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Abstract

Standard models for hydraulic functions of partially saturated fractured porous media (FPM) often rely on macroscopic con-

tinuum representation and embrace constitutive relationships originally developed for homogeneous porous media to describe

hydraulic behavior of dual (or multi) continua FPM. Such approaches lead to inconsistencies due to neglect of underlying physical

processes governing liquid retention and flow in the vastly different pore spaces. We propose a framework that considers equilibrium

liquid configurations in dual continuum pore space as the basis for calculation of liquid saturation and introduction of hydrody-

namic considerations. FPM cross-sectional pore space is represented by a bimodal size distribution reflecting two disparate pop-

ulations of matrix pores and fracture apertures (with rough-walled surfaces). Three laminar flow regimes are considered, flow in: (1)

completely liquid filled pore spaces; (2) partially filled pores or grooves bounded by liquid–vapor interfaces; and (3) surface film

flow. Assuming that equilibrium liquid–vapor interfaces remain stable under slow laminar flows, sample-scale unsaturated hydraulic

conductivity is derived from average velocity expressions for each flow regime weighted by the appropriate liquid-occupied cross-

sectional areas (neglecting 3-D network effects). A parameter estimation scheme was developed and evaluated using two data sets.

The results point to the critical need for definitive data sets for improved understanding of flow in partially saturated FPM. Hy-

draulic conductivity functions for non-equilibrium conditions between matrix and fracture domains are discussed. Approximations

for inclusion of network effects are proposed based on direct measurement of saturated hydraulic conductivity supplemented by

theoretical considerations applying critical path analysis.

� 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Fractured porous media (FPM) consist of intercon-

nected fracture and pore-networks forming two (or
more) distinct pore spaces [24]. Typically, features of

sizes in the order of 10�4 to 10�2 m are associated with

fractures [11,33], whereas, the porous matrix contains

smaller pore sizes in the range of 10�7 to 10�5 m [31].

The resulting large disparity in hydraulic behavior be-

tween fractures and matrix in partially saturated FPM

presents practical and theoretical challenges to modeling

of total system response [14,26]. In contrast to relatively
well-developed theory and experimental data for flow

behavior in saturated FPM, theory and measurements

for partially saturated FPM are limited.

Several conceptual models have been proposed to

describe liquid behavior within a cross-section of par-
tially saturated fractures (e.g., [19,25,37]). Kwicklis and

Healy [16] conducted a numerical study of flow behavior

in a simple fracture network considering geometric

heterogeneity and air entrapment (matrix was consid-

ered impermeable). Their results point to the potential

for local spatial variations in pressure heads and fluxes

within fractures. Murphy and Thomson [18] examined

two-phase flow in a cross-section of fractured porous
media focusing on dynamic aspects of multiphase flow

and complexity of phase-occupancy and configuration

within the cross-section (the medium is represented by a

planar lattice model for parallel plate fractures with

varying apertures). Recently, Nicholl et al. [19] extended

some of these concepts towards derivation of relative

permeability functions for partially saturated horizontal

*Corresponding author. Tel.: +1-860-486-2768; fax: +1-860-486-

2298.

E-mail addresses: dani@engr.uconn.edu (D. Or), mtuller@ui-

daho.edu (M. Tuller).
1 Tel.: +1-208-885-7219; fax: +1-208-885-7760.

0309-1708/03/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0309-1708(03)00051-4

Advances in Water Resources 26 (2003) 883–898

www.elsevier.com/locate/advwatres

mail to: dani@engr.uconn.edu


fractures using information of fracture aperture distri-

bution and relative saturation. An alternative to detailed

conceptual approaches [18,19,25] invokes macroscopic

continuum representation of FPM using parameteriza-

tion and constitutive relationships developed for homo-

geneous porous media [17]. However, models based on

Nomenclature

a dimensionlessslit-spacingparameterformatrix
pore geometry [20]

b dimensionless slit-length parameter for ma-

trix pore geometry [20]

c pit angle [�]
d groove connectivity factor

e dimensionless flow resistance parameter for

corner flow [21]

g0 viscosity of bulk liquid [kgm�1 s�1]
k slit spacing distribution overlap parameter

for matrix pores [20]

l matric potential [J kg�1]

ld critical matric potential at the onset of matrix

pore drainage (J kg�1) (air entry value) [20]

