
Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODEL DRIVEN

ARCHITECTURE (MDA)

Chapter #4

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Contents

 MDA

UML (from a metamodeling perspective)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model Driven Architecture

• The Object Management Group (OMG) has defined its

own comprehensive proposal for applying MDE practices

to system’s development:

 MDA (Model-Driven Architecture)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Four principles of MDA

• Models must be expressed in a well-defined notation,

so as to enable effective communication and

understanding

• Systems specifications must be organized around a set

of models and associated transformations

• implementing mappings and relations between the models.

• multi-layered and multi-perspective architectural framework.

• Models must be compliant with metamodels

• Increase acceptance, broad adoption and tool competition

for MDE

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Definitions according to MDA

• System: The subject of any MDA specification (program, computer
system, federation of systems)

• Problem Space (or Domain): The context or environment of the
system

• Solution Space: The spectrum of possible solutions that satisfy the
reqs.

• Model: Any representation of the system and/or its environment

• Architecture: The specification of the parts and connectors of the
system and the rules for the interactions of the parts using the
connectors

• Platform: Set of subsystems and technologies that provide a
coherent set of functionalities for a specified goal

• Viewpoint: A description of a system that focuses on one or more
particular concerns

• View: A model of a system seen under a specific viewpoint

• Transformation: The conversion of a model into another model

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling Levels
CIM, PIM, PSM

 Computation independent (CIM): describe requirements

and needs at a very abstract level, without any reference to

implementation aspects (e.g., description of user

requirements or business objectives);

 Platform independent (PIM): define the behavior of the

systems in terms of stored data and performed algorithms,

without any technical or technological details;

 Platform-specific (PSM): define all the technological

aspects in detail.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

CIM, PIM and PSM

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

CIM
MDA Computation Independent Model (CIM)

 E.g., business process

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

PIM
MDA Platform Independent Model (PIM)

 Specification of
structure and behaviour
of a system, abstracted
from technologicical
details

 Using the UML(optional)

 Abstraction of structure and behaviour of a system with the PIM
simplifies the following:
 Validation for correctness of the model

 Create implementations on different platforms

 Tool support during implementation

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

PSM
MDA Platform Specific Model (PSM)

 Specifies how the functionality described in the PIM is

realized on a certain platform

 Using a UML-Profile for the selected platform, e.g., EJB

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

CIM – PIM – PSM mappings

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Modeling language specification

• MDA’s core is UML, a standard general-purpose software

modeling language

Two options for specifying your languages:

• (Domain-specific) UML Extensions can be defined

through UML Profiles

• Full-fledged domain-specific languages (DSMLs) can be

defined by MOF

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

ADM

ADM (Architecture-Driven Modernization) is addressing the
problem of system reverse engineering

It includes several standards that help on this matter

• The Knowledge Discovery Metamodel (KDM): An
intermediate representation for existing software systems that
defines common metadata required for deep semantic
integration of lifecycle management tools. Based on MOF and
XMI

• The Software Measurement Metamodel (SMM): A meta-
model for representing measurement information related to
software, its operation, and its design.

• The Abstract Syntax Tree Metamodel (ASTM): A
complementary modeling specification with respect to KDM,
ASTM supports a direct mapping of all code-level software
language statements into low-level software models.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDA vs. ADM – the MDRE process

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MOF –

META OBJECT FACILITY

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

UML –

UNIFIED MODELING

LANGUAGE

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Datatypes
• UML distinguishes between the following data
types:
• Simple data types (DataType): a type with values that

have no identity; that means two instances of a
datatype with the same attributes values are
indistinguishable.

• Primitive data types (PrimitiveType): a simple data
type without structures. UML defines the following
primitive data types:
• Integer: (Infinite) set of integers: (...,-1,0,1,...)

• Boolean: true, false.

• UnlimitedNatural (Infinite) set of natural numbers plus infinite (*).

• Enumeration types – simple data types with values
that originate from a limited set of enumeration literals.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Examples of data types

Data type keywords

Attributes Enumeration literals

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The metamodel of data types

Property
DataType

0..1 *

+datatype

0..1 {subsets namespace,

subsets featuringClassifier,

subsets classi fier}

+ownedAttribute

*{ordered,

subsets attribute,

subsets ownedMember}

Operation

0..1 *

+datatype

0..1
{subsets namespace,

subsets redefinitionContext,

subsets featuringClassifier}

+ownedOperation

*{ordered,

subsets feature,

subsets ownedMember}

PrimitiveType Enumeration EnumerationLi teral

0..1 *

+enumeration

0..1{subsets namespace}

+ownedLiteral

*{ordered,

subsets ownedMember}

InstanceSpecification

Classi fier

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Overview of Diagrams

• There is no official UML diagram overview or diagram

grouping.

