
Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODELING LANGUAGES

AT A GLANCE

Chapter #6

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Contents

• DSL vs. GPL

• Example of GPL: UML

• DSL principles and dimensions

• OCL

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Anatomy of a Modeling Language

• Abstract syntax: Describes the structure of the language

and the way the different primitives can be combined

together, independently of any particular representation or

encoding.

• Concrete syntax: Describes specific representations of

the modeling language, covering encoding and/or visual

appearance.

• Semantics: Describing the meaning of the elements

defined in the language and the meaning of the different

ways of combining them.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Anatomy of a Modeling Language

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

DSL vs. GPL

First distinction is between

• General Purpose languages (GPL or GPML) and

• Domain Specific languages (DSL or DSML)

(already discussed in Chapter 2)

• We take UML as an exemplary case of GPL

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

UML –

UNIFIED MODELING

LANGUAGE

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Overview of UML Diagrams

• There is no official UML diagram overview or diagram

grouping.

• Although UML models and the repository underlying all

diagrams are defined in UML, the definition of diagrams

(i.e., special views of the repository) are relatively free.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Overview of UML Diagrams

• In UML a diagram is actually more than a
collection of notational elements.

• For example, the package diagram describes the
package symbol, the merge relationship, and so
on.

• A class diagram describes a class, the
association, and so on.

• Nevertheless, we can actually represent classes
and packages together in one diagram.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Overview of the UML diagrams

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

UML Design practices

• Pattern-based design: A set of very well-known design

patterns, defined by the so-called Gang of Four

• Using several integrated and orthogonal models

together: UML comprises a suite of diagrams that share

some symbols and allow cross-referencing

• Modeling at different levels of detail: UML allows

eliding details in diagrams when needed. Choose the right

quantity of information to include in diagrams

• Extensibility: UML provides a good set of extensibility

features which allow to design customized modeling

languages if needed

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Class vs. instance in diagrams

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Basic notation for diagrams
Diagram area

Diagram header

[<Diagram type>]<Name>[<Parameter>]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example of a use case diagram

Use case Booking use cases

Branch
employee

Book vehicle

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

UML STRUCTURE

DIAGRAMS

(OR STATIC DIAGRAMS)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Structure diagrams (1)

Emphasize the static description of the elements that

must be present in the system being modeled:

1. The conceptual items of interest for the system

• Class diagram: Describes the structure of a system by

showing the classes of the systems, their attributes, and

the relationships among the classes

• Composite structure diagram: Describes the internal

structure of a class and the collaborations

• Object diagram: A view of the structure of example

instances of modeled concepts

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Structure diagrams (2)

2. The architectural organization and structure of the

system.

• Package diagram: Describes how a system is split up

into logical groupings

• Component diagram: Describes how a software system

is split up into components

• Object diagram: A view of the structure of example

instances of modeled concepts

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Class diagrams basic concepts

• The basis of UML is described in the Kernel package of

the UML metamodel.

• Most class models have the superclass Element and has

the ability to own other elements, shown by a composition

relationship in the metamodel.

• That's the only ability an element has.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Class diagram example

Document

departurePlace
arrivalPlace
isShipped

Shipment

#isShipped(Shipment)
+sendInvoice()
+Invoice(date)

-invoiceNumber
-signature

Invoice

Product

isShipped() checks the status of
the Shipment document

0..*

1..*

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Component Diagram example

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The basic concepts in the UML

metamodel for class diagrams
Element

*

0..1

+/ownedElement

* {union}

+/owner

0..1 {union}

Comment

0..1 *

+owningElement

0..1{subsets owner}

+ownedComment

*{subsets ownedElement}

DirectedRelationship

Comment

body : String

Relationship
Element

1..*

+/target

1..*{union,

subsets relatedElement}

1..*

+/source

1..*{union,

subsets relatedElement}

*

+annotatedElement

*
1..*

+/relatedElement

1..*{union}

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Named elements

• Def. A named element is an element that can
have a name and a defined visibility (public,
private, protected, package):
• +=public

• -=private

• #=protected

• ~=package

• The name of the element and its visibility are
optional.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Multiplicities

• A multiplicity element is the definition of an interval of
positive integers to specify allowable cardinalities.

• A cardinality is a concrete number of elements in a set.

• A multiplicity element is often simply called multiplicity;
the two terms are synonymous.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example Multipicity & Cardinality

Customer Bookings

**

+bookings
Class model

:Kunde

r2:Bookings

r2:Bookings

r2:Bookings

Object model

Multiplicity=0..*

Cardinality=3

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

UML BEHAVIOURAL OR

DYNAMIC DIAGRAMS

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

UML Behavioural Diagrams (1)

• Use case diagram: Describes the functionality provided

by a system in terms of actors external to the system and

their goals in using the system

• Activity diagram: Describes the step-by-step workflows

of activities to be performed in a system for reaching a

specific goal

• State machine diagram (or statechart): Describes the

states and state transitions of the system, of a subsystem,

or of one specific object.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

UML Behavioural Diagrams (2):

Interaction diagrams
A subset of behavior diagrams, emphasize the flow of
control and data among the elements of the system.