l1 critical matric potential for the onset of

spontaneous fracture drainage [J kg�1]

l2 critical matric potential for the onset of me-
niscus recession into surface grooves [J kg�1]

m dimensionless scaling parameter for fracture

element length

n Gamma distribution parameter (set to n ¼ 2
in this study)

q density of the liquid [kgm�3]

r surface tension at the liquid–vapor interface

[Nm�1]
f dimensionless flow resistance parameter for

flow in isosceles triangular ducts

s dimensionless pit-depth scaling parameter for

surface grooves

/F porosity of the fracture pore space

/M porosity of the matrix pore space

x Gamma distribution parameter

AT total cross-sectional fracture area [m2]
Asvl Hamaker constant for solid vapor interac-

tions through intervening liquid (J)

B fracture aperture size [m]

BðlÞ thin film function to account for modified

liquid viscosity close to solid surfaces [35]

B1ðlÞ critical aperture size that separates com-

pletely filled and partially filled fractures

within the fracture population (integration
limit for sample scale expressions) [m]

B2 critical aperture size that separates fractures

with filled and partially filled surface grooves

within the fracture population (integration

limit for sample scale expressions) [m]

Bcr critical fracture aperture size based on critical

path analysis [m]

Bmax maximum aperture [m]
Bmin minimum aperture [m]

d dimension of the fracture network (1-D, 2-D,

or 3-D)

f ðBÞ aperture distribution

Fc angularity factor

g acceleration of gravity [m s�2]

hðlÞ film thickness as a function of matric poten-

tial [m]
KS parallel plate hydraulic conductivity [m s�1]

Ks fluidity term of the parallel plate hydraulic

conductivity function [m�1 s�1]

KD isosceles triangular duct hydraulic conduc-

tivity [m s�1]

Kd fluidity term of the isosceles triangular duct

hydraulic conductivity function [m�1 s�1]

KF ðlÞ film hydraulic conductivity [m s�1]
KCðlÞ corner hydraulic conductivity [m s�1]

Knw relative non-wetting phase saturation

Kw relative wetting phase saturation

Ksat saturated hydraulic conductivity [m s�1]

KðlÞ unsaturated hydraulic conductivity for a unit

fracture element [m s�1]

Ku-FðlÞ upscaled unsaturated hydraulic conductivity
for the fracture domain [m s�1]

Ku-MðlÞ upscaled unsaturated hydraulic conductivity
for the matrix domain [m s�1]

KFPMðlÞ FPM unsaturated hydraulic conductivity

[m s�1]

P hydraulic pressure head [m]

pc percolation threshold for the fracture net-

work

rðlÞ radius of interface curvature as a function of
matric potential [m]

Sw relative wetting phase saturation

S1, S2ðlÞ, S3ðlÞ relative liquid saturation for a unit
fracture element

Su-FðlÞ upscaled relative liquid saturation for a

population of fracture elements

Su-MðlÞ upscaled relative liquid saturation for the

matrix domain

SFPMðlÞ FPM relative liquid saturation

v average liquid velocity [m s�1]

Z coordination number (average value) for the

fracture network

z spatial coordinate along flow path [m]
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such simple representation often fail to capture localized

and time-varying flow phenomena [26] leading to in-

consistencies in flow behavior due to lack of a physical

basis for the choice of effective hydraulic parameters.

In the absence of consensus regarding the spatial
scales, flow behavior, and types of pore space hetero-

geneity amenable to continuum representation [26],

there is a clear need for physically sound constitutive

relationships between matric potential, liquid retention,

and hydraulic conductivity. We propose to assemble

such functions for arbitrary pore space geometry using

fundamental solid–liquid physical interactions and

simplified flow behavior in a cross-section. Such an ap-
proach could bridge some gaps between volume-aver-

aged macroscopic representation of flow properties and

discrete fracture representation of the FPM, and offer a

framework that builds total system response from fun-

damental physical processes rather than non-physical

extension of standard porous media parameters.

