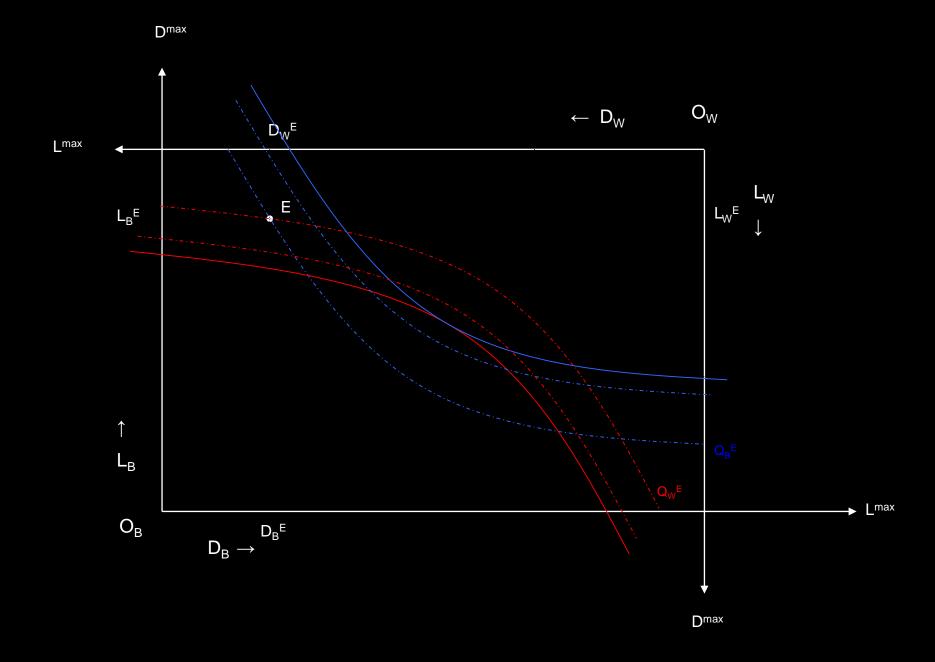


As quantidades de ambos (pão e vinho) aumentam



E, para além de S?





- A partir de "E", existem três possibilidades de "aumentar" a produção de W e B (somente re-alocando os recursos existente)
 - ao longo da isoquanta de Vinho
 - mantém a produção de vinho inalterado (Q_w^E)
 - aumenta a produção de pão até (Q_B^N)
 - ao longo da isoquanta de Pão
 - mantém a produção de pão inalterado (Q_B^E)
 - aumenta a produção de vinho (Q_WI)
 - caminhando para "dentro" da região com a forma de lente
 - aumenta a produção dos dois

Notas:

- Os ganhos podem ser obtidos enquanto as isoquantas forem secantes entre sí.
- No ponto de tangência, esses ganhos atingem o limite
- A partir desse ponto (tanto "para frente" como "para trás"), ocorrem perdas

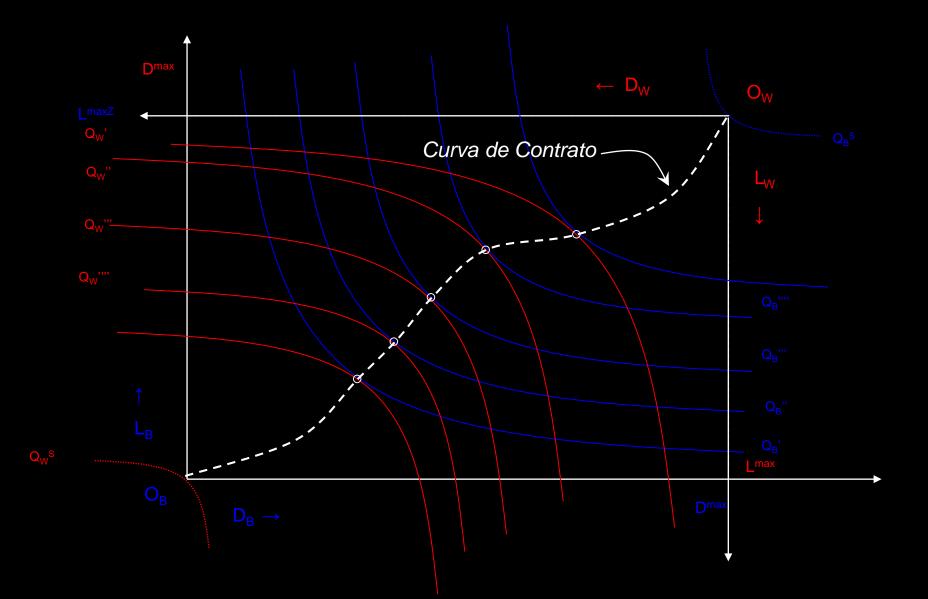
Notas:

- Enquanto houver intersecção de duas isoquantas.
 não ocorre "Ótimo de Pareto"
- A distribuição (alocação) de recurso só é eficiente nos pontos em que duas isoquantas são tangentes!!! Nesses pontos o aumento da produção de um produto só é possível com a diminuição da produção do outro.

Nota:

 Na caixa de Edgeworth, a curva que une os pontos de tangências é chamada de:

Curva de Contrato

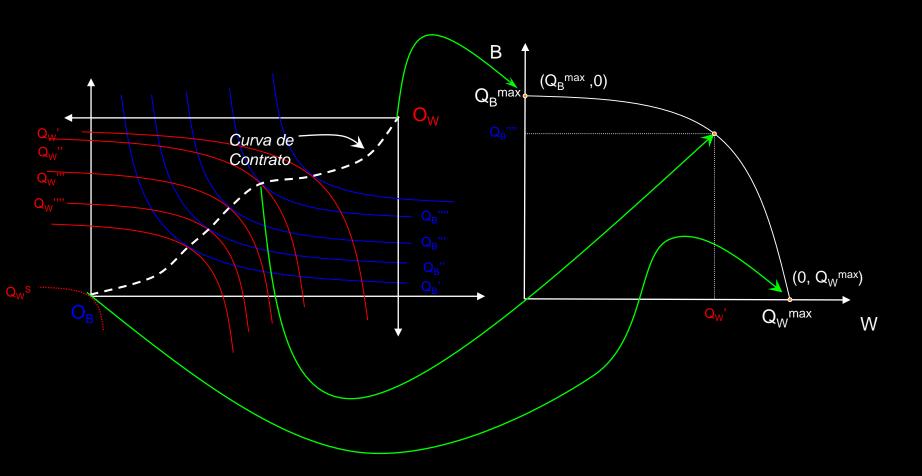


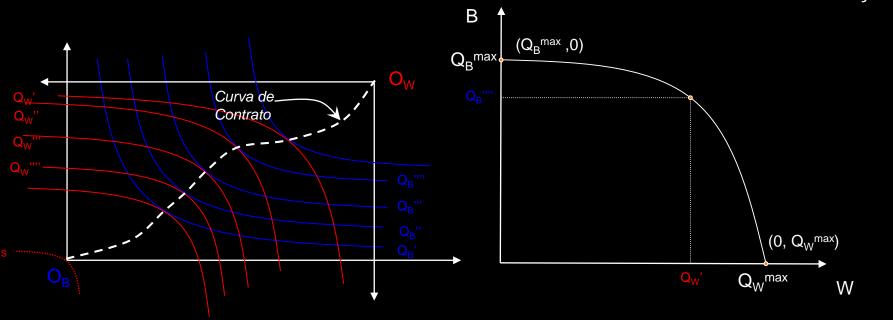
▼ Nota #1:

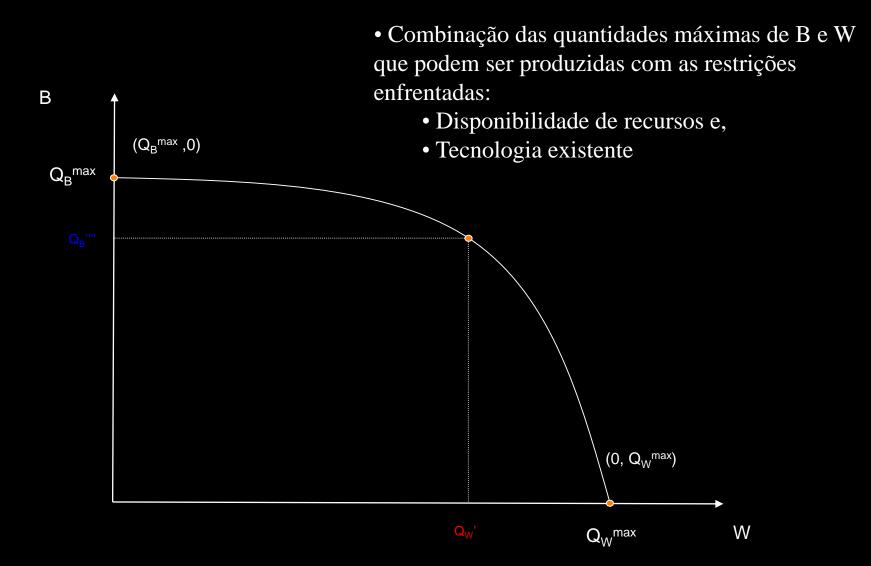
- Na dimensão da produção, cada ponto da curva de contrato indica as quantidades produzidas de Pão
 (B) e Vinho (W) determinadas pelas duas isoquantas que se tangenciam
- Para um determinado nível de produção de Pão, é o <u>máximo</u> de Vinho que se pode produzir (e, viceversa)

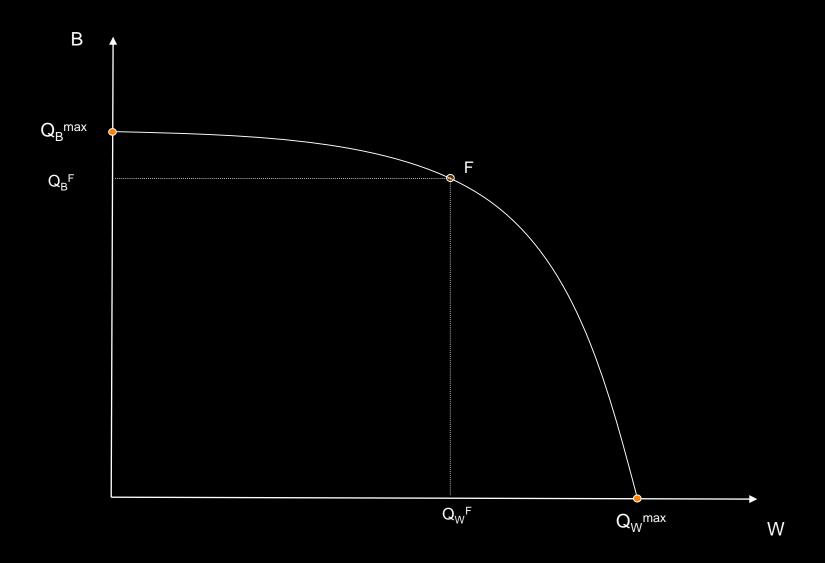
▼ Nota #2:

- Em cada ponto da Curva de Contrato existe a produção de uma determinada quantidade de Pão e Vinho
- O mapeamento (gráfico) desses pontos na dimensão da produção é chamada de Curva (ou Fronteira) de Possibilidade de Produção