• Although UML models and the repository underlying all

diagrams are defined in UML, the definition of diagrams

(i.e. special views of the repository) are relatively free.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Overview of Diagrams

• In UML a diagram is actually more than a
collection of notational elements.

• For example, the package diagram describes the
package symbol, the merge relationship, and so
on.

• A class diagram describes a class, the
association, and so on.

• Nevertheless, we can actually represent classes
and packages together in one diagram.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Overview of the UML diagrams

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Class vs. instance

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Basic notation for diagrams
Diagram area

Diagram header

[<Diagram type>]<Name>[<Parameter>]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example of a use case diagram

Use case Booking use cases

Branch
employee

Book vehicle

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Stereotypes-definition

• Stereotypes are formal extensions of existing

model elements within the UML metamodel, that

is, metamodel extensions.

• The modeling element is directly influenced by

the semantics defined by the extension.

• Rather than introducing a new model element to

the metamodel, stereotypes add semantics to

an existing model element.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Multiple stereotyping

• Several stereotypes can be used to classify one

single modeling element.

• Even the visual representation of an element

can be influenced by allocating stereotypes.

• Moreover, stereotypes can be added to

attributes, operations and relationships.

• Further, stereotypes can have attributes to store

additional information.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Stereotypes Notation

• A stereotype is placed before or above the element name

and enclosed in guillemets (<<,>>).

• Important: not every ocurrence of this notation means

that you are looking at a stereotype. Keywords

predefined in UML are also enclosed in guillemets.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Graphical symbols

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

UML standard stereotypes
Stereotype UML element Description

<<call>> Dependency(usage) Call dependency between operation or

classes

<<create>> Dependency(usage) The source element creates instances of the

target element

<<instantiate>> Dependency(usage) The source element creates instances of the

target element

Note: This description is identical to the one

of <<create>>

<<responsability>> Dependency(usage) The source element is responsible for the

target element

<<send>> Dependency (usage) The source element is an operation and the

target element is a signal sent by that

operation

<<derive>> Abstraction The source element can, for instance, be

derived from the target element by a

calculation

<<refine>> Abstraction A refinement relationship (e.g. Between a

desing element and a pertaining analysis

element)

<<trace>> Abstraction Serves to trace of requirements

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

UML standard stereotypes
Stereotype UML element Description

<<script>> Artifact A script file (can be executed on a computer)

<<auxiliary>> Class Classes that support other classes

(<<focus>>)

<<focus>> Class Classes contain the primary logic. See

<<auxiliary>>

<<implementationClass>> Class An implementation class specially designed

for a programming language, where an

object may belong to one class only

<<metaclass>> Class A class with instances that are, in turn,

classes

<<type>> Class Types define a set of operations and

attributes, and they are generally abstract

<<utility>> Class Utility class are collections of global variables

and functions, which are grouped into a

class, where they are defined as class

attributes/operations

<<buildComponent>> Component An organizational motivated component

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

UML standard stereotypes

Stereotype UML element Description

<<implement>> Component A component that contains only

implementation, not specification

<<framework>> Package A package that contains Framework

elements

<<modelLibrary>> Package A package that contains model elements,

which are reused in other packages

<<create>> Behavioral feature A property that creates instances of the class

to which it belongs (e.g. Constructor)

<<destroy>> Behavioral feature A property that destroys instances of the

class to which it belongs (e.g. Destructor)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Class Diagrams

• Class Diagrams refer to this area of the metamodel:

• Package: Classes::Kernel

• Package: Classes::Dependencies

• Package: Classes::Interfaces

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Class Diagrams: basic concepts

• The basis of UML is described in the Kernel package of

the metamodel.

• Most class models have the superclass Element and has

the ability to own other elements, shown by a composition

relationship in the metamodel.

• That’s the only ability an element has.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The basic UML class

Element

+/owner

+/ownedElement

{union}
*

{union}

0..1

*

0..1

There is no notation for an element because you would never

use the element construct in UML models. The class is

abstract.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Relationship

• A relationship is an abstract concept to put elements in
relation to one another.