The primary objective of this study was to derive

constitutive hydraulic functions for FPM from equilib-
rium liquid configurations as a function of matric po-

tential (l) within simple and reasonably representative
pore space geometry (similar to studies by Pruess and

Tsang [25]). The specific objectives were to: (1) propose a

conceptual model for FPM pore space geometry;

(2) derive closed-form liquid retention functions for

matrix and fracture pore spaces (dual-continuum), based

on liquid configuration as a function of l; (3) use equi-
librium liquid configurations to introduce hydrodynamic

considerations leading to derivation of unsaturated hy-

draulic conductivity functions for FPM; (4) test the

proposed model with available data sets. The main dif-

ference between this study and the work of Nicholl et al.

[19] is the focus of this work on flow in FPM cross-sec-

tions (similar to the ‘‘bundle of capillaries’’) rather than

on a detailed account of phase occupancy within a
fracture plane (this issue will be discussed in Section 4.4).

The study is organized as follows: In the theoretical

section we introduce a unit fracture element for repre-

sentation of the fracture pore space within the FPM

cross-section. Calculated equilibrium liquid–vapor in-

terfacial configurations as a function of matric potential

are used to derive the hydraulic conductivity KðlÞ for a
two-dimensional (2-D) cross-section of the fracture unit
element considering corner, film, and parallel-plate

flows. Subsequently, we upscale the unit element results

for representation of sample-scale response of the FPM

using a statistical distribution of elements and combin-

ing flow processes in the two pore domains (matrix and

fracture) assuming hydraulic equilibrium. The hydraulic

properties of the matrix domain were derived in [35] and

are not repeated here. In Section 4, we apply the pro-
posed model using published data. We examine aspects

of non-equilibrium between flow domains and their

potential effect on the constitutive relationships. Finally,

we discuss approximations for inclusion of aspects of

3-D network effects into the proposed 2-D scheme.

2. Theoretical considerations

This section focuses on hydrostatic and hydrody-

namic behavior within a two-dimensional representation

of rock fracture pore space. The matrix domain hy-

draulic properties are based on derivations previously

reported in [20,34,35]. To avoid duplication we only

present a few basic definitions relevant to both, matrix

pores and fractures. The basic dimensions of the unit

matrix element are depicted in the insert in Fig. 1a.

2.1. Unit fracture element

The 2-D fracture network is represented as an as-

sembly of basic fracture elements; each is comprised of
two parallel surfaces separated by a certain aperture size

(B). Each surface contains a single groove (or pit) rep-
resenting surface roughness [21]. The fracture element

length (mB), and groove depth (sB), are assumed to be
proportional to fracture aperture size (B), as depicted in
Fig. 1a. Although such geometrical scaling imposes

constraints on the nature of surface roughness, it

Fig. 1. Definition sketch for (a) a unit fracture element representing

a partially saturated fracture with liquid retained in crevices and ad-

sorbed liquid films; (b)–(e) various combinations of scale parameters

and surface mating based on the same geometrical definitions as in (a).
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simplifies the model and facilitates derivation of closed-

form expressions for FPM hydraulic conductivity.

Nevertheless, the proposed geometry is reasonably ver-

satile as illustrated in Fig. 1b–e, using several combi-

nations of scale parameters for mated and unmated
fracture surfaces. Moreover, scaling constraints can be

relaxed as more information on hydraulically relevant

surface roughness becomes available [4,5,19].

2.2. Equilibrium liquid configuration within a unit fracture

element

Here and in subsequent derivations, we assume ther-

modynamic equilibrium between fracture and matrix

domains (limited experimental evidence lends support

for such an assumption, e.g., [37]). Equilibrium liquid–

vapor interfacial configurations evolve with changes in

matric potential and determine the liquid-occupied

cross-sectional areas within a unit fracture element (i.e.,

saturation). Desaturation of an initially saturated frac-
ture element by a gradual decrease of matric potential

may involve spontaneous and rapid liquid displacement

and formation of separated interfaces at certain critical

potentials, as determined by liquid properties and ge-

ometry. Tuller et al. [34] and Or and Tuller [21] show

that, for all practical purposes, equilibrium liquid con-

figuration can be determined by a superposition of ad-

sorbed liquid films and capillary held liquid in surface
pits and grooves (Fig. 1). The thickness hðlÞ of adsorbed
films at a given potential l is calculated as:

hðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Asvl
6pql

3
s

ð1Þ

where Asvl is the Hamaker constant, and q is liquid

density. The radius of interface curvature of a capillary

meniscus rðlÞ is calculated for a given potential ac-
cording to the Young–Laplace equation:

rðlÞ ¼ � r
ql

ð2Þ

where r is the liquid–vapor surface tension. Liquid films
are assumed to cover all solid surfaces within the unit

fracture element; we thus shift the radius of curvature

rðlÞ by film thickness hðlÞ to obtain the composite liq-
uid-filled cross-sectional area (see [34] for details of the

procedure and associated error analysis).