• Sequence diagram: Shows how objects communicate
with each other in terms of a temporal sequence of
messages

• Communication or collaboration diagram: Shows the
interactions between objects or classes in terms of links
and messages that flow through the links

• Interaction overview diagram: Provides an overview in
which the nodes represent interaction diagrams

• Timing diagrams: A specific type of interaction diagram
where the focus is on timing constraints

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Activity diagram example

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

State Diagram example

Not shipped Partially Shipped

Invoiced

shipping()

return()

shipping() / [not last item]

invoice() Completely

Shipped

shipping()

/ [last item]
return()

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Sequence diagram example

:Invoice

isShipped()

getProductDetails()

productDetails

shipmentStatus

Loop

[for each Product]

print()

:Shipment :Invoice

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Collaboration diagram example

:Invoice :Shipment

:Product

Customer

1. Print

invoice 2. isShipped()

3. getProductDetails()

:Product
:Product

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

UML EXTENSIBILITY

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Extensibility: Stereotype definition

• Stereotypes are formal extensions of existing

model elements within the UML metamodel, that

is, metamodel extensions.

• The modeling element is directly influenced by

the semantics defined by the extension.

• Rather than introducing a new model element to

the metamodel, stereotypes add semantics to

an existing model element.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Multiple stereotyping

• Several stereotypes can be used to classify one

single modeling element.

• Even the visual representation of an element

can be influenced by allocating stereotypes.

• Moreover, stereotypes can be added to

attributes, operations and relationships.

• Further, stereotypes can have attributes to store

additional information.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Stereotypes Notation

• A stereotype is placed before or above the element name

and enclosed in guillemets (<<,>>).

• Important: not every ocurrence of this notation means

that you are looking at a stereotype. Keywords

predefined in UML are also enclosed in guillemets.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

UML Extensibility: profile example

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

DOMAIN-SPECIFIC

LANGUAGES

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Principles for Domain Specific Languages

• The language must provide good abstractions to the

developer, must be intuitive, and make life easier, not harder

• The language must not depend on one-man expertise for its

adoption and usage. Its definition must be shared and agreed

upon

• The language must evolve and must be kept updated based

on the user and context needs, otherwise it is doomed to die.

• The language must come together with supporting tools and

methods

• The language should be open for extensions and closed for

modifications (open-close principle)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Classification of DSLs (1): FOCUS.

Horizontal vs. Vertical

• Vertical DSLs aim at a specific industry or field.

• Examples: configuration languages for home automation
systems, modeling languages for biological experiments,
analysis languages for financial applications.

• Horizontal DSLs have a broader applicability and their
technical and cover concepts that apply across a large set
of fields. They may refer to a specific technology but not
to a specific industry.

• Examples: SQL, Flex, WebML.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Classification of DSLs (2): STYLE.

Declarative vs. Imperative

• Declarative DSLs: specification paradigm that expresses the

logic of a computation without describing its control flow.

• The language defines what the program should accomplish,

rather than describing how to accomplish it.

• Examples Web service choreography, SQL.

• Imperative DSLs: define an executable algorithm that states

the steps and control flow that needs to be followed.

• Examples: service orchestrations (start-to-end flows), BPMN

process diagrams, programming languages like Java or C/C++.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Classification of DSLs (3): NOTATION.

Graphical vs. Textual

• Graphical DSLs: the outcomes of the development are

visual models and the development primitives are

graphical items such as blocks, arrows and edges,

containers, symbols, and so on.

• Textual DSLs comprise several categories, including

XML-based notations, structured text notations, textual

configuration files, and so on.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Classification of DSLs (4): INTERNALITY.

Internal vs. External

• External DSLs have their own custom syntax, with a full

parser and self-standing, independent

models/programs.

• Internal DSLs consist in using a host language and give

it the feel of a particular domain or objective, either by

embedding pieces of the DSL in the host language or by

providing abstractions, structures, or functions upon it.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Classification of DSLs (5): EXECUTABILITY.

Model Interpretation vs. Code Generation

• Model interpretation: reading and executing the DSL

script at runtime one statement at a time, exactly as

programming languages interpreters do.

• Code-generation: applying a complete model-to-text

(M2T) transformation at deployment time, thus producing

an executable application, as compilers do for

programming languages.