• Similar to Element, there is no other property or
semantics. The properties and the semantics are added
later by abstract or concrete subclasses.

• There is no notation for Relationship either.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The basic Relationship class

Relationship
Element

1..*

+/relatedElement

{union}

1..* +/owner

+/ownedElement

{union}

*

{union}

0..1

*

0..1

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Supplier and client

• The Relationship concept is specialized by the
concept of a direct relationship.

• The set of related elements is divided into a set of
source and a set of target elements.

• In many relationships, one element offers
something and another element wants
something.

• The former is called a supplier and the later is a
client. This is expressed in one direction.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Directed relationships

DirectedRelationship

Element

1..*

+/source

{union,

subsets relatedElement}

1..*

1..*

+/target

{union,

subsets relatedElement}

1..*

+/owner

+/ownedElement

{union}

*

{union} 0..1

*

0..1

Note that we are dealing only with abstract and rather

simple concepts.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Coments and notes

• Comments and notes are terms often used synonymously.

• A comment can be annotated to any UML model element.

In the metamodel, you can see that the Comment class is

directly associated with the Element base class.

• Comment is a concrete class.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The notation for comments

Class

Comment text

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The basic metamodel concepts
Element

*

0..1

+/ownedElement

* {union}

+/owner

0..1 {union}

Comment

0..1 *

+owningElement

0..1{subsets owner}

+ownedComment

*{subsets ownedElement}

DirectedRelationship

Comment

body : String

Relationship
Element

1..*

+/target

1..*{union,

subsets relatedElement}

1..*

+/source

1..*{union,

subsets relatedElement}

*

+annotatedElement

*
1..*

+/relatedElement

1..*{union}

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Namespaces

• Def.-A named element is an element that can
have a name and a defined visibility (public,
private, protected, package):
• +=public

• -=private

• #=protected

• ~=package

• The name of the element and its visibility are
optional.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The metamodel for NamedElement

NamedElement

name : String

v isibility : Visibility Kind

/ qualif iedName : String

[0..1]

[0..1]

[0..1]

Visibility Kind

public

priv ate

protected

package

<<enumeration>>

Element

DirectedRelationship

[0..1]

DirectedRelationship

PackageableElement

NamedElement

ElementImport

v isibility : Visibility Kind

alias : String
1

+importedElement

1{subsets target}

PackageableElement

v isibility : Visibility Kind...

Namespace

0..1 *

+/namespace

0..1 {union,

subsets owner}

+/ownedMember

*
{union,

subsets member,

subsets ownedElement}

*

+/member

*{union}

1 *

+importingNamespace

1
{subsets source,

subsets owner}

+elementImport

*
{subsets ownedElement}

*

+/importedMember

* {subsets member}

PackageImport

v isibility : Visibility Kind
1 *

+importingNamespace

1 {subsets source,

subsets owner}

+packageImport

*{subsets ownedElement}
Package

1

+importedPackage

1{subsets target}

[0..1]

We are focusing in this

section of the

metamodel

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Namespace

• A namespace is a named element that can
contain named elements.

• Within a namespace, named elements are
uniquely identified by their names.

• In addition, they have a qualified name, resulting
from nested namespaces.

• The qualified name of a named element can be
derived from the nesting of the enclosing
namespaces.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Customers

Nested namespaces

Corporate customers

Insurance

Qualified name

Customers::CorporateCustomers:Insurance

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Packageable element

• A packageable element is a named element that can

belong directly to a package.

• Example: an operation cannot belong to a package, but a class

can.

• The visibility statement is mandatory for a packageable

element.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

ElementImport

• The act of importing an element is called

ElementImport and is a relationship between a

namespace and a packageable element that

resides in another namespace.

• The referenced element can then be addressed

directly by its (unqualified) name. In addition, an

optional alias name can be specified.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

PackageImport

• The act of importing a package is called PackageImport;

it is semantically equivalent to the import of a single

element from that package.

• We cannot specify an alias name here.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The metamodel for NamedElement

NamedElement

name : String

v isibility : Visibility Kind

/ qualif iedName : String

[0..1]

[0..1]

[0..1]

Visibility Kind

public

priv ate

protected

package

<<enumeration>>

Element

DirectedRelationship

[0..1]

DirectedRelationship

PackageableElement

NamedElement

ElementImport

v isibility : Visibility Kind

alias : String
1

+importedElement

1{subsets target}

PackageableElement

v isibility : Visibility Kind...