In the transition from complete saturation (high

matric potential) to dry conditions (low matric poten-

tial) we distinguish between three filling stages as de-
picted in Fig. 2.

Starting from a completely saturated unit fracture

element and gradually lowering the matric potential to a

certain threshold value l1 leads to a situation where the
fracture spontaneously empties, forming two separate

liquid–vapor interfaces on opposite faces of a fracture.

The critical potential l1 at this point is derived from
capillarity considerations:

l1 ¼ � 2r
qB

ð3Þ

where B is fracture aperture. In the presence of fracture
surface roughness some liquid is retained (by capillary

forces) in pits and grooves. The radius of interface

curvature of a meniscus anchored at the edges of the pit

is simply B=2 (or �r=ql1) at the separation potential.
For certain pit depths (parameterized by s) such as,

s P
cosðc=2Þ
2 tanðc=2Þ ð4Þ

the radius of interface curvature at fracture evacuation

(r ¼ B=2) results in menisci that are tangent to the sur-
faces of the pit which greatly simplify subsequent cal-

culations. In cases where the inequality in Eq. (4) is not

satisfied, we introduce a second potential threshold (l2)
that marks the starting point for recession of capillary

Fig. 2. A sketch illustrating liquid configurations and critical poten-

tials during fracture drainage. (a) Three step transition for geometries

where the capillary meniscus is first anchored at the pit edges after

interface separation, and then recedes into the surface pit (note that the

second transition was introduced for mathematical tractability). (b)

Two step transition for geometries where the capillary meniscus im-

mediately tangents the pit walls after interface separation (see text

for further details).
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menisci into the surface pit. The critical potential l2 is
obtained from simple geometrical considerations:

l2 ¼ � r cosðc=2Þ
sBq tanðc=2Þ ð5Þ

where c is the pit angle (Fig. 1). Hence, for a given ge-
ometry, we first evaluate Eq. (4) and calculate the rele-

vant critical potentials. If the geometry requires
introduction of l2, the relative saturation curve is ob-
tained by employing the following expressions. For all

potentials l > l1 the unit element is completely satu-
rated and the relative saturation is simply 1.

S1 ¼ 1 ð6Þ
Relative saturation is obtained by dividing the liquid

occupied cross-sectional area at a given potential by the

total cross-sectional area of the unit fracture element,
disregarding the associated solid shell (i.e., calculating

the fraction of liquid-filled pore space only). For all

potentials l1 P l > l2 where adsorbed films cover the
flat unit element surfaces and capillary menisci are an-

chored at pit edges, relative saturation is given by:

where m is a dimensionless fracture length scaling pa-
rameter. Note that the denominator in Eq. (7) is the cross-

sectional area of a unit fracture element without solid

shell. Finally, for all potentials l6 l2 where a meniscus
just recedes into the pit corners and new film covered area

is exposed, relative saturation is calculated as:

S3ðlÞ ¼
2hðlÞ Bm þ 2sB

cos c
2

� �� 2rðlÞ
tan c

2

� � !
þ 2rðlÞ2Fc

B2 m þ 2sð1þ sÞ tan c
2

� �� �
ð8Þ

where Fc is an angularity (geometrical) factor defined as:

Fc ¼
1

tanðc=2Þ �
pð180� cÞ
360

ð9Þ

For capillary menisci anchored to groove/pit corners
immediately after interface separation (i.e., when Eq. (4)

is satisfied), we use Eq. (6) for l > l1, and Eq. (8) for all
potentials l6 l1. Equilibrium liquid configurations in a
unit element cross-section provide the basis for intro-

duction of hydrodynamic considerations for steady

flows into the liquid-filled cross-sectional geometry.