• See Chapter 2 for model executability details.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

DSL example (1): BPMN process model

• Graphical, external, imperative, horizontal DSL for

specifying business processes

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

DSL example (2): WebML hypertext

model
• Declarative, graphical, horizontal DSL for modeling Web

navigation Uis. Supporting tool WebRatio applies a full
code generation approach for executing the models.

• See also: www.webml.org

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

DSL Example (3): IFML by OMG

• Interaction Flow Modeling Language

• Defines content and navigation of user interfaces

• See also: http://www.ifml.org

 and IFML book: http://amzn.to/1mcgYuo

CategoryList ProductList

 «ParameterBindingGroup»

SelectedCategory aCategory

«window» Products «window» Categories

ProductDetails

 «ParameterBindingGroup»

SelectedProduct aProduct

«List» «List» «Details» SelectCategory SelectProduct

http://www.ifml.org
http://amzn.to/1mcgYuo
http://amzn.to/1mcgYuo

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

DSL example (4): VHDL specs

• Textual, external, declarative, vertical DSL for specifying the
behaviour of electronic components.

• Example: definition of a Multiplexer in VHDL

• Multiplexer (MUX): electronic component that selects one of
several analog or digital input signals and forwards the
selected input into a single output line.

• See more at: http://en.wikipedia.org/wiki/Multiplexer

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

DSL Example (4): VHDL Cont.d

Alternative representation of the multiplexer, according to

different notations (which could be seen as DSLs

themselves):

• Electronic block diagram, truth table, output boolean

expression

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

OCL – OBJECT

CONSTRAINT LANGUAGE

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL Topics

 Introduction

OCL Core Language

OCL Standard Library

 Tool Support

 Examples

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation

Graphical modeling languages are generally not able to

describe all facets of a problem description

 MOF, UML, ER, …

 Special constraints are often (if at all) added to the

diagrams in natural language

 Often ambiguous

 Cannot be validated automatically

 No automatic code generation

Constraint definition also crucial in the definition of new

modeling languages (DSLs).

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation

 Example 1

Employee

age: Integer

age > 15

Please no

underaged

employees!

alter = 11

e3:Employee e1:Employee

age = 19

e2:Employee

age = 31

Additional question: How do I get all Employees younger than 30 years old?

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation

 Formal specification languages are the solution
 Mostly based on set theory or predicate logic

 Requires good mathematical understanding

 Mostly used in the academic area, but hardly used in the industry

 Hard to learn and hard to apply

 Problems when to be used in big systems

Object Constraint Language (OCL): Combination of
modeling language and formal specification language
 Formal, precise, unique

 Intuitive syntax is key to large group of users

 No programming language (no algorithms, no technological APIs, …)

 Tool support: parser, constraint checker, code generation,…

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL usage

 Constraints in UML-models
 Invariants for classes, interfaces, stereotypes, …

 Pre- and postconditions for operations

 Guards for messages and state transition

 Specification of messages and signals

 Calculation of derived attributes and association ends

 Constraints in meta models
 Invariants for Meta model classes

 Rules for the definition of well-formedness of meta model

 Query language for models
 In analogy to SQL for DBMS, XPath and XQuery for XML

 Used in transformation languages

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL usage

OCL field of application
 Invariants context C inv: I

 Pre-/Postconditions context C::op() : T
 pre: P post: Q

 Query operations context C::op() : T body: e

 Initial values context C::p : T init: e

 Derived attributes context C::p : T derive: e

 Attribute/operation definition context C def: p : T = e

Caution: Side effects are not allowed!
 Operation C::getAtt : String body: att allowed in OCL

 Operation C::setAtt(arg) : T body: att = arg not allowed in
OCL

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL usage

 Field of application of OCL in model driven engineering

Formal definition of software

systems (models)

Language definition (meta models) –

well-formedness of meta models

Query language

Model transformations

Code generation

Constraint language

Invariants

Invariants

Pre-/Post-conditions

Queries

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL usage

OCL-Types

OCL-

Expressions

Constraints

Queries

Transformations

Standard

OCL

Usage of OCL in other

languages

Bsp: ATL, xPand, QVT

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL usage
How does OCL work?