Namespace

0..1 *

+/namespace

0..1 {union,

subsets owner}

+/ownedMember

*
{union,

subsets member,

subsets ownedElement}

*

+/member

*{union}

1 *

+importingNamespace

1
{subsets source,

subsets owner}

+elementImport

*
{subsets ownedElement}

*

+/importedMember

* {subsets member}

PackageImport

v isibility : Visibility Kind
1 *

+importingNamespace

1 {subsets source,

subsets owner}

+packageImport

*{subsets ownedElement}
Package

1

+importedPackage

1{subsets target}

[0..1]

We are focusing in this

section of the

metamodel

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example of element and

package import relationships
<<import>>

<<import>>

<<access>>

<<access>>

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

<<access>> and <<import>>

• <<import>>: The visibility is public; for example,

the postal address for Order. The public import is

a transitive relationship: if A imports B and B

imports C, then A is indirectly importing C too.

• <<access>>: The visibility is private, not public:

Customer is visible in Order but not in Billing. The

private import is not transitive.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Typed elements

• A typed element is a named element that can have a

type.

• Ex.- Attributes and parameteres.

• A type specifies a set of values for a typed element.

• Ex.- Symple data types and classes are types.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example – typed element & type

Typed element Type

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Typed elements metamodel

Type and typed element are abstract classes.

They have no properties

NamedElement

TypeTypedElement

0..1

+type

0..1

PackageableElement

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Multiplicities

• A multiplicity element is the definition of an interval of
positive integers to specify allowable cardinalities.

• A cardinality is a concrete number of elements in a set.

• A multiplicity element is often simply called multiplicity;
the two terms are synonymous.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example Multipicity & Cardinality

Customer Bookings

**

+bookings
Class model

:Kunde

b1:Bookings

b2:Bookings

b3:Bookings

Object model

Multiplicity=0..*

Cardinality=3

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Multiplicities

• The notation for multiplicity is either a single number or a
value range.

• A value range is written by stating the minimum and
maximum values, separated by two dots (e.g. 1..5).

• In addtion, you can use the wildcard character * to specify
an arbitrary number of elements.

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Examples of multiplicities

• 0..1

• 1 (shortcut for 1..1)

• * (shortcut for 0..*)

• 1..*

• 5..3 (Invalid!)

• -1..0 (Invalid! All values must be positive)

• 3+5..7+1 (Generally meaningles, but valid; the
lower or upper value, respectively is defined by a
value specification).

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The multiplicity metamodel

Element

ValueSpecification

MultiplicityElement

isOrdered : Boolean = false

isUnique : Boolean = true

/ upper : UnlimitedNatural

/ lower : Integer

0..1

0..1

+upperValue

0..1{subsets ownedElement}

+owningUpper
0..1

{subsets owner}

0..10..1

+lowerValue

0..1{subsets ownedElement}

+owningLower

0..1

{subsets owner}

[0..1]
[0..1]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Checklist: multiplicities

1. What value range is described by a multiplicity?

2. What is the difference between multiplicity and

cardinality?

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Value specification

• Def.- A value specification indicates one or several

values in a model.

• Semantics.- Examples for value specifications include

simple, mathematical expressions, such as 4+2, and

expressions with values from the object model,

Integer::MAX_INT-1

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Value specification-semantics

• In addition, there are language-dependent expressions
defined by a language statement and the pertaining
expression in that language (opaque expression), such
OCL or Java expression (the language statement can be
omitted if the language is implicity defined by the
expression or context).

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The metamodel and the composite

pattern
• The metamodel is based on the composite pattern:

LeafComposite

Component

*

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Example

:Expression

symbol=“+”

op1:LiteralInteger

value=1

op2:LiteralInteger

value=1

operand

operand

Object Model for

1+1

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

The metamodel for value specifications

OpaqueExpression

body [1..*] : String {ordered}

language [0..*] : String {ordered}

LiteralSpecification

LiteralBoolean

v alue : Boolean

LiteralInteger

v alue : Integer

LiteralString

v alue : String

LiteralUnlimitedNatural

v alue : UnlimitedNatural

LiteralNull

InstanceValue InstanceSpecif ication

1

+instance

1

ValueSpecification

Expression

sy mbol : String

*

0..1

+operand

*{ordered, subsets ownedElement}

+expression

0..1

{subsets owner}

TypedElement PackageableElement

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

UML EXAMPLES

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Class diagram

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Component Diagram

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Activity diagram

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

State Diagram

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Sequence vs. Collaboration

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

UML Extensibility: profiles

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

APPROACHES TO MDA

MDA VS UML

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA with UML

 Problems when using UML as PIM/PSM
 Method bodies?