2.3. Hydrodynamic considerations within a unit fracture

element

A key assumption for consideration of flow processes

within a partially saturated FPM cross-section is that

equilibrium liquid–vapor interfaces remain stable under

relatively slow and laminar flow conditions. Dindoruk

and Firoozabadi [8] performed detailed numerical ana-

lyses of what they termed ‘‘film flow’’ which is flow

bounded by a curved liquid–vapor interface within a
partially saturated fracture. Their results show negligible

distortion of liquid–vapor interfaces for slow laminar

flows characterized by capillary numbers in the range

10�6 to 10�8. In accordance with the different liquid

filling stages of a unit fracture element discussed in the

previous section, we consider four laminar flow regimes

(see Fig. 4 below). When the fracture element is com-

pletely liquid filled (or saturated), we consider flow be-
tween parallel plates (defined by nominal aperture

width, B) supplemented by flow in isosceles triangular
ducts (surface grooves). For partially filled fracture el-

ements, we invoke the interfacial stability assumption

and consider laminar flow in corners (surface grooves)

bounded by a liquid–vapor interface, and flow in ad-

sorbed films lining all other fracture surfaces [32]. For

the derivation of macroscopic hydraulic conductivity it

is not necessary to describe details of the velocity fields;

instead, the average flow velocities associated with these

flow regimes are sufficient. Solutions of the Navier–

Stokes equation for each flow regime and geometry

(except for flow in an isosceles triangle given in

Appendix A) are discussed in [35].

For completeness, we list the resulting hydraulic

conductivities for each flow regime in a unit fracture
element derived by substituting average fluid velocity

from the Navier–Stokes equation into Darcy�s law
and considering a unit pressure gradient along the flow

path [35]:

Completely liquid-filled cross-section:

Parallel plates KS ¼ KsB2 ¼
qg
g0

1

12
B2 ð10Þ

Isosceles triangular ducts KD ¼ KdB2 ¼
qg
g0

fs2B2

ð11Þ

Flow bounded by liquid–vapor interface:

Thick film ðhP 10 nmÞ KF ðlÞ ¼ qg
g0

hðlÞ2

3
ð12Þ

Thin film ðh < 10 nmÞ KF ðlÞ ¼ qg
g0

BðlÞ
12hðlÞ ð13Þ

S2ðlÞ ¼
2 BhðlÞm � rðlÞ2 arcsin

Bs tan c
2

� �
rðlÞ

� �
þ Bs tan c

2

� �
Bs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðlÞ2 � Bs tan c

2

� �� �2q� �
 �
B2 m þ 2sð1þ sÞ tan c

2

� �� � ð7Þ
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Corner flow KCðlÞ ¼ qg
g0

rðlÞ2

e
ð14Þ

where f and e are dimensionless flow resistance param-
eters (f is a new result presented in Appendix A), q is the
density of the liquid, g is the acceleration of gravity, and
BðlÞ is a complex function resulting from dependency of
fluid viscosity on film thickness in very thin films [21,35].

The hydraulic conductivity of a unit fracture element

is then assembled by weighting the hydraulic conduc-

tivities of each flow regime by their associated liquid

occupied cross-sectional areas and dividing the resulting

expressions by the total cross-sectional area of the unit

fracture element (including the matrix shell). The total

cross-sectional fracture area AT is simply the fracture
area divided by the porosity of the fracture domain /F:

AT ¼
B2 m þ 2sð1þ sÞ tan c

2

� �� �
/F

ð15Þ

The foregoing analysis yields three new expressions

for the hydraulic conductivity of a single unit fracture

element at various filling stages given as:

Saturated hydraulic conductivity: l > l1

K1 ¼ KSAT

¼
B4 Ks m þ 2s tan c

2

� �� �
þ Kd2s2d tan

c
2

� �� �
AT

ð16Þ

Separated interfaces––capillary menisci anchored at pit

edges: l1 P l > l2

Separated interfaces––capillary menisci tangent pit

surfaces: l6 l2

K3ðlÞ¼
2KF ðlÞhðlÞ Bmþ 2Bs

cos c
2

� �� 2rðlÞ
tan c

2

� � !
þ2KCðlÞdrðlÞ2Fc

AT
ð18Þ

where Ks, Kd, KF ðlÞ, and KCðlÞ are the basic hydraulic
conductivities given in Eqs. (10)–(14) (see also Fig. 4),

and 0 < d < 1 is a groove connectivity factor to account
for partial groove or pit connectivity in the direction of

flow [21]. The parameter d ensures that isolated pits do
not contribute to the hydraulic conductivity functions

in Eqs. (16)–(18).

