
Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MANAGING MODELS

Chapter #10

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Why Model managing?

 In MDE everything is a model but as important as that, no

model is an island

 All modeling artefacts in a MDE project are interrelated.

These relationships must be properly managed during the

project lifecycle

Requirements

Use Case

Class Diagram

Java Project

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Content

 Model Interchange

 Model Persistence

 Model Comparison

 Model Versioning

 Model Co-Evolution

 Global Model Management

 Model Quality

 Collaborative Modeling

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MODEL INTERCHANGE

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Once, Open Everywhere

 There’s a clear need to be able to exchange models among
different modeling tools
 In a perfect world, you’d be able to choose ToolA for specifying model,

ToolB to check its quality, ToolC to execute it….

 We are still far away from this goal

 Solution attempt: XMI (XML Metadata Interchange), a standard
adopted by OMG for serializing and exchanging UML and MOF
models

 But each tools seems to understand the standard in a different
manner

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

XMI example
(Simplified and partial versions of the actual XMI files)

Employee
WorksIn 1..*

- name : String

Department

- name : String
1

<packagedElement xmi:type="uml:Class" xmi:id="c001"

name="Employee">

<ownedAttribute xmi:id="a001" name="name"/>

</packagedElement>

<packagedElement xmi:type="uml:PrimitiveType" xmi:id=" t001"

name="String "/>

<packagedElement xmi:type="uml:Class" xmi:id="c002"

name="Department">

<ownedAttribute xmi:id="a002" name="name" type="t001"/>

</packagedElement>

<packagedElement xmi:type="uml:Association" xmi:id="as001"

name="WorksIn“ memberEnd="e001 e002">

<ownedEnd xmi:id="e001" type="c002" association="as001"/>

<ownedEnd xmi:id="e002" name="" type="c001" association=

"as001">

<upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="un001"

value=""/>

</ownedEnd>

</packagedElement>

<UML:Class xmi.id = 'c001'

name = 'Employee' visibility = 'public' isSpecification =

'false' isRoot = 'false'

isLeaf = 'false' isAbstract = 'false' isActive = 'false'>

<UML:Classifier.feature>

<UML:Attribute xmi.id = 'a001'

name = 'name ' visibility = 'public' isSpecification =

'false‘ ownerScope = 'instance' changeability =

'changeable' targetScope = 'instance'>

<UML:StructuralFeature.multiplicity>

<UML:Multiplicity xmi.id = 'm001'>

<UML:Multiplicity.range>

<UML:MultiplicityRange xmi.id = 'mr001 '

lower = '1' upper = '1'/>

</UML:Multiplicity.range>

</UML:Multiplicity>

</UML:StructuralFeature.multiplicity>

</UML:Class>

ECLIPSE ArgoUML

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Once, Open Everywhere
Recent advances

 Model Interchange Working Group3 (MIWG) to enable the

assessment of model interchange capability of modeling

tools by comparing the vendor XMI exports for a test suite

 The new Diagram Definition standard will allow to exchange

not only the modeling content but also the graphical layout

of the models

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MODEL PERSISTENCE

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Persistence

 Typically models are serialized in plain files, following the

previous XMI format or any other proprietary XML format

 Doesn’t work well with large models

 Scalability issues

 Loading the whole model in memory may not be an option

 Random access strategies plus lazy loading (i.e., loading on

demand) are needed

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Persistence
Alternatives

 CDO (Connected Data Objects) Model Repository

 Run-time persistence framework optimized for scalable query and

transactional support for large object graphs.

 Back-ends: object, NoSQL, and relational databases.

 For relational databases, CDO relies on Teneo6, a Model-Relational

mapping and runtime database persistence

 Pure NoSQL solutions: Morsa and MongoEMF. Both use

MongoDB as backend.

 Newer alternatives aim at using the Cloud as model

 storage solution

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MODEL COMPARISON

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Comparison

 Comparing two models is a key operation in many model-

management operations like model versioning

 Goal of model comparison is to identify the set of differences

between two models

 These differences are usually represented as a model

themselves, called a difference model

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Comparison: Model matching
Phase 1 of a model comparison process

 Identify the common elements in the two models

 How do we establish which elements have the same identity?