 Incomplete diagrams, e.g. missing attributes

 Inconsistent diagrams

 For the usage of the UML in Model Engineering special guidelines have
to be defined and adhered to

 Different requirements to code generation
 get/set methods

 Serialization or persistence of an object

 Security features, e.g. Java Security Policy

 Using adaptable code generators or PIM-to-PSM transformations

 Expressiveness of the UML
 UML is mainly suitable for “generic” software platforms like Java, EJB,

.NET

 Lack of support for user interfaces, code, etc.

 MDA tools often use proprietary extensions

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MDA

 Many UML tools are expanded to MDA tools
 UML profiles and code generators

 Stage of development partly still similar to CASE: proprietary UML
profiles and transformations, limited adaptability

 Advantages of MDA
 Standardization of the Meta-Level

 Separation of platform independent and platform specific models
(reuse)

 Disadvantages of MDA
 No special support for the development of the execution platform and

the modeling language

 Modeling language practically limited to UML with profiles

 Therefore limited code generation (typically no method bodies, user
interface)

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
AC-MDSD

 Efficient reuse of architectures

 Special attention to the efficient reuse of infrastructures/frameworks (= architectures) for a

series of applications

 Specific procedure model

 Development of a reference application

 Analysis in individual code, schematically recurring code and generic code (equal for all applications)

 Extraction of the required modeling concepts and definition of the modeling language, transformations and

platform

 Software support (www.openarchitectureware.org)

 Basic architecture almost completely covered

 When using UML profiles there is the problem of the method bodies

 The recommended procedure is to rework these method bodies not in the model but in the

generated code

 Advantages compared to MDA

 Support for platform- and modeling language development

 Disadvantages compared to MDA

 Platform independence and/or portability not considered

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
MetaCASE/MetaEdit+

 Free configurable CASE
 Meta modeling for the development of domain-specific modeling

languages (DSLs)

 The focus is on the ideal support of the application area, e.g. mobile-
phone application, traffic light pre-emption, digital clock – Intentional
Programming

 Procedural method driven by the DSL development

 Support in particular for the modeling level
 Strong Support for meta modeling, e.g. graphical editors

 Platform development not assisted specifically, the usage of components
and frameworks is recommended

 Advantages
 Domain-specific languages

 Disadvantages
 Tool support only focuses on graphical modeling

[www.metacase.com]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Software Factories

 Series production of software products
 Combines the ideas of different approaches (MDA, AC-MDSD,

MetaCASE/DSLs) as well as popular SWD-technologies (patterns,
components, frameworks)

 Objective is the automatically processed development of software
product series, i.e., a series of applications with the same application
area and the same infrastructure

 The SW-Factory as a marketable product

 Support of the complete basic architecture
 Refinements in particular on the realization level, e.g. deployment

 Advantages
 Comprehensive approach

 Disadvantages
 Approach not clearly delimited (similar MDA)

 Only little tool support

[J. Greenfield, K. Short: Software Factories. Wiley, 2004]

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Approaches
Excursus: OMG Standards

 CORBA - Common Object Request Broker Architecture
 Language- and platform-neutral interoperability standard (similar to

WSDL, SOAP and UDDI)

 UML - Unified Modeling Language
 Standardized modeling language, industry standard

 CWM - Common Warehouse Metamodel
 Integrated modeling language for data warehouses

 MOF – Meta Object Facility
 A standard for metamodels and model repositories

 XMI - XML Metadata Interchange
 XML-based exchange of models

 QVT – Queries/Views/Transformations
 Standard language for model-to-model transformations

Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE

ENGINEERING IN PRACTICE
Marco Brambilla,

Jordi Cabot,

Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

www.morganclaypool.com

or buy it at: www.amazon.com

http://www.mdse-book.com
http://www.mdse-book.com
http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com/gp/product/1608458822/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1608458822&linkCode=as2&tag=marbramoddris-20

