ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PEF 3304 – POLUIÇÃO DO SOLO

ENSAIO DE ADSORÇÃO

Para investigar a adsorção de chumbo em um solo saprolítico de granito da Região Metropolitana de São Paulo, realizaram-se ensaios de adsorção tipo "batch".

Este solo é classificado como MH, um silte de alta plasticidade, pelo Sistema Unificado de Classificação de Solos (USSC) e como NS', solo siltoso não laterítico, pelo Sistema MCT de Classificação de Solos Tropicais. É composto de 60% de finos, 30% de areia fina e 10% de areia média. Os minerais predominantes são o quartzo, a caulinita e a mica. O pH do solo é aproximadamente 5,5. Solos saprolíticos de granito geralmente tem teor de matéria orgânica muito baixo.

Foram utilizadas soluções de Pb em pH 3 e pH 5,5, obtidas pela dissolução de nitrato de chumbo em soluções de ácido nítrico (HNO₃) em água destilada. O solo foi seco ao ar, destorroado e peneirado na peneira #40 (0,42 mm de abertura). O solo seco ao ar apresentou teor de umidade igual a 2,7%.

A razão solo:solução utilizada foi 1:4. As amostras de solo tinham cerca de 25 g, e o volume de solução aplicado a cada amostra de solo era de 100 mL. A massa das amostras de solo foi determinada em balança com 0,0001 g de precisão. Os volumes foram determinados em buretas com precisão de 1 mL.

Foram feitas triplicatas para cada concentração estudada, e duplicatas para os frascos "brancos". Portanto, para cada concentração foram necessários 5 frascos.

As suspensões foram agitadas por 48 h e, em seguida, filtradas. As concentrações dos elementos nas amostras líquidas (antes e após filtração) foram determinadas por espectrometria de emissão atômica por plasma de argônio induzido.

Os resultados obtidos estão apresentados a seguir.

Pede-se:

- Determinar a adsorção, o grau de adsorção e a concentração de equilíbrio para cada amostra, assim como os respectivos valores médios das triplicatas, em todas as concentrações estudadas
- Traçar a curva da adsorção em função de concentração inicial para cada pH.
- Traçar a curva do grau de adsorção em função da concentração de equilíbrio para cada pH.
- Determinar K_d e o coeficiente de correlação correspondente para cada pH. Isto corresponde a ajustar os dados experimentais ao modelo de isoterma linear.
- Verificar o ajuste às isotermas de Langmuir e de Freundlich.

Pergunta-se:

- Qual o modelo de isoterma de melhor se ajusta aos dados experimentais?
- Em qual pH a adsorção de chumbo foi mais significativa?
- Que sugestão vocês fariam para melhorar a confiabilidade dos resultados?
- Que sugestão vocês fariam para continuar a pesquisa sobre a adsorção de chumbo no solo estudado?

Amostra	c (mg/L)	m (g)	Amostra	c (mg/L)	m (g)
pH 3 C1-B1	7,07		pH 5,5 C1-B1	7,85	
pH 3 C1-B2	7,07		pH 5,5 C1-B2	7,05	
pH 3 C1-1	0,578	25,6755	pH 5,5 C1-1	0,0419	25,1833
pH 3 C1-2	0,531	25,6727	pH 5,5 C1-2	0	25,4271
pH 3 C1-3	0,4678	25,6769	pH 5,5 C1-3	0	25,4732
pH 3 C2-B1	14,31		pH 5,5 C2-B1	20,86	
pH 3 C2-B2	13,90		pH 5,5 C2-B2	18,70	
pH 3 C2-1	1,308	25,6755	pH 5,5 C2-1	0,0815	25,2143
pH 3 C2-2	1,356	25,6751	pH 5,5 C2-2	0,0338	25,6561
pH 3 C2-3	1,444	25,6749	pH 5,5 C2-3	0,2174	25,2368
pH 3 C3-B1	28,62		pH 5,5 C3-B1	46,97	
pH 3 C3-B2	28,76		pH 5,5 C3-B2	47,70	
pH 3 C3-1	4,12	25,6738	pH 5,5 C3-1	1,58	25,4347
pH 3 C3-2	4,39	25,6763	pH 5,5 C3-2	0,719	25,6825
pH 3 C3-3	3,997	25,6753	pH 5,5 C3-3	1,264	25,6896
pH 3 C4-B1	43,84		pH 5,5 C4-B1	110,6	
pH 3 C4-B2	44,25		pH 5,5 C4-B2	108,2	
pH 3 C4-1	7,48	25,6753	pH 5,5 C4-1	15,70	25,6936
pH 3 C4-2	7,02	25,6745	pH 5,5 C4-2	13,29	25,6902
pH 3 C4-3	6,93	25,6743	pH 5,5 C4-3	13,87	25,6807
pH 3 C5-B1	59,0		pH 5,5 C5-B1	287	
pH 3 C5-B2	58,6		pH 5,5 C5-B2	288	
pH 3 C5-1	12,22	25,6751	pH 5,5 C5-1	107,9	25,6805
pH 3 C5-2	12,46	25,6761	pH 5,5 C5-2	110,5	25,6828
pH 3 C5-3	11,83	25,6743	pH 5,5 C5-3	109,5	25,6803
pH 3 C6-B1	119,1				
pH 3 C6-B2	120,3				
pH 3 C6-1	40,27	25,2601			
pH 3 C6-2	39,90	25,7620			
pH 3 C6-3	40,54	25,1720			

Lembrete:

$$m_s = \frac{m}{1+w}$$

Isoterma linear: $S = K_d C$ Isoterma de Freundlich: $S = K_f C^\varepsilon \qquad \text{ou} \qquad \log S = \log K_f + \varepsilon \log C$

Isoterma de Langmuir: $S = \frac{Q^0 b C}{1 + bC} \quad \text{ou} \quad \frac{1}{S} = \frac{1}{Q^0} + \frac{1}{bQ^0} \frac{1}{C}$

S = grau de adsorção (massa de adsorvato / massa seca de adsorvente)

C = concentração de equilíbrio (na fase líquida)

A = adsorção (relação porcentual entre a alteração na concentração, i.e. diferença entre as concentrações inicial e final, e a concentração inicial)