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Anatomy of a Modeling Language 

• Abstract syntax: Describes the structure of the language 

and the way the different primitives can be combined 

together, independently of any particular representation or 

encoding. 

• Concrete syntax: Describes specific representations of 

the modeling language, covering encoding and/or visual 

appearance. 

• Semantics: Describing the meaning of the elements 

defined in the language and the meaning of the different 

ways of combining them. 
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Anatomy of a Modeling Language 
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DSL vs. GPL 

First distinction is between  

• General Purpose languages (GPL or GPML) and 

• Domain Specific languages (DSL or DSML)  

(already discussed in Chapter 2) 

 

• We take UML as an exemplary case of GPL 
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UML –  

UNIFIED MODELING 

LANGUAGE 
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Overview of UML Diagrams 

• There is no official UML diagram overview or diagram 

grouping. 

• Although UML models and the repository underlying all 

diagrams are defined in UML, the definition of diagrams 

(i.e., special views of the repository) are relatively free. 
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Overview of UML Diagrams 

• In UML a diagram is actually more than a 
collection of notational elements. 

• For example, the package diagram describes the 
package symbol, the merge relationship, and so 
on. 

• A class diagram describes a class, the 
association, and so on. 

• Nevertheless, we can actually represent classes 
and packages together in one diagram. 
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Overview of the UML diagrams 
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UML Design practices 

• Pattern-based design: A set of very well-known design 

patterns, defined by the so-called Gang of Four 

• Using several integrated and orthogonal models 

together: UML comprises a suite of diagrams that share 

some symbols and allow cross-referencing  

• Modeling at different levels of detail: UML allows 

eliding details in diagrams when needed. Choose the right 

quantity of information to include in diagrams 

• Extensibility: UML provides a good set of extensibility 

features which allow to design customized modeling 

languages if needed 
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Class vs. instance in diagrams 
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Basic notation for diagrams 
Diagram area 

Diagram header 

[<Diagram type>]<Name>[<Parameter>] 
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Example of a use case diagram 

Use case  Booking use cases 

Branch 
employee

Book vehicle
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UML STRUCTURE 

DIAGRAMS  

(OR STATIC DIAGRAMS) 
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Structure diagrams (1) 

Emphasize the static description of the elements that 

must be present in the system being modeled: 

1. The conceptual items of interest for the system 

• Class diagram: Describes the structure of a system by 

showing the classes of the systems, their attributes, and 

the relationships among the classes 

• Composite structure diagram: Describes the internal 

structure of a class and the collaborations 

• Object diagram: A view of the structure of example 

instances of modeled concepts 
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Structure diagrams (2) 

2. The architectural organization and structure of the 

system. 

• Package diagram: Describes how a system is split up 

into logical groupings 

• Component diagram: Describes how a software system 

is split up into components 

• Object diagram: A view of the structure of example 

instances of modeled concepts 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Class diagrams basic concepts 

• The basis of UML is described in the Kernel package of 

the UML metamodel. 

• Most class models have the superclass Element and has 

the ability to own other elements, shown by a composition 

relationship in the metamodel. 

• That's the only ability an element has. 
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Class diagram example 

Document

departurePlace
arrivalPlace
isShipped

Shipment

#isShipped(Shipment)
+sendInvoice()
+Invoice(date)

-invoiceNumber
-signature

Invoice

Product

isShipped() checks the status of 
the Shipment document

0..*

1..*
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Component Diagram example 
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The basic concepts in the UML 

metamodel for class diagrams 
Element

*

0..1

+/ownedElement

* {union}

+/owner

0..1 {union}

Comment

0..1 *

+owningElement

0..1{subsets owner}

+ownedComment

*{subsets ownedElement}

DirectedRelationship

Comment

body : String

Relationship
Element

1..*

+/target

1..*{union,

subsets relatedElement}

1..*

+/source

1..*{union,

subsets relatedElement}

*

+annotatedElement

*
1..*

+/relatedElement

1..*{union}
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Named elements 

• Def. A named element is an element that can 
have a name and a defined visibility (public, 
private, protected, package): 
• +=public 

• -=private 

• #=protected 

• ~=package 

• The name of the element and its visibility are 
optional. 
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Multiplicities 

• A multiplicity element is the definition of an interval of 
positive integers to specify allowable cardinalities. 

• A cardinality is a concrete number of elements in a set. 

• A multiplicity element is often simply called multiplicity; 
the two terms are synonymous. 
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Example Multipicity & Cardinality 

Customer Bookings

**

+bookings
Class model 

:Kunde 

r2:Bookings 

r2:Bookings 

r2:Bookings 

Object model 

Multiplicity=0..* 

Cardinality=3 
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UML BEHAVIOURAL OR 

DYNAMIC DIAGRAMS 
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UML Behavioural Diagrams (1) 

• Use case diagram: Describes the functionality provided 

by a system in terms of actors external to the system and 

their goals in using the system 

• Activity diagram: Describes the step-by-step workflows 

of activities to be performed in a system for reaching a 

specific goal 

• State machine diagram (or statechart): Describes the 

states and state transitions of the system, of a subsystem, 

or of one specific object. 
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UML Behavioural Diagrams (2): 

Interaction diagrams 
A subset of behavior diagrams, emphasize the flow of 
control and data among the elements of the system. 