For fracture geometry that satisfies the inequality in

Eq. (4), we use Eq. (16) for l > l1, and Eq. (18) for
all matric potentials l6 l1. Note that employing KCðlÞ
Eq. (14) in Eq. (17) leads to a slight underestimation of

K2ðlÞ within the narrow matric potential range from l1
to l2 that may be neglected for all practical purposes.
A framework similar to the one described here was

instrumental in deriving pore scale expressions for liquid

retention and hydraulic conductivity for matrix pore
space comprised of angular central pores connected to

slit-shaped spaces (see [20,35]).

2.4. Upscaling considerations

For representation of FPM hydraulic properties at

the sample scale, we employ a statistical upscaling

scheme that assumes a bimodal distribution for matrix

pore sizes and fracture apertures accounting for the two

disparate pore populations and porosity as depicted

in Fig. 3.

The individual contributions of matrix pores and
fractures to liquid saturation and unsaturated hydraulic

conductivity are calculated separately, using the appro-

priate pore sizes and aperture distributions. The resul-

tant saturation curves are weighted by the porosities of

the respective domains and summed up to obtain the

composite medium response. A similar approach was

taken by Wang and Narasimhan [37] in their Eqs. (7.3.3)

and (7.3.4) to represent the composite liquid retention
and hydraulic conductivity functions for the fracture and

matrix domains.

To avoid duplication with matrix domain derivations,

we briefly explain the upscaling scheme for the fracture

domain. We employ a statistical gamma distribution

to represent the positive skewness often observed in

fracture aperture size distributions [3,6,11,25,37]. The

gamma density function is dependent on two parameters

n and x [28]:

f ðBÞ ¼ Bn

n!xnþ1 exp

�
� B

x

�
BP 0 ð19Þ

where B is the fracture aperture, and the parameter n
is limited to integer values. To facilitate derivation

of analytical solutions that involve expectations of

f ðBÞ, we have used a fixed value n ¼ 2 that provided the
right balance between flexibility of the expressions and
mathematical tractability.

Sample-scale expressions for liquid saturation and

unsaturated hydraulic conductivity are obtained by

taking expectations or integrating pore scale expressions

(Eqs. (6)–(8) for liquid saturation, and Eqs. (16)–(18) for

unsaturated hydraulic conductivity) with the gamma

K2ðlÞ ¼
KF ðlÞ2mBhðlÞ þ KCðlÞd 2sB tan

c
2

� 

sBþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðlÞ2 � s2B2 tan c

2

� �2q� �
� 2rðlÞ2arc sin

sB tan c
2

� �
rðlÞ

� �� �
AT

ð17Þ
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distribution Eq. (19) over portions of the fracture pop-
ulation associated with the different filling stages dis-

cussed in Section 2.2. The integration limits separating

the fracture population are obtained by rearranging

Eqs. (3) and (5) and solving for the fracture apertures

B1ðlÞ and B2 that define the fracture size separation
between different filling stages at a given potential (see

Fig. 4). Individual contributions of each fracture group

in the population at a given potential are summed. The
process is repeated for the entire matric potential range

under consideration to yield the sample-scale saturation

and hydraulic conductivity curves.

In the following example we illustrate the derivation

of upscaled hydraulic conductivity (i.e., taking the ex-

pectation integral) for the fraction of the aperture pop-

ulation that is completely liquid filled (in the size range

from smallest aperture Bmin to B1ðlÞ in Fig. 4):

with subscript u denoting ‘‘upscaled’’, and F for ‘‘frac-
ture’’. Note that the saturated hydraulic conductiv-

ity for the entire fracture domain can be readily

calculated using Eq. (20) by simply changing the up-
per limit of integration to maximum aperture size

Bmax. The same procedure is applied to Eqs. (17)

and (18) with integration limits B1ðlÞ to B2, and B2
to Bmax, respectively. The upscaled expressions are

then added to yield the composite response for the en-

tire fracture population at a particular matric poten-

tial.