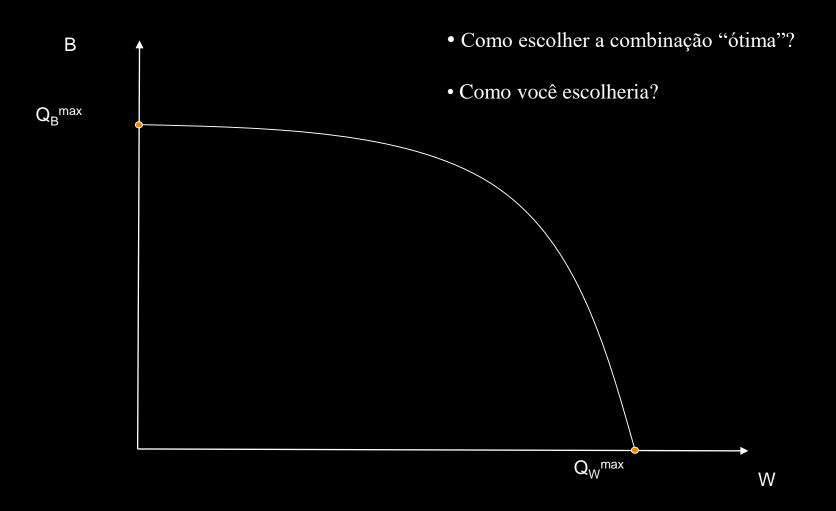




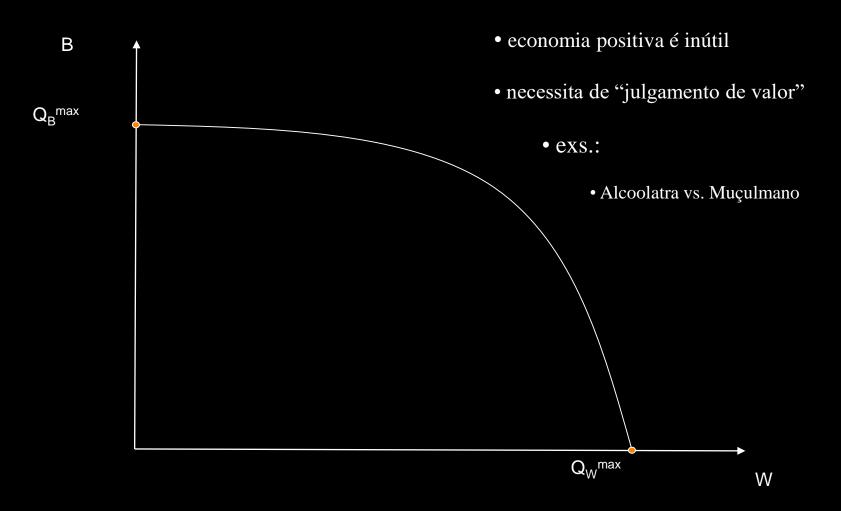




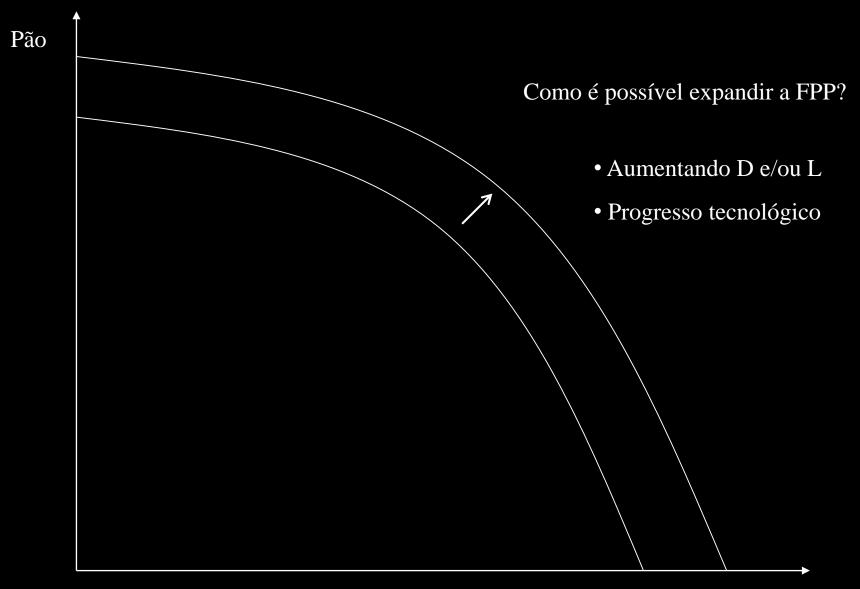
• Problema: quanto produzir de cada produto??



• Problema: quanto produzir de cada produto??



Expansão da FPP



Vinho

Referências / Leituras

Randall, Alan. *Resource Economics* (2nd.ed.) New York, John Wiley & Son, 1987. (Cap. 4, pp. 53-58; Cap. 5, pp 92-105).

Kahn, James R. The economic approach to environmental and natural resources. Fort Worth, The Dryden Press, 1995. (Cap. 2)

20-out-17