 Constraints are defined on the modeling level
 Basis: Classes and their properties

 Information of the object graph are queried
 Represents system status, also called snapshot

 Anaology to XML query languages
 XPath/XQuery query XML-documents

 Scripts are based on XML-schema information

 Examples

«instanceOf»

«defined»

context Person

inv: self.age > 18

OCL-Constraint

Snapshot

fs1:Driverlicense p1:Person a1:Car

fs2:Driverlicense p2:Person a2:Car
Age = 19

Age = 16

 «evaluated»

Model

Car Driverlicense Person
age: Integer

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Design of OCL

 A context has to be assigned to each OCL-statement

 Starting address – which model element is the OCL-statement defined for

 Specifies which model elements can be reached using path expressions

 The context is specified by the keyword context followed by the name of the

model element (mostly class names)

 The keyword self specifies the current instance, which will be evaluated by the

invariant (context instance).

 self can be omitted if the context instance is unique

 Example:
Employee

age: Integer

context Employee

inv: self.age > 18

context Employee

inv: age > 18

=

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Design of OCL

OCL can be specified in two different ways

 As a comment directly in the class diagram

(context described by connection)

 Separate document file

Microwave

temperature : Integer

status: State

turnOn()

turnOff()

post: status=State::off

post: status=State::on

inv: self.temperature > 0
«enumeration»

State

• on

• off

context Microwave :: turnOn()

post: status = State::on

Separate text document

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Types

 OCL is a typed language
 Each object, attribute, and result of an operation or navigation is assigned to a

range of values (type)

 Predefined types
 Basic types

 Simple types: Integer, Real, Boolean, String

 OCL-specific types: AnyType, TupleType, InvalidType, …

 Set-valued, parameterized Types
 Abstract supertyp: Collection(T)

 Set(T) – no duplicates

 Bag(T) – duplicates allowed

 Sequence(T) – Bag with ordered elements, association ends {ordered}

 OrderedSet(T) – Set with ordered elements, association ends {ordered, unique}

 Userdefined Types
 Instances of Class in MOF and indirect instances of Classifier in UML are types

 EnumerationType – user defined set of values for defining constants

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Types
Examples

 Basic types

 true, false : Boolean

 -17, 0, 1, 2 : Integer

 -17.89, 0.01, 3.14 : Real

 “Hello World” : String

 Set-valued, parameterized types

 Set{ Set{1}, Set{2, 3} } : Set(Set(Integer))

 Bag{ 1, 2.0, 2, 3.0, 3.0, 3 } : Bag(Real)

 Tuple{ x = 5, y = false } : Tuple{x: Integer, y : Boolean}

 Userdefined types

 Passenger : Class, Flight : Class, Provider : Interface

 Status::started - enum Status {started, landed}

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Types
OCL meta model (extract)

OCLType

TupleType

Signal

ModelElementType

Operation

DataType

PrimitiveType CollectionType

MessageType AnyType VoidType InvalidType

String Boolean Integer Real

OrderedSetType SequenceType BagType SetType

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Expressions

 Each OCL expression is an indirect instance of OCLExpression
 Calculated in certain environment – cf. context

 Each OCL expression has a typed return value

 OCL Constraint is an OCL expression with return value Boolean

 Simple OCL expressions
 LiteralExp, IfExp, LetExp, VariableExp, LoopExp

 OCL expressions for querying model information
 FeatureCallExp – abstract superclass

 AttributeCallExp – querying attributes

 AssociationEndCallExp – querying association ends
 Using role names; if no role names are specified, lowercase class names have to be

used (if unique)

 AssociationClassCallExp – querying association class (only in UML)

 OperationCallExp – Call of query operations
 Calculate a value, but do not change the system state!

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Expressions

 Examples for LiteralExp, IfExp, VariableExp, AttributeCallExp

 Abstract syntax of OCL is described as meta model

 Mapping from abstract syntax to concrete syntax
 IfExp -> if Expression then Expression else Expression endif

let annualIncome : Real = self.monthlyIncome * 14 in

if self.isUnemployed then

 annualIncome < 8000

else

 annualIncome >= 8000

endif

IntegerLiteralExp VariableExp AttributeCallExp

IfExp

LetExp

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Expressions
OCL meta model (extract)

IfExp LiteralExp

FeatureCallExp

TypedElement

TypeExp

IteratorExp IterateExp

LetExp

initExpression

source

body

result

iterator

LiteralExp: CollectionLiteralExp, PrimitiveLiteralExp,

 TupleLiteralExp, EnumLiteralExp

referredVariable LoopExp

Variable

VariableExp

OCLExpression

CallExp

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Query of model information

 Context instance
 context Person

 AttributeCallExp
 self.age : int

 OperationCallExp
 Operations must not have side effects

 Allowed: self.getAge() : int

 Not allowed: self.setAge()

 AssociationEndCallExp
 Navigate to the opposite association end using role names

 self.employer – Return value is of type Company

 Navigation often results into a set of objects – Example

 context Company

 self.employees – Return value is of type Set (Person)

Person

age : int

getAge() : int

setAge()

Company
employees employer
* 1

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Query of model information
Example

Person

age : int

getAge() : int

setAge()

Company
employees employer
* 1

context Company

self.employees

context Person

self.employer

context Company

self.employees

p2:Person

age = 34

c1:Company

p3:Person

age = 54

p1:Person

age = 22

employees

employer

employees

employees

employer

employer

c1 : Company Set{p1,p2,p3} :
Set(Person)

p1:Person

age = 34

c1:Company

employees

employer

Set{p1} :
Set(Person)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Query of model information
OCL meta model (extract)

AttributeCallExp

FeatureCallExp

NavigationCallExp OperationCallExp

AssociationEndCallExp AssociationClassCallExp

Operation Attribute

AssociationEnd AssociationClass

1 1

1 1

Only in UML

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL Library: Operations for OclAny

 OclAny - Supertype of all other types in OCL
 Operations are inherited by all other types.