Ku-FðlÞ ¼ K1u-FðlÞ
zfflfflfflffl}|fflfflfflffl{Eq: ð20Þ

þ K2u-FðlÞ
zfflfflfflffl}|fflfflfflffl{upscaled Eq: ð17Þ

þ K3u-FðlÞ
zfflfflfflffl}|fflfflfflffl{upscaled Eq: ð18Þ

ð21Þ

For geometrical configurations with pit scaling param-

eters sP cosðc=2Þ=ð2 tanðc=2ÞÞ Eq. (4), the upscaled
expressions can be solved analytically as shown in Ap-

pendix B. Note that these analytical solutions cover a

wide variety of different geometrical configurations.

Only cases with s < cosðc=2Þ=ð2 tanðc=2ÞÞ require nu-
merical evaluation of the upscaled expressions (Fig. 5).

The same scheme applies for liquid saturation Eqs.
(6)–(8), with the composite response of the entire pop-

ulation calculated as:

Su-FðlÞ ¼ S1u-FðlÞ
zfflfflfflffl}|fflfflfflffl{upscaled Eq: ð6Þ

þ S2u-FðlÞ
zfflfflfflffl}|fflfflfflffl{upscaled Eq: ð7Þ

þ S3u-FðlÞ
zfflfflfflffl}|fflfflfflffl{upscaled Eq: ð8Þ

ð22Þ

Note that the contribution of completely liquid-filled

fractures S1u-FðlÞ is obtained by simply integrating the
gamma distribution Eq. (19) between the limits Bmin and
B1ðlÞ, since the relative saturation of a saturated frac-
ture element is 1.

For the matrix domain we employ a similar upscaling

scheme yielding Su-MðlÞ and Ku-MðlÞ [20,35]. The indi-
vidual contributions of the matrix and fracture domains

to liquid saturation are added and weighed by the po-

rosities of the individual domains to obtain the com-

posite saturation curve for the FPM:

Fig. 3. Conceptual sketch for dual continuum pore space representation of a FPM. The matrix is represented by angular pores connected to slit-

shaped spaces. Note (1) the pore size disparity between the two domains; and (2) large fractures empty first.

K1u-FðlÞ ¼
Z B1ðlÞ

Bmin

B4ðKsðm þ 2s tanðc=2ÞÞ þ 2Kds2 tanðc=2ÞÞ
AT


 �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{K1 for a single fracture element Eq: ð16Þ

B2

2x3
exp � B

x

� �
 �zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Gamma distribution with n¼2

dB ð20Þ
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SFPMðlÞ ¼
Su-MðlÞ/M þ Su-FðlÞ/F

/M þ /F
ð23Þ

where /M and /F are the matrix and fracture porosities.
The composite hydraulic conductivity curve is obtained

by simple addition of the individual contributions of the

matrix and fracture domains that are already normal-

ized by their respective porosities (i.e., the individual

expressions are already divided by total cross-sectional

areas):

KFPMðlÞ ¼ Ku-MðlÞ þ Ku-FðlÞ ð24Þ

Obviously the upscaling scheme presented here in-

volves vast simplifications such as the assumption of

parallel pathways, hence the neglect of the fully three-

dimensional nature of the fracture network and com-

plexities associated with phase interference discussed by
Persoff and Pruess [23], and by Murphy and Thomson

[18].

3. Model application

3.1. Estimation of model parameters

The analytical sample-scale expressions for the matrix

and fracture domains contain model parameters that

can be either estimated from direct measurements or via

model fitting to measured hydraulic properties (e.g.,

saturated hydraulic conductivity).
If the aperture distribution is known from measure-

ments (such as image analyses or hydrodynamic char-

acterization), only four model parameters are needed to

describe saturation and hydraulic conductivity functions

for the fracture domain. These parameters are directly

related to fracture geometry, namely: dimensionless

fracture lengths and pit depth scaling parameters m and
s, pit connectivity factor d, and pit angle c. The number
of parameters can be further reduced or constrained

when information regarding fracture geometry becomes

available (e.g., groove angle or spacing [4,5]).

The model for the matrix domain requires four ad-

ditional geometrical parameters [35]: a dimensionless slit

length parameter b (Fig. 1a), the gamma distribution
parameter x (see Section 2.4), the matric potential ld at
air entry (characterizes largest pore size Lmax), and a
distribution overlap parameter k relating slit spacing a
to largest Lmax [20]. These model parameters are esti-
mated by fitting to measured liquid retention data, while

matching medium specific surface area and porosity.

The dimensionless parameter b determines the slit length
of the unit matrix element (Fig. 1a), and is highly de-

pendent on measured matrix specific surface area [34].