• Sequence diagram: Shows how objects communicate 
with each other in terms of a temporal sequence of 
messages 

• Communication or collaboration diagram: Shows the 
interactions between objects or classes in terms of links 
and messages that flow through the links 

• Interaction overview diagram: Provides an overview in 
which the nodes represent interaction diagrams 

• Timing diagrams: A specific type of interaction diagram 
where the focus is on timing constraints 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Activity diagram example 
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State Diagram example 

Not shipped Partially Shipped

Invoiced

shipping()

return()

shipping() / [not last item]

invoice() Completely 

Shipped

shipping() 

/ [last item]
return()
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Sequence diagram example 

:Invoice

isShipped()

getProductDetails()

productDetails

shipmentStatus

Loop

[for each Product]

print()

:Shipment :Invoice
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Collaboration diagram example 

:Invoice :Shipment

:Product

Customer

1. Print 

invoice 2. isShipped()

3. getProductDetails()

:Product
:Product
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UML EXTENSIBILITY 
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Extensibility: Stereotype definition 

• Stereotypes are formal extensions of existing 

model elements within the UML metamodel, that 

is, metamodel extensions. 

• The modeling element is directly influenced by 

the semantics defined by the extension. 

• Rather than introducing a new model element to 

the metamodel, stereotypes add semantics to 

an existing model element. 
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Multiple stereotyping 

• Several stereotypes can be used to classify one 

single modeling element. 

• Even the visual representation of an element 

can be influenced by allocating stereotypes. 

• Moreover, stereotypes can be added to 

attributes, operations and relationships. 

• Further, stereotypes can have attributes to store 

additional information. 
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Stereotypes Notation 

• A stereotype is placed before or above the element name 

and enclosed in guillemets (<<,>>). 

• Important: not every ocurrence of this notation means 

that you are looking at a stereotype. Keywords 

predefined in UML are also enclosed in guillemets. 
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UML Extensibility: profile example 
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DOMAIN-SPECIFIC 

LANGUAGES 
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Principles for Domain Specific Languages  

• The language must provide good abstractions to the 

developer, must be intuitive, and make life easier, not harder 

• The language must not depend on one-man expertise for its 

adoption and usage. Its definition must be shared and agreed 

upon 

• The language must evolve and must be kept updated based 

on the user and context needs, otherwise it is doomed to die. 

• The language must come together with supporting tools and 

methods  

• The language should be open for extensions and closed for 

modifications (open-close principle) 
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Classification of DSLs (1): FOCUS. 

Horizontal vs. Vertical 

• Vertical DSLs aim at a specific industry or field.  

• Examples: configuration languages for home automation 
systems, modeling languages for biological experiments, 
analysis languages for financial applications.  

 

• Horizontal DSLs have a broader applicability and their 
technical and cover concepts that apply across a large set 
of fields. They may refer to a specific technology but not 
to a specific industry. 

• Examples: SQL, Flex, WebML. 
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Classification of DSLs (2): STYLE. 

Declarative vs. Imperative  

• Declarative DSLs: specification paradigm that expresses the 

logic of a computation without describing its control flow.  

• The language defines what the program should accomplish, 

rather than describing how to accomplish it.  

• Examples Web service choreography, SQL.  

 

• Imperative DSLs: define an executable algorithm that states 

the steps and control flow that needs to be followed. 

• Examples: service orchestrations (start-to-end flows), BPMN 

process diagrams, programming languages like Java or C/C++. 
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Classification of DSLs (3): NOTATION. 

Graphical vs. Textual 

• Graphical DSLs: the outcomes of the development are 

visual models and the development primitives are 

graphical items such as blocks, arrows and edges, 

containers, symbols, and so on. 

 

• Textual DSLs comprise several categories, including 

XML-based notations, structured text notations, textual 

configuration files, and so on. 
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Classification of DSLs (4): INTERNALITY. 

Internal vs. External 

• External DSLs have their own custom syntax, with a full 

parser and self-standing, independent 

models/programs.  

 

• Internal DSLs consist in using a host language and give 

it the feel of a particular domain or objective, either by 

embedding pieces of the DSL in the host language or by 

providing abstractions, structures, or functions upon it. 
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Classification of DSLs (5): EXECUTABILITY. 

Model Interpretation vs. Code Generation 

• Model interpretation: reading and executing the DSL 

script at runtime one statement at a time, exactly as 

programming languages interpreters do.  

 

• Code-generation: applying a complete model-to-text 

(M2T) transformation at deployment time, thus producing 

an executable application, as compilers do for 

programming languages.  

 

• See Chapter 2 for model executability details. 
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DSL example (1): BPMN process model 

• Graphical, external, imperative, horizontal DSL for 

specifying business processes 
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DSL example (2): WebML hypertext 

model 
• Declarative, graphical, horizontal DSL for modeling Web 

navigation Uis. Supporting tool WebRatio applies a full 
code generation approach for executing the models. 