 Operations of OclAny (extract)
 Receiving object is denoted by obj

Operation Explanation of result

=(obj2:OclAny):Boolean True, if obj2 and obj reference the same object

oclIsTypeOf(type:OclType):Boolean
True, if type is the type of obj

oclIsKindOf(type:OclType):

 Boolean

True, if type is a direct or indirect supertype or the

type of obj

oclAsType(type:Ocltype):

 Type

The result is obj of type type, or undefined, if the

current type of obj is not type or a direct or indirect

subtype of it (casting)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for OclAny
Predefined environment for model types

Person

Student Professor

OCLAny

Exam Lecture

OCLType

instanceOf

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for OclAny

 oclIsKindOf vs. oclIsTypeOf

Person

Student Professor

context Person

self.oclIsKindOf(Person) : true

self.oclIsTypeOf(Person) : true

self.oclIsKindOf(Student) : false

self.oclIsTypeOf(Student) : false

context Student

self.oclIsKindOf(Person) : true

self.oclIsTypeOf(Person) : false

self.oclIsKindOf(Student) : true

self.oclIsTypeOf(Student) : true

self.oclIsKindOf(Professor) : false

self.oclIsTypeOf(Professor) : false

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for simple types

 Predefined simple types
 Integer {Z}

 Real {R}

 Boolean {true, false}

 String {ASCII, Unicode}

 Each simple type has predefined operations

Simple type Predefined operations

Integer *, +, -, /, abs(), …

Real *, +, -, /, floor(), …

Boolean and, or, xor, not, implies

String concat(), size(), substring(), …

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for simple types

 Syntax

 v.operation(para1, para2, …)

 Example: “bla”.concat(“bla”)

 Operations without brackets (Infix notation)

 Example: 1 + 2, true and false

Signature Operation

Integer X Integer Integer {+, -, *}

t1 X t2 Boolean {<,>,≤,≥}, t1, t2 typeOf {Integer or Real}

Boolean X Boolean Boolean {and, or, xor, implies}

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for simple types
Boolean operations - semantic

 OCL is based on a
three-valued (trivalent) logic
 Expressions are mapped to the three

values {true, false, undefined}

 Semantic of the operations
 M(I, exp)= I(exp), if exp not further resolvable

 M(I, not exp)= ¬M (I, exp)

 M(I,(exp1 and exp2)) = M(I, exp1) M(I, exp2)

 M(I,(exp1 or exp2)) = M(I, exp1) M(I, exp2)

 M(I,(exp1 implies exp2)) = M(I, exp1) M(I, exp2)

 Truth table: true(1), false (0),undefined (?)

¬

0 1

1 0

? ?

 0 1 ?

0 0 0 0

1 0 1 ?

? 0 ? ?

 0 1 ?

0 0 1 ?

1 1 1 1

? ? 1 ?

 0 1 ?

0 1 1 1

1 0 1 ?

? ? 1 ?

Undefined: Return value if an

expression fails

1. Access on the first element of

an empty set

2. Error during Type Casting

3. …

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for simple types
Boolean operations - semantic

 Simple example for an undefined OCL expression
 1/0

Query if undefined– OCLAny.oclIsUndefined()
 (1 / 0).oclIsUndefined() : true

 Examples for the evaluation of Boolean operations
 (1/0 = 0.0) and false : false

 (1/0 = 0.0) or true : true

 false implies (1.0 = 0.0) : true

 (1/0 = 0.0) implies true : true

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for collections

 Collection is an abstract supertype for all set types
 Specification of the mutual operations

 Set, Bag, Sequence, OrderedSet inherit these operations

 Caution: Operations with a return value of a set-valued type
create a new collection (no side effects)

 Syntax: v -> op(…) – Example: {1, 2, 3} -> size()

 Operations of collections (extract)
 Receiving object is denoted by coll

Operation Explanation of result

size():Integer Number of elements in coll

includes(obj:OclAny):Boolean True, if obj exists in coll

isEmpty:Boolean True, if coll contains no elements

sum:T
Sum of all elements in coll

Elements have to be of type Integer or Real

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for collections

Model operations vs. OCL operations

 Bottle

isEmpty() : Boolean

Container *

content

context Container

inv: self.content -> first().isEmpty()

context Container

inv: self.content -> isEmpty()