The potential at the onset of drainage ld (air entry
value) is often attributed to the largest pore size present

in the porous medium, which we denote as Lmax, and is
estimated as one of the fitting parameters. The distri-

bution overlap parameter k relates the dimensionless slit
spacing parameter a (Fig. 1a) to largest (Lmax) and mean
mðLÞ pore lengths (a ¼ mðLÞ=ðLmaxkÞ) to determine the
largest slit aperture (or the leading edge of slit-spacing

distribution). According to this relationship, increasing
the parameter k results in a decrease in overlap and
smaller slit spacing (for a detailed discussion please

see [20]).

The resulting model parameters describe the satura-

tion curve and are subsequently used to predict unsat-

urated hydraulic conductivity [35]. A conceptual flow

Fig. 5. Relationship between pit angle and pit depth scaling parameter

separating analytical and numerical solutions for the proposed sample

scale expressions for liquid saturation and hydraulic conductivity.

Fig. 4. Critical aperture sizes determining expected fracture-filling

stages at different matric potentials.
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chart of the proposed parameter estimation scheme is

depicted in Fig. 6.

3.2. Datasets

Datasets containing information on matrix and

fracture liquid retention and unsaturated permeability,

as well as other physical properties of the two domains,

are virtually non-existent. A comprehensive search of

relevant literature spanning the last few decades yielded

only a few incomplete datasets suitable to test the pro-

posed model. In the following, we use data for Tiva
Canyon welded tuff reported by Wang and Narasimhan

[37] to illustrate the primary features of the proposed

model, and a dataset for crystalline rock reported by

researchers at the Swiss Federal Institute of Technology

(SFIT) [11,13] for model applications.

The Tiva Canyon welded tuff (TCwt) dataset [37]

contains information about matrix porosity, saturated

matrix and fracture permeabilities, van Genuchten [36]
parameters aVG and nVG for the matrix liquid––satura-
tion matric potential relationship (water characteristic

curve), and fracture spacing and effective aperture for

vertical fractures. Fracture porosity for a unit volume is

calculated by dividing the effective aperture by aperture

spacing. The shape of the aperture distribution is ap-

proximated with the gamma distribution Eq. (19) with

n ¼ 2 and Bmin and Bmax set to values of 1 · 10�9 and
5 · 10�4 m, respectively. The second gamma distribution
shape parameter x is calculated, based on the assump-

tion that the critical aperture size (discussed below) is
equal to the mean of the distribution mðBÞ ¼ xðn þ 1Þ.
Reported and derived model input parameters for TCwt

are listed in Table 1.

The SFIT dataset [11,13] is for a sample from a

fracture zone at Grimsel Test Site (Switzerland) [11] with

granodiorite rock matrix. This dataset contains mea-

sured water characteristic and gas permeability data,

saturated matrix and fracture permeabilities, matrix and
fracture porosities, and aperture size distribution. Gas

permeability measurements obtained at various water

saturations were converted to equivalent water per-

meability to be useful for model evaluation using the

following parametric van Genuchten Mualem relation-

ship [10].

KnwðSwÞ ¼ ð1� SwÞ0:5ð1� S1=mw Þ2m ð25Þ

Fig. 6. A conceptual flow chart of the parameter estimation scheme. Assumed matrix pore geometry and measured matrix liquid retention data are

used as input parameters to estimate free matrix model parameters while imposing surface area and porosity constraints, resulting in liquid saturation

and hydraulic conductivity. Assumed fracture geometry and measured aperture size distribution in combination with fracture porosity and saturated

fracture permeability are used to determine fracture model parameters for calculating the continuous liquid saturation curve and predicting fracture

hydraulic conductivity as a function of matric potential. Note that the individual contributions of the matrix and fracture domains are superimposed

and weighted by matrix and fracture porosities to receive the composite response of the FPM.
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where Knw is the relative non-wetting phase (gas) per-
meability, Sw is the relative wetting phase (water) satu-
ration, and m is the empirical van Genuchten shape

parameter. The shape parameter m obtained from fitting

Eq. (25) to measured Knw data was subsequently used to
calculate the relative wetting phase (water) permeability

Kw as:

KwðSwÞ ¼ S0:5w ½1� ð1� S1=mw Þm�2 ð26Þ