 

 

 

 

 

 

 

 
• See also: www.webml.org 
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DSL Example (3): IFML by OMG 

• Interaction Flow Modeling Language 

• Defines content and navigation of user interfaces 

 

 

 

 

 

 

 

 

• See also: http://www.ifml.org   

  and IFML book: http://amzn.to/1mcgYuo  

CategoryList ProductList 

     «ParameterBindingGroup» 

SelectedCategory  aCategory 

«window» Products «window» Categories 

ProductDetails 

    «ParameterBindingGroup» 

SelectedProduct  aProduct 

«List» «List» «Details»  SelectCategory SelectProduct 

http://www.ifml.org
http://amzn.to/1mcgYuo
http://amzn.to/1mcgYuo
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DSL example (4): VHDL specs 

• Textual, external, declarative, vertical DSL for specifying the 
behaviour of electronic components. 

• Example: definition of a Multiplexer in VHDL 

 

 

 

 

 

• Multiplexer (MUX): electronic component that selects one of 
several analog or digital input signals and forwards the 
selected input into a single output line.  

• See more at: http://en.wikipedia.org/wiki/Multiplexer 
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DSL Example (4): VHDL Cont.d 

Alternative representation of the multiplexer, according to 

different notations (which could be seen as DSLs 

themselves):  

• Electronic block diagram, truth table, output boolean 

expression 
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OCL – OBJECT 

CONSTRAINT LANGUAGE 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

OCL Topics 

 Introduction 

OCL Core Language 

OCL Standard Library 

 Tool Support 

 Examples 
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Motivation 

Graphical modeling languages are generally not able to 

describe all facets of a problem description 

 MOF, UML, ER, … 

 

 Special constraints are often (if at all) added to the 

diagrams in natural language 

 Often ambiguous 

 Cannot be validated automatically 

 No automatic code generation 

 

Constraint definition also crucial in the definition of new 

modeling languages (DSLs). 
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Motivation 

 Example 1 

Employee 

age: Integer 

age > 15 

Please no 

underaged  

employees! 

alter = 11 

e3:Employee e1:Employee 

age = 19 

e2:Employee 

age = 31  

Additional question: How do I get all Employees younger than 30 years old? 
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Motivation 

 Formal specification languages are the solution 
 Mostly based on set theory or predicate logic 

 Requires good mathematical understanding 

 Mostly used in the academic area, but hardly used in the industry 

 Hard to learn and hard to apply 

 Problems when to be used in big systems 

 

Object Constraint Language (OCL): Combination of 
modeling language and formal specification language 
 Formal, precise, unique 

 Intuitive syntax is key to large group of users 

 No programming language (no algorithms, no technological APIs, …) 

 Tool support: parser, constraint checker, code generation,… 
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OCL usage 

 Constraints in UML-models 
 Invariants for classes, interfaces, stereotypes, … 

 Pre- and postconditions for operations 

 Guards for messages and state transition 

 Specification of messages and signals 

 Calculation of derived attributes and association ends 

 

 Constraints in meta models  
 Invariants for Meta model classes 

 Rules for the definition of well-formedness of meta model 

 

 Query language for models  
 In analogy to SQL for DBMS, XPath and XQuery for XML 

 Used in transformation languages 
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OCL usage 

OCL field of application 
 Invariants   context C inv: I 

 Pre-/Postconditions  context C::op() : T 
    pre: P post: Q 

 Query operations  context C::op() : T body: e  

 Initial values  context C::p : T init: e 

 Derived attributes  context C::p : T derive: e 

 Attribute/operation definition context C def: p : T = e 

 

 

Caution: Side effects are not allowed! 
 Operation C::getAtt : String body: att allowed in OCL 

 Operation C::setAtt(arg) : T body: att = arg not allowed in 
OCL 
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OCL usage 

 Field of application of OCL in model driven engineering 

Formal definition of software 

systems (models) 

Language definition (meta models) – 

well-formedness of meta models 

Query language 

Model transformations 

Code generation 

Constraint language 

Invariants 

Invariants 

Pre-/Post-conditions 

Queries 
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OCL usage 

OCL-Types 

OCL-

Expressions 

Constraints 

Queries 

Transformations 

Standard 

OCL 

Usage of OCL in other 

languages 

Bsp: ATL, xPand, QVT 
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OCL usage 
How does OCL work? 

 Constraints are defined on the modeling level 
 Basis: Classes and their properties 

 Information of the object graph are queried 
 Represents system status, also called snapshot  

 Anaology to XML query languages  
 XPath/XQuery query XML-documents 

 Scripts are based on XML-schema information 

 

 Examples 

«instanceOf» 

«defined» 

 

context Person  

inv: self.age > 18 

OCL-Constraint 

Snapshot 

fs1:Driverlicense p1:Person a1:Car 

fs2:Driverlicense p2:Person a2:Car 
Age = 19 

Age = 16 

 

 «evaluated» 

Model  

Car Driverlicense Person 
age: Integer 
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Design of OCL 

 A context has to be assigned to each OCL-statement 

 Starting address – which model element is the OCL-statement defined for 

 Specifies which model elements can be reached using path expressions 

 The context is specified by the keyword context followed by the name of the 

model element (mostly class names) 