 Static identity: explicit id’s annotating the elements

 Signature identity: Identity based on the model element features (i.e.,

name, contained elements,…)

 Identity can be a probabilistic function (similarity matching)

 Works better if users redefine the concept of matching for

specific DSLs (so that their specific semantic can be taken into

account)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Comparison: Model differencing
Phase 2 of a model comparison process

 Matched elements are searched for differences

 A difference corresponds to an atomic add / delete / update /

move operation executed on one of the elements

 These differences are collected and stored in the difference

model

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Comparison tools

 EMF Compare
 Most popular one

 Generic comparison facilities for any kind of EMF model

 Differences can be exported as a model patch

 SiDiff
 Mainly similarity-based matching

 Adaptable to any graph-like model

 Epsilon Comparison Language
 Includes a DSL to enable the implementation of specialized higher-level

changes

 With it, high-level changes such as refactorings may be also detected

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MODEL VERSIONING

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Versioning

 Programmers can’t live without version control systems like

SVN or GIT. Designers need the same for models.

 VCSs help detect, manage and resolve conflicts arising

when merging models.

Current VCSs are text-based. Using them to merge models

may result in inconsistent results due to the graph-based

semantics of models.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Versioning
Example

A B

1. <State id=“S1”, name = “A”>

2. <State id=“S2”, name = “B”>

3. <Transition id=“T1”, source=“S1”, target=“S2”>

1. <State id=“S1”, name = “A”>

2. <State id=“S2”, name = “B”>

3. <Transition id=“T1”, source=“S1”, target=“S2”>

4. <Transition id=“T2”, source=“S2”, target=“S1”>

1. <State id=“S2”, name=“B”>

2. <Transition id=“T2”, source=“S2”, target=“S1”>

1. <State id=“S2”, name=“B”>

sm V0

sm.xmi

sm.xmi

sm V1’

B

sm.xmi

sm.xmi

A B

sm V1’’

B

sm V1

In
it

ia
l

V
e
rs

io
n

C

o
n

c
u

rr
e
n

t
V

e
rs

io
n

s

In
c
o

n
s
is

te
n

t

M
e
rg

e
d

 V
e
rs

io
n

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Versioning
Tools

 Dedicated model-based VCSs are needed

 Some first attempts:
 EMFStore: Official Eclipse project for model repositories. Follows the

same SVN interaction protocol at the model-level

 AMOR (Adaptable model versioning): Several conflict detection and
resolution strategies possible. Visual merge process by means of
annotations of conflicts directly on the graphical view of the models

 CDO includes branching support for models

 Epsilon Merging Language is a rule-based language for merging
(heterogeneous) models

 Versioning of the graphical layout is still an open question (should
moving a class two inches to the right count as a change?)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MODEL CO-EVOLUTION

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Co-Evolution

 Model versioning keeps track of the changes in a single modeling
artefact but each change may affect many other related artefacts

 Co-Evolution in MDE
 Co-evolution is the change of a model triggered by the change of a

related model

 Current View

 Relationship: r(a,b)

 a  a’

 b  b’ | r(a’,b’)

 Challenge: Relationship Reconciliation

 Current research focus is on one-to-one relationships:

 Model / Metamodel evolution

 Metamodel / Transformation evolution

 …

a a'

b b'




r r

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model / Metamodel Co-Evolution

A

D

B

D1 D2

Metamodel A

a1:A

a2:A

b1:B

b2:B

a1:A

a2:A

c1:C

c2:C

Instance of Metamodel A Instance of Metamodel A’

A

D

C

D1 D2

Metamodel A‘

 rename(B, C)

 cast(b:B, c:C)

Assumption: Renamed Class does not represent a new modeling concept!

Metamodel

Models

c
o

n
fo

rm
s
T

o

Example

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model / Metamodel Co-Evolution
Process

 Classification of meta-model changes

 Non-breaking operations: No need to migrate the models

 Breaking and resolvable: Automatic migration of existing models is

possible

 Breaking and unresolvable: User intervention is necessary

 Tools like Edapt and Epsilon Flock can derive a migration

transformation to adapt current models to the new

metamodel structure when possible

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Metamodel / Transformation Co-Evolution
Other Co-Evolution Scenarios

MMa MMb

MMb‘

Source

Metamodel

Target MM

Evolution

t1

t2

t1 … Forward Transformation

t2,t3 … Migration Transformations

v1.0

v2.0

Target

Metamodel

v3.0
MMb‘‘

t3

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

GLOBAL MODEL

MANAGEMENT

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Global Model Management

 Model-based solution to the problem of managing all this model
ecosystem appearing in any MDE project

 We represent with a model, the megamodel, all the models (and
related artefacts like configuration files) and relationships in the
ecosystem

 A megamodel can be viewed as a metadata repository for the
project

 A megamodel is a model whose elements are in fact other models

 As a model, a megamodel can be directly manipulated using the
same tools employed to manipulate “normal” models