Operation isEmpty()

always has to return true

Container instances must

not contain bottles

OCL-Constraint Semantic

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operationen for Set/Bag

 Set and Bag define additional operations

 Generally based on theory of set concepts

 Operations of Set (extract)

 Receiving object is denoted by set

 Operations of Bag (extract)

 Receiving object is denoted by bag

Operation Explanation of result

union(set2:Set(T)):Set(T) Union of set and set2

intersection(set2:Set(T)):Set(T) Intersection of set and set2

difference(set2:Set(T)):Set() Difference set; elements of set, which do not consist in set2

symmetricDifference(set2:Set(T)):

Set(T)

Set of all elements, which are either in set or in set2, but do

not exist in both sets at the same time

Operation Explanation of result

union(bag2:Bag(T)):Bag(T) Union of bag and bag2

intersection(bag2:Bag(T)): Bag(T) Intersection of bag and bag2

A∩B

B A

A\B B\A

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Operations for OrderedSet/Sequence

 OrderedSet and Sequences define additional operations
 Allow access or modification through an Index

 Operations of OrderedSet (extract)
 Receiving object is denoted by orderedSet

 Operations of Sequence
 Analogous to the operations of OrderedSet

Operation Explanation of result

first:T First element of orderedSet

last:T Last element of orderedSet

at(i:Integer):T Element on index i of orderedSet

subOrderedSet(lower:Integer,

 upper:Integer):OrderedSet(T)

Subset of orderedSet, all elements of orderedSet including the

element on position lower and the element on position upper

insertAt(index:Integer,object:T)

 :OrderedSet(T)

Result is a copy of the orderedSet, including the element object

at the position index

0 1 2 3 … n

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Iterator-based operations

 OCL defines operations for Collections using Iterators
 Expression Package: LoopExp

 Projection of new Collections out of existing ones

 Compact declarative specification instead of imperative algorithms

 Predefined Operations
 select(exp) : Collection

 reject(exp) : Collection

 collect(exp) : Collection

 forAll(exp) : Boolean

 exists(exp) : Boolean

 isUnique(exp) : Boolean

 iterate(…) – Iterate over all elements of a Collection
 Generic operation

 Predefined operations are defined with iterate(…)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Iterator-based operations
Select-/Reject-Operation

 Select and Reject return subsets of collections
 Iterate over the complete collection and collect elements

 Select
 Result: Subset of collection, including elements where booleanExpr is

true

 Reject
 Result: Subset of collection, including elements where booleanExpr is

false

 Just Syntactic Sugar, because each reject-Operation can be defined as a
select-Operation with a negated expression

collection -> select(v : Type | booleanExp(v))

collection -> select(v | booleanExp(v))

collection -> select(booleanExp)

collection-> reject(v : Type | booleanExp(v))

collection-> select(v : Type | not (booleanExp(v))

=

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

 Semantic of the Select-Operation

Iterator-based operations
Select-/Reject-Operation

context Company inv:

 self.employee -> select(e : Employee | e.age>50) ->

notEmpty()

List persons<Person> = new List();

for (Iterator<Person> iter = comp.getEmployee();

iter.hasNext()){

 Person p = iter.next();

 if (p.age > 50){

 persons.add(p);

 }

}

Java

OCL

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Iterator-based operations
Collect-Operation

 Collect-Operation returns a new collection from an existing one. It

collects the Properties of the objects and not the objects itself.

 Result of collect always Bag<T>.T defines the type of the property to be

collected

 Example

 self.employees -> collect(age) – Return type: Bag(Integer)

 Short notation for collect

 self.employees.age

collection -> collect(v : Type | exp(v))

collection -> collect(v | exp(v))

collection -> collect(exp)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Iterator-based operations
Collect-Operation

 Semantic of the Collect-Operator

 Use of asSet() to eliminate duplicates

context Company inv:

 self.employee -> collect(birthdate) -> size() > 3

List birthdate<Integer> = new List();

for (Iterator<Person> iter = comp.getEmployee();

iter.hasNext()){

 birthdate.add(iter.next().getBirthdate()); }

Java

OCL

context Company inv:

 self.employee -> collect(birthdate) -> asSet()

OCL

Bag
(with duplicates)

Set
(without

duplicates)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Iterator-based operations
ForAll-/Exists-Operation

 ForAll checks, if all elements of a collection evaluate to true

 Example: self.employees -> forAll(age > 18)

 Nesting of forAll-Calls (Cartesian Product)