 The keyword self specifies the current instance, which will be evaluated by the 

invariant (context instance).  

 self can be omitted if the context instance is unique  

 

 Example: 
Employee 

age: Integer 

context Employee 

inv: self.age > 18 

context Employee 

inv: age > 18 

= 
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Design of OCL 

OCL can be specified in two different ways 

 As a comment directly in the class diagram  

(context described by connection) 

 Separate document file 

Microwave 

temperature : Integer 

status: State 

turnOn() 

turnOff() 

post: status=State::off 

post: status=State::on 

inv: self.temperature > 0 
«enumeration» 

State 

• on 

• off 

 

 

context Microwave :: turnOn() 

post: status = State::on 

Separate text document 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Types 

 OCL is a typed language 
 Each object, attribute, and result of an operation or navigation is assigned to a 

range of values (type) 

 

 Predefined types 
 Basic types 

 Simple types: Integer, Real, Boolean, String 

 OCL-specific types: AnyType, TupleType, InvalidType, … 

 Set-valued, parameterized Types 
 Abstract supertyp: Collection(T) 

 Set(T) – no duplicates 

 Bag(T) – duplicates allowed 

 Sequence(T) – Bag with ordered elements, association ends {ordered} 

 OrderedSet(T) – Set with ordered elements, association ends {ordered, unique} 

 

 Userdefined Types 
 Instances of Class in MOF and indirect instances of Classifier in UML are types 

 EnumerationType – user defined set of values for defining constants 
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Types 
Examples 

 Basic types 

 true, false : Boolean 

 -17, 0, 1, 2 : Integer 

 -17.89, 0.01, 3.14 : Real 

 “Hello World” : String 

 

 Set-valued, parameterized types 

 Set{ Set{1}, Set{2, 3} } : Set(Set(Integer)) 

 Bag{ 1, 2.0, 2, 3.0, 3.0, 3 } : Bag(Real) 

 Tuple{ x = 5, y = false } : Tuple{x: Integer, y : Boolean} 

 

 Userdefined types 

 Passenger : Class, Flight : Class, Provider : Interface 

 Status::started - enum Status {started, landed} 
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Types 
OCL meta model (extract) 

OCLType 

TupleType 

Signal 

ModelElementType 

Operation 

DataType 

PrimitiveType CollectionType 

MessageType AnyType VoidType InvalidType 

String Boolean Integer Real 

OrderedSetType SequenceType BagType SetType 
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Expressions 

 Each OCL expression is an indirect instance of OCLExpression 
 Calculated in certain environment – cf. context 

 Each OCL expression has a typed return value 

 OCL Constraint is an OCL expression with return value Boolean 

 

 Simple OCL expressions 
 LiteralExp, IfExp, LetExp, VariableExp, LoopExp 

 

 OCL expressions for querying model information 
 FeatureCallExp – abstract superclass 

 AttributeCallExp – querying attributes 

 AssociationEndCallExp – querying association ends 
 Using role names; if no role names are specified, lowercase class names have to be 

used (if unique) 

 AssociationClassCallExp – querying association class (only in UML) 

 OperationCallExp – Call of query operations 
 Calculate a value, but do not change the system state! 
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Expressions 

 Examples for LiteralExp, IfExp, VariableExp, AttributeCallExp  

 

 

 

 

 

 

 

 

 

 

 

 

 Abstract syntax of OCL is described as meta model 

 Mapping from abstract syntax to concrete syntax 
 IfExp -> if Expression then Expression else Expression endif  

 

let annualIncome : Real = self.monthlyIncome * 14 in 

if self.isUnemployed then 

  annualIncome < 8000 

else 

  annualIncome >= 8000 

endif 

IntegerLiteralExp VariableExp AttributeCallExp 

IfExp 

LetExp 
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Expressions 
OCL meta model (extract) 

IfExp LiteralExp 

FeatureCallExp 

TypedElement 

TypeExp 

IteratorExp IterateExp 

LetExp 

initExpression 

source 

body 

result 

iterator 

LiteralExp: CollectionLiteralExp, PrimitiveLiteralExp,  

                   TupleLiteralExp, EnumLiteralExp 

referredVariable LoopExp 

Variable 

VariableExp 

OCLExpression 

CallExp 
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Query of model information 

 Context instance 
 context Person 

 

 AttributeCallExp 
 self.age : int 

 

 OperationCallExp 
 Operations must not have side effects 

 Allowed: self.getAge() : int 

 Not allowed: self.setAge() 

 

 AssociationEndCallExp 
 Navigate to the opposite association end using role names 

 self.employer – Return value is of type Company 

 

 Navigation often results into a set of objects – Example 

 context Company 

 self.employees – Return value is of type Set (Person) 

 

Person 

age : int 

getAge() : int 

setAge() 

Company 
employees employer 
* 1 
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Query of model information  
Example 

Person 

age : int 

getAge() : int 

setAge() 

Company 
employees employer 
* 1 

context Company 

self.employees 

context Person 

self.employer 

context Company 

self.employees 

p2:Person 

age = 34 

c1:Company 

p3:Person 

age = 54 

p1:Person 

age = 22 

employees 

employer 

employees 

employees 

employer 

employer 

c1 : Company Set{p1,p2,p3} :  
Set(Person) 

p1:Person 

age = 34 

c1:Company 

employees 

employer 

Set{p1} :  
Set(Person) 
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Query of model information  
OCL meta model (extract) 

AttributeCallExp 

FeatureCallExp 

NavigationCallExp OperationCallExp 

AssociationEndCallExp AssociationClassCallExp 

Operation Attribute 

AssociationEnd AssociationClass 

1 1 

1 1 

Only in UML 
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OCL Library: Operations for OclAny  

 OclAny - Supertype of all other types in OCL 
 Operations are inherited by all other types. 