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Global Model Management
The metamodel of a megamodel

Terminal

Model

MetaMeta

Model

Entity

Relationship Model

MetaModel

Weaving

Model Transformation

Model Mega

Model

1

Identified

Element

*

relatedTo

* sourceOf

* targetOf

* linked

* source

* target

extends *

conformsTo 1

Reference

Model

* elements

Transformation

*
*

 srcReferenceModel

 targetReferenceModel

Directed

Relationship

 targetModel

 srcModel

Transformation

Record

*
*

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Global Model Management
Using megamodels

t

x

(x)= y
Synchronize

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Global Model Management
MoScript

 DSL to write model management scripts on megamodels

 It allows the automation of complex modelling tasks,

involving several (batch) consecutive manipulations on a set

of models.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Global Model Management
MoScript Examples

• Query operations

• Model to Model transformations (M2M)

Model::allInstances()−>any(m | m.indentifier = ’SimpsonFamily’)

−>allContents()−>collect(el | el.name))

Collection {’Bart’, ’Homer’, ’Lisa’, ’Maggie’, ’Marge’}

let j2dNet : Transformation = Transformation::allInstances()

 −>any(t | t.identifier = ’j2dNet’)

in

Model::allInstances()

 −>select(m | m.conformsTo.kind = ’Java’))

 −>collect (jModel | j2dNet.applyTo(jModel))

1

2

3

4

5

6

7

TransformationRecord::allInstances()−>collect(tr | tr.run())

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MODEL QUALITY

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Original

model
1st

refinement

nth

refinement

Model
Transformation

Model
Transformation

Source
Code ...

MDE-based software development process

Errors in models will lead to errors in

the resulting software

Motivation

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Quality

 Modeling tools only check for well-formedness

 Is a model conforming to its metamodel, i.e., is a model a valid

instance of its metamodel?

 But this is just the tip of iceberg when it comes to evaluating

the quality of a model. There are many other properties to

verify:

 For static models: satisfiability, liveliness, redundancy, subsumption …

 For dynamic models: absence of deadlocks, reachability,…

 Evaluation of these properties can be done through formal

model verification or testing

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example Property: Satisfiability

 A model is satisfiable if it is possible to create a valid

instantiation of that model. A instantiation is valid if it

satisfies all model constraints

More difficult than it seems

 MDE

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example of Unsatisfiability (1)

 Due to EnrolsIn |student|>=20*|course|

 Due to Likes |student|=5*|course|

Student
EnrolsIn 20..*

Course

Likes

1

5 1

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example of Unsatisfiability (2)

…..

Strong Satisfiability

And no person is

his/her own ancestor

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

EMF/UML model

1. Class diagram / metamodel

2. OCL constraints

Solution?

Constraint Satisfaction Problem / SAT
SMT / …

1. Variables – basic types + struct/list

2. Domains – finite

3. Constraints – Prolog

4. Property -> Additional Constraint

Translate

 Solve

Deduce

Property?

Ex: EMFtoCSP tool

Typical Formal Verification Approach

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Testing models
Derive tests from your models

 Same as we test code, models can also be tested

 Tools like USE can create snapshots of a system and evaluate OCL constraints on

them to test the OCL expressions

 Specially useful for dynamic models & operations like model

transformations

 E.g., we may want to check a transformation generates a valid output model every time

a valid input model is provided

 Several black-box and white-box techniques for model testing have

been proposed

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

COLLABORATIVE

MODELING

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Collaborative Modeling

 Modeling is by definition a team activity

 Offline synchronization of models can be handled using the

model versioning tools seen before

 Online collaborative modeling (several users updating the

same model at the same time) is more problematic

 Based on a short transaction model where changes are immediately

propagated to everybody

 Very lightweight conflict management mechanisms (e.g., voluntary

locking)

 Conflict resolution by explicit consensus among all parties

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Collaborative Modeling
Tools

 EMFCollab
 Master copy in a server, slave copy in each client.

 Commands to modify the models are serialized and distributed across
the network

 SpacEclipse-CGMF
 Integration of collaborative functionality in GMF-based editors

 This functionality can be generated as part of the generation of the
own GMF editor and workspace

 Dawn
 Subproject of CDO

 Aimed at providing collaborative access to GMF diagrams

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE

ENGINEERING IN PRACTICE
Marco Brambilla,

Jordi Cabot,

Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

www.morganclaypool.com

or buy it at: www.amazon.com

http://www.mdse-book.com
http://www.mdse-book.com
http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com/gp/product/1608458822/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1608458822&linkCode=as2&tag=marbramoddris-20