 Alternative: Use of multiple iterators

 Exists checks, if at least one element evaluates to true

 Beispiel: employees -> exists(e: Employee | e.isManager = true)

collection -> forAll(v : Type | booleanExp(v))

collection -> forAll(v | booleanExp(v))

collection -> forAll(booleanExp)

context Company inv:

self.employee->forAll (e1 | self.employee -> forAll (e2 |

 e1 <> e2 implies e1.svnr <> e2.svnr))

context Company inv:

self.employee -> forAll (e1, e2 | e1 <> e2 implies e1.svnr <> e2.svnr))

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Iterator-based operations
Iterate-Operation

 Iterate is the generic form of all iterator-based operations

 Syntax
 collection -> iterate(elem : Typ; acc : Typ =
 <initExp> | exp(elem, acc))

 Variable elem is a typed Iterator

 Variable acc is a typed Accumulator
 Gets assigned initial value initExp

 exp(elem, acc) is a function to calculate acc

 Example
collection -> collect(x : T | x.property)

-- semantically equivalent to:

collection -> iterate(x : T; acc : T2 = Bag{} | acc -> including(x.property))

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

 Semantic of the Iterate-Operator

 Example
 Set{1, 2, 3} -> iterate(i:Integer, a:Integer=0 | a+i)

 Result: 6

Iterator-based operations
Iterate-Operator

collection -> iterate(x : T; acc : T2 = value | acc -> u(acc, x)

iterate (coll : T, acc : T2 = value){

 acc=value;

 for(Iterator<T> iter =

coll.getElements(); iter.hasNext();){

 T elem = iter.next();

 acc = u(elem, acc);

 }

}

Java

OCL

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Tool Support

 Wishlist
 Syntactic analysis: Editor support

 Validation of logical consistency (Unambiguous)

 Dynamic validation of invariants

 Dynamic validation of Pre-/Post-conditions

 Code generation and test automation

 Today
 UML tools provide OCL editors

 MDA tools provide code generation of OCL expressions

 Meta modeling platforms provide the opportunity to define OCL
Constraints for meta models.

 The editor should dynamically check constraints or restrict modeling,
respectively.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL Tools

 Some OCL-parsers, which check the syntax of OCL-constraints and
apply them to the models, are for free.
 IBM Parser

 Dresden OCL Toolkit 2.0
 Generation of Java code out of OCL-constraints

 Possible integration with ArgoUML

 USE: UML-based Specification Environment
 http://sourceforge.net/projects/useocl

 OCL frameworks are originated in the areas of EMF and the UML2
project of Eclipse
 Octopus

 Frauenhofer Toolkit

 OSLO

 EMFT OCL-Framework/Query-Framework

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

OCL Tools

 EMFT OCL-Framework

 Based on EMF

 OCL-API – Enables the use of

OCL in Java programs

 Interactive OCL Console –

Enables the definition and

evaluation of OCL-constraints

 EMFT Query-Framework

 Goal: SQL-like query of model

information

 select exp from exp where

oclExp

Context

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 1: Navigation (1)

 self.persons {Person p1, Person p2}

 self.persons.name {jack, lisa}

 self.persons.alter {30, 22}

Person

name: String

age: int

parent

children

1
0..*

p1:Person

name = „jack“

age = 30

Administration

2

*

persons

p2:Person

name = „lisa“

age = 22

v:Administration

context Administration:

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 1: Navigation (2)

 self.persons.children {{p3, p4}, {p3, p4}}

 self.persons.children.parent {{{p1, p2}, {p1, p2}}, ...}

 self.persons.car.type {{“audi“}}

Person

name: String

age: int

parent

children

1
0..*

p1:Person

name = „jack“

age = 30

Administration

2

*

persons

p2:Person

name = „lisa“

age = 22

v:Administration

context Administration:

p3:Person

name = „mick“

age = 1

p4:Person

name = „paul“

age = 2

Car
type: String

*

1

a1:Car

type=„audi“

Kinder: Eltern:

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 2: Invariant (1)

context Person

inv: self.children->forAll(k : Person | k.age

< self.age-15)

Person

name: String

age: int

parent

children

2

0..*

Constraint: A child is at least 15 years

younger than his parents.

p1:Person

name = „jack“

age = 30

p2:Person

name = „lisa“

age = 22

p3:Person

name = „mick“

age = 1

p4:Person

name = „paul“

age = 17

Children: Parents:

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 2: Invariant (2)

context Administration

inv uniqueRegnr :

 self.persons -> select(e : Person| e.oclIsTypeOf(Student))

 -> forAll(e1 |

 self.persons -> select(e : Person | e.oclIsTypeOf(Student))

 -> forAll(e2 |

 e1 <> e2 implies e1.oclAsType(Student).regnr <>

 e2.oclAsType(Student).regnr))

Person

name: String

age: int

1 Administration *

persons

Student

regnr: int

Constraint: The registration number

of a student has to be unique

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 2: Invariant (2) cont.