 Operations of OclAny (extract) 
 Receiving object is denoted by obj 

Operation Explanation of result 

=(obj2:OclAny):Boolean True, if obj2 and obj reference the same object 

oclIsTypeOf(type:OclType):Boolean 
True, if type is the type of obj 

 

oclIsKindOf(type:OclType): 

    Boolean 

True, if type is a direct or indirect supertype or the 

type of obj 

oclAsType(type:Ocltype): 

   Type 

 

 

The result is obj of type type, or undefined, if the 

current type of obj is not type or a direct or indirect 

subtype of it (casting) 
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Operations for OclAny 
Predefined environment for model types 

Person 

Student Professor 

OCLAny 

Exam Lecture 

OCLType 

instanceOf 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Operations for OclAny 

 oclIsKindOf vs. oclIsTypeOf 

Person 

Student Professor 

context Person 

self.oclIsKindOf(Person) : true 

self.oclIsTypeOf(Person) : true 

self.oclIsKindOf(Student) : false 

self.oclIsTypeOf(Student) : false 

  

context Student 

self.oclIsKindOf(Person) : true 

self.oclIsTypeOf(Person) : false 

self.oclIsKindOf(Student) : true 

self.oclIsTypeOf(Student) : true 

self.oclIsKindOf(Professor) : false 

self.oclIsTypeOf(Professor) : false 
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Operations for simple types 

 Predefined simple types 
 Integer {Z} 

 Real {R} 

 Boolean {true, false} 

 String {ASCII, Unicode} 

 

 Each simple type has predefined operations 
 

Simple type Predefined operations 

Integer *, +, -, /, abs(), … 

Real *, +, -, /, floor(), … 

Boolean and, or, xor, not, implies 

String concat(), size(), substring(), … 
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Operations for simple types 

 Syntax 

 v.operation(para1, para2, …) 

 Example: “bla”.concat(“bla”)  

 Operations without brackets (Infix notation) 

 Example: 1 + 2, true and false 

Signature Operation 

Integer X Integer  Integer {+, -, *} 

t1 X t2 Boolean {<,>,≤,≥}, t1, t2 typeOf {Integer or Real} 

Boolean X Boolean Boolean {and, or, xor, implies} 
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Operations for simple types 
Boolean operations - semantic 

 OCL is based on a  
three-valued (trivalent) logic 
 Expressions are mapped to the three 

values {true, false, undefined} 

 Semantic of the operations 
 M(I, exp)= I(exp), if exp not further resolvable 

 M(I, not exp)= ¬M (I, exp) 

 M(I,(exp1 and exp2)) = M(I, exp1)  M(I, exp2) 

 M(I,(exp1 or exp2)) = M(I, exp1)  M(I, exp2) 

 M(I,(exp1 implies exp2)) = M(I, exp1)  M(I, exp2) 
 

 Truth table: true(1), false (0),undefined (?) 

 

¬ 

0 1 

1 0 

? ? 

 0 1 ? 

0 0 0 0 

1 0 1 ? 

? 0 ? ? 

 0 1 ? 

0 0 1 ? 

1 1 1 1 

? ? 1 ? 

 0 1 ? 

0 1 1 1 

1 0 1 ? 

? ? 1 ? 

Undefined: Return value if an 

expression fails 

1. Access on the first element of  

an empty set 

2. Error during Type Casting 

3. … 
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Operations for simple types 
Boolean operations - semantic 

 Simple example for an undefined OCL expression  
 1/0 

 

Query if undefined– OCLAny.oclIsUndefined() 
  (1 / 0).oclIsUndefined() : true 

 

 Examples for the evaluation of Boolean operations 
 (1/0 = 0.0) and false : false 

 (1/0 = 0.0) or true : true 

 false implies (1.0 = 0.0) : true 

 (1/0 = 0.0) implies true : true 
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Operations for collections 

 Collection is an abstract supertype for all set types 
 Specification of the mutual operations 

 Set, Bag, Sequence, OrderedSet inherit these operations 

 Caution: Operations with a return value of a set-valued type 
create a new collection (no side effects) 

 Syntax: v -> op(…) – Example: {1, 2, 3} -> size() 

 

 Operations of collections (extract) 
 Receiving object is denoted by coll  

Operation Explanation of result 

size():Integer Number of elements in coll 

includes(obj:OclAny):Boolean True, if obj exists in coll 

isEmpty:Boolean True, if coll contains no elements 

sum:T 
Sum of all elements in coll  

Elements have to be of type Integer or Real 
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Operations for collections 

Model operations vs. OCL operations 

 Bottle  

 

isEmpty() : Boolean 
 

Container * 

content 

context Container 

inv: self.content -> first().isEmpty() 

context Container 

inv: self.content -> isEmpty() 

Operation isEmpty() 

always has to return true 

Container instances must 

not contain bottles 

OCL-Constraint Semantic 
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Operationen for Set/Bag  

 Set and Bag define additional operations 

 Generally based on theory of set concepts 
 

 Operations of Set (extract) 

 Receiving object is denoted by set 

 

 

 

 

 

 
 

 Operations of Bag (extract) 

 Receiving object is denoted by bag 

 

Operation Explanation of result 

union(set2:Set(T)):Set(T) Union of set and set2 

intersection(set2:Set(T)):Set(T) Intersection of set and set2 

difference(set2:Set(T)):Set() Difference set; elements of set, which do not consist in set2 

symmetricDifference(set2:Set(T)):

Set(T) 

Set of all elements, which are either in set or in set2, but do 

not exist in both sets at the same time 

Operation Explanation of result 

union(bag2:Bag(T)):Bag(T) Union of bag and bag2 

intersection(bag2:Bag(T)): Bag(T) Intersection of bag and bag2 

A∩B  

B A 

A\B  B\A  
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Operations for OrderedSet/Sequence 

 OrderedSet and Sequences define additional operations 
 Allow access or modification through an Index 

 

 Operations of OrderedSet (extract) 
 Receiving object is denoted by orderedSet 

 

 

 

 

 

 

 

 

 

 

 Operations of Sequence  
 Analogous to the operations of OrderedSet 

Operation Explanation of result 

first:T First element of orderedSet 

last:T Last element of orderedSet 

at(i:Integer):T Element on index i of orderedSet 

subOrderedSet(lower:Integer, 

  upper:Integer):OrderedSet(T) 

 

Subset of orderedSet, all elements of orderedSet including the 

element on position lower and the element on position upper 

insertAt(index:Integer,object:T) 

   :OrderedSet(T) 

Result is a copy of the orderedSet, including the element object 

at the position index 

0 1 2 3 … n 
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Iterator-based operations 

 OCL defines operations for Collections using Iterators 
 Expression Package: LoopExp 

 Projection of new Collections out of existing ones 

 Compact declarative specification instead of imperative algorithms 

 

 Predefined Operations  
 select(exp) : Collection 

 reject(exp) : Collection 

 collect(exp) : Collection 

 forAll(exp) : Boolean 

 exists(exp) : Boolean 

 isUnique(exp) : Boolean 

 

 iterate(…) – Iterate over all elements of a Collection 
 Generic operation 

 Predefined operations are defined with iterate(…) 
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Iterator-based operations 
Select-/Reject-Operation 

 Select and Reject return subsets of collections 
 Iterate over the complete collection and collect elements 

 Select 
 Result: Subset of collection, including elements where booleanExpr is 

true 

 

 
 

 Reject 
 Result: Subset of collection, including elements where booleanExpr is 

false 

 Just Syntactic Sugar, because each reject-Operation can be defined as a 
select-Operation with a negated expression 

 

collection -> select( v : Type | booleanExp(v) ) 

collection -> select( v | booleanExp(v) ) 

collection -> select( booleanExp ) 

collection-> reject(v : Type | booleanExp(v)) 

collection-> select(v : Type | not (booleanExp(v)) 

= 
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 Semantic of the Select-Operation 

 

Iterator-based operations 
Select-/Reject-Operation 

context Company inv: 

   self.employee -> select(e : Employee | e.age>50)  -> 

notEmpty() 

List persons<Person> = new List(); 

for ( Iterator<Person> iter = comp.getEmployee();  

iter.hasNext() ){ 

     Person p = iter.next(); 

     if ( p.age > 50 ){ 

          persons.add(p); 

     } 

} 

Java 

OCL 
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Iterator-based operations 
Collect-Operation 

 Collect-Operation returns a new collection from an existing one. It 

collects the Properties of the objects and not the objects itself. 

 Result of collect always Bag<T>.T defines the type of the property to be 

collected 

 

 

 

 

 Example 

 self.employees -> collect(age) – Return type: Bag(Integer) 

 Short notation for collect 

 self.employees.age 

 

collection -> collect( v : Type | exp(v) ) 

collection -> collect( v | exp(v) ) 

collection -> collect( exp ) 
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Iterator-based operations 
Collect-Operation 

 Semantic of the Collect-Operator 

 

 

 

 

 

 

 

 

 

 

 

 Use of asSet() to eliminate duplicates 

 

context Company inv: 

   self.employee -> collect(birthdate)   -> size() > 3 

List birthdate<Integer> = new List(); 

for ( Iterator<Person> iter = comp.getEmployee();  

iter.hasNext() ){ 

     birthdate.add(iter.next().getBirthdate()); } 

Java 

OCL 

context Company inv: 

   self.employee -> collect(birthdate)   -> asSet() 

OCL 

Bag  
(with duplicates) 