context Administration

inv uniqueRegnr :

 self.persons -> select(e : Person| e.oclIsTypeOf(Student))

 -> forAll(e1, e1 | e1 <> e2 implies

 e1.oclAsType(Student).regnr <>

 e2.oclAsType(Student).regnr)

)

Person

name: String

age: int

1 Administration *

persons

Student

regnr: int

Constraint: The registration number

of a student has to be unique.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 2: Invariant (2) cont.

context Student

inv uniqueRegnr :

 Student.allInstances() -> forAll(e1, e1 | e1 <> e2 implies

 e1.oclAsType(Student).regnr <>

 e2.oclAsType(Student).regnr))

Person

name: String

age: int

Student

regnr: int

Constraint: The registration number

of a student has to be unique.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 3: Inherited attribute

context Person::familyallowance

derive: self.age < 18 or

 (self.age < 27 and self.studies -> size() > 0)

Person

name: String

age: int

/familyallowance:

 boolean

Study
*

*

A Person obtains family allowance, if he/she is younger than 18 years,

or if he/she is studying and younger than 27 years old.

studies

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 4: Definitions

context Person

def: relative: Set(Person) = children-> union(relative)

inv: self.relative -> excludes(self)

Person

name: String

age: int

parent

children

2

0..*

Constraint: A Person is not a relative

of itself

p1:Person

name = „jack“

age = 30

p2:Person

name = „lisa“

age = 22

p3:Person

name = „mick“

age = 1

p4:Person

name = „paul“

age = 17

Children: Parents:

kind

Assumption: Fixed-point semantic, otherwise if then else required

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 5: equivalent OCL-formulations (1)

 (self.children->select(k | k = self))->size() = 0

 The Number of children for each person „self“, where the children are the person

„self“, have to be 0.

 (self.children->select(k | k = self))->isEmpty()

 The set of children for each person „self, where the children are the person
„self“, has to be empty.

Person

name: String

parent

children

2

0..*

Constrain: A person is not its own child

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 5: equivalent OCL-formulations (2)

 not self.children->includes(self)

 It is not possible, that the set of children of each person „self“ contains the

person „self“.

 self.children->excludes(self)

 The set of children of each person „self“ cannot contain

„self“.

Person

name: String

parent

children

2

0..*

Constrain: A person is not its own child

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 5: equivalent OCL-formulations (3)

 Set{self}->intersection(self.children)->isEmpty()

 The intersection between the one element set, which only includes one person

„self“ and the set of the children of „self“ has to be empty.

 (self.children->reject(k | k <> self))->isEmpty()

 The set of children for each person „self“, for whome does not apply, that they

are not equal to the person „self“, has to be empty.

Person

name: String

parent

children

2

0..*

Constrain: A person is not its own child

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example 5: equivalent OCL-formulations (4)

 self.children->forAll(k | k <> self)

 Each child of the person „self“ is not the person „self“.

 not self.children->exists(k | k = self)

 There is no child for each person „self“, which is the person „self“

Person

name: String

parent

children

2

0..*

Constrain: A person is not its own child

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Outlook
ATLAS Transformation Language (ATL)

 Query-part (from) – What has to be transformed?

 When selecting the relevant model elements

 additionally to the type indication, constraints on attributes and

association ends are required,

 which are specified in OCL.

 Generation-part(to) – What has to be created?

 When creating the target structure

 additionally to the type information, derived information is required,

 which are calculated in OCL.

 rule Property2Attribute {

 from p : UML!Property (

 p.association.oclIsUndefined()

)

 to a : ER!Attribute (

 name <- p.name.toUpper(),

 entity <- p.owningClass

)

}

OCL-expression

Transformation rules

Query-part

Generation-part

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

References on OCL

 Literature
 Object Constraint Language Specification, Version 2.0

 http://www.omg.org/technology/documents/formal/ocl.htm

 Jos Warmer, Anneke Kleppe: The Object Constraint Language -
Second Edition, Addison Wesley (2003)

 Martin Hitz et al: UML@Work, d.punkt, 2. Auflage (2003)

 Tools
 OSLO - http://oslo-project.berlios.de

 Octopus - http://octopus.sourceforge.net

 Dresden OCL Toolkit - http://dresden-ocl.sourceforge.net

 EMF OCL - http://www.eclipse.org/modeling/mdt/?project=ocl

 USE - http://sourceforge.net/projects/useocl

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE

ENGINEERING IN PRACTICE
Marco Brambilla,

Jordi Cabot,

Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

www.morganclaypool.com

or buy it at: www.amazon.com

http://www.mdse-book.com
http://www.mdse-book.com
http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com/gp/product/1608458822/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1608458822&linkCode=as2&tag=marbramoddris-20