Set  
(without 

duplicates) 
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Iterator-based operations 
ForAll-/Exists-Operation 

 

 ForAll checks, if all elements of a collection evaluate to true 

 

 

 

 Example: self.employees -> forAll(age > 18) 

 

 Nesting of forAll-Calls (Cartesian Product) 
 

 

 
 

 Alternative: Use of multiple iterators 
    

 
 

 Exists checks, if at least one element evaluates to true 

 Beispiel: employees -> exists(e: Employee | e.isManager = true) 

collection -> forAll( v : Type | booleanExp(v) ) 

collection -> forAll( v | booleanExp(v) ) 

collection -> forAll( booleanExp ) 

context Company inv: 

self.employee->forAll (e1 | self.employee -> forAll (e2 | 

           e1 <> e2 implies e1.svnr <> e2.svnr)) 

context Company inv: 

self.employee -> forAll (e1, e2 | e1 <> e2 implies e1.svnr <> e2.svnr)) 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Iterator-based operations 
Iterate-Operation 

 Iterate is the generic form of all iterator-based operations 

 

 Syntax  
      collection -> iterate( elem : Typ;  acc : Typ =  
       <initExp> | exp(elem, acc) ) 

 Variable elem is a typed Iterator  

 Variable acc is a typed Accumulator 
 Gets assigned initial value initExp 

 exp(elem, acc) is a function to calculate acc 

 

 Example 
collection -> collect( x : T | x.property ) 

 

-- semantically equivalent to: 

 

collection -> iterate( x : T; acc : T2 = Bag{} | acc -> including(x.property) ) 
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 Semantic of the Iterate-Operator 

 

 

 

 

 

 

 

 

 

 

 

 Example 
 Set{1, 2, 3} -> iterate(i:Integer, a:Integer=0 | a+i) 

 Result: 6 

 

Iterator-based operations 
Iterate-Operator 

collection -> iterate(x : T; acc : T2 = value | acc -> u(acc, x) 

iterate (coll : T, acc : T2 = value){ 

      acc=value; 

      for( Iterator<T> iter = 

coll.getElements(); iter.hasNext(); ){ 

           T elem = iter.next(); 

           acc = u(elem, acc);  

      } 

} 

Java 

OCL 
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Tool Support 

 Wishlist 
 Syntactic analysis: Editor support 

 Validation of logical consistency (Unambiguous) 

 Dynamic validation of invariants 

 Dynamic validation of Pre-/Post-conditions 

 Code generation and test automation 

 

 Today 
 UML tools provide OCL editors 

 MDA tools provide code generation of OCL expressions 

 Meta modeling platforms provide the opportunity to define OCL 
Constraints for meta models. 

 The editor should dynamically check constraints or restrict modeling, 
respectively. 
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OCL Tools 

 Some OCL-parsers, which check the syntax of OCL-constraints and 
apply them to the models, are for free.  
 IBM Parser 

 

 Dresden OCL Toolkit 2.0 
 Generation of Java code out of OCL-constraints 

 Possible integration with ArgoUML 

 

 USE: UML-based Specification Environment 
 http://sourceforge.net/projects/useocl 

 

 OCL frameworks are originated in the areas of EMF and the UML2 
project of Eclipse 
 Octopus 

 Frauenhofer Toolkit 

 OSLO 

 EMFT OCL-Framework/Query-Framework  
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OCL Tools 

 EMFT OCL-Framework 

 Based on EMF 

 OCL-API – Enables the use of 

OCL in Java programs 

 Interactive OCL Console – 

Enables the definition and 

evaluation of OCL-constraints 

 

 EMFT Query-Framework 

 Goal: SQL-like query of model 

information 

 select exp from exp where 

oclExp 

Context 
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Example 1: Navigation (1) 

 self.persons    {Person p1, Person p2} 

 self.persons.name    {jack, lisa} 

 self.persons.alter   {30, 22} 

Person 

name: String 

age: int  

parent 

children 

1 
0..* 

p1:Person 

name = „jack“ 

age = 30 

Administration 

2 

* 

persons 

p2:Person 

name = „lisa“ 

age = 22 

v:Administration 

context Administration: 
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Example 1: Navigation (2) 

 self.persons.children   {{p3, p4}, {p3, p4}} 

 self.persons.children.parent   {{{p1, p2}, {p1, p2}}, ...} 

 self.persons.car.type   {{“audi“}} 

Person 

name: String 

age: int  

parent 

children 

1 
0..* 

p1:Person 

name = „jack“ 

age = 30 

Administration 

2 

* 

persons 

p2:Person 

name = „lisa“ 

age = 22 

v:Administration 

context Administration: 

p3:Person 

name = „mick“ 

age = 1 

p4:Person 

name = „paul“ 

age = 2 

Car 
type: String 

* 

1 

a1:Car 

type=„audi“ 

Kinder: Eltern: 



Marco Brambilla, Jordi Cabot, Manuel Wimmer.  

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012. 

Example 2: Invariant (1) 

 

 

context Person 

inv: self.children->forAll(k : Person | k.age 

< self.age-15) 

Person 

name: String 

age: int 

parent 

children 

2 

0..* 

Constraint: A child is at least 15 years 

younger than his parents.  

p1:Person 

name = „jack“ 

age = 30 

p2:Person 

name = „lisa“ 

age = 22 

p3:Person 

name = „mick“ 

age = 1 

p4:Person 

name = „paul“ 

age = 17 

Children: Parents: 
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Example 2: Invariant (2) 

context Administration 

inv uniqueRegnr :  

 self.persons -> select(e : Person| e.oclIsTypeOf(Student)) 

   -> forAll(e1 |  

  self.persons -> select(e : Person | e.oclIsTypeOf(Student))  

    -> forAll(e2 |  

 e1 <> e2 implies  e1.oclAsType(Student).regnr  <>  

    e2.oclAsType(Student).regnr)) 

 

Person 

name: String 

age: int  

1 Administration * 

persons 

Student 

regnr: int 

Constraint: The registration number 

of a student has to be unique 
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Example 2: Invariant (2) cont. 

context Administration 

inv uniqueRegnr :  

 self.persons -> select(e : Person| e.oclIsTypeOf(Student)) 

 -> forAll(e1, e1 | e1 <> e2 implies   

 e1.oclAsType(Student).regnr <> 

 e2.oclAsType(Student).regnr) 

  ) 

 

Person 

name: String 

age: int  

1 Administration * 

persons 

Student 

regnr: int 

Constraint: The registration number 

of a student has to be unique. 
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Example 2: Invariant (2) cont. 

context Student 

inv uniqueRegnr :  

 Student.allInstances() -> forAll(e1, e1 | e1 <> e2 implies 

 e1.oclAsType(Student).regnr <> 

 e2.oclAsType(Student).regnr)) 

 

Person 

name: String 

age: int  

Student 

regnr: int 

Constraint: The registration number 

of a student has to be unique. 
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Example 3: Inherited attribute 

context Person::familyallowance 

derive: self.age < 18 or  

  (self.age < 27 and self.studies -> size() > 0)  

Person 

name: String 

age: int 

/familyallowance: 

 boolean 

Study 
* 

* 

A Person obtains family allowance, if he/she is younger than 18 years,  

or if he/she is studying and younger than 27 years old.  

studies 
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Example 4: Definitions 

context Person 

def: relative: Set(Person) = children-> union(relative) 

inv: self.relative -> excludes(self)  

Person 

name: String 

age: int 

parent 

children 

2 

0..* 

Constraint: A Person is not a relative 

of itself 

p1:Person 

name = „jack“ 

age = 30 

p2:Person 

name = „lisa“ 

age = 22 

p3:Person 

name = „mick“ 

age = 1 

p4:Person 

name = „paul“ 

age = 17 

Children: Parents: 

kind 

 

Assumption: Fixed-point semantic, otherwise if then else required 
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Example 5: equivalent OCL-formulations (1) 

 (self.children->select(k | k = self))->size() = 0 

 The Number of children for each person „self“, where the children are the person 

„self“, have to be 0. 

 

 (self.children->select(k | k = self))->isEmpty() 

 The set of children for each person „self, where the children are the person 
„self“, has to be empty. 

Person 

name: String 

parent 

children 

2 

0..* 

Constrain: A person is not its own child 
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Example 5: equivalent OCL-formulations (2) 

 not self.children->includes(self) 

  It is not possible, that the set of children of each person „self“ contains the 

person „self“. 

 

 self.children->excludes(self) 

 The set of children of each person „self“ cannot contain 

„self“. 

Person 

name: String 

parent 

children 

2 

0..* 

Constrain: A person is not its own child 
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Example 5: equivalent OCL-formulations (3) 

 Set{self}->intersection(self.children)->isEmpty() 

  The intersection between the one element set, which only includes one person 

„self“ and the set of the children of „self“ has to be empty. 

 

 (self.children->reject(k | k <> self))->isEmpty() 

  The set of children for each person „self“, for whome does not apply, that they 

are not equal to the person „self“, has to be empty.  

Person 

name: String 

parent 

children 

2 

0..* 

Constrain: A person is not its own child 
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Example 5: equivalent OCL-formulations (4) 

 self.children->forAll(k | k <> self) 

  Each child of the person „self“ is not the person „self“. 
 

 not self.children->exists(k | k = self) 

  There is no child for each person „self“, which is the person „self“ 

Person 

name: String 

parent 

children 

2 

0..* 

Constrain: A person is not its own child 
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Outlook 
ATLAS Transformation Language (ATL) 

 Query-part (from) – What has to be transformed? 

 When selecting the relevant model elements 

 additionally to the type indication, constraints on attributes and 

association ends are required, 

 which are specified in OCL. 

 Generation-part(to) – What has to be created? 

 When creating the target structure 

 additionally to the type information, derived information is required, 

 which are calculated in OCL. 

 rule Property2Attribute { 

   from p : UML!Property (          

      p.association.oclIsUndefined() 

   ) 

   to a : ER!Attribute ( 

        name <- p.name.toUpper(), 

        entity <- p.owningClass 

   ) 

} 

OCL-expression 

Transformation rules 

Query-part 

Generation-part 
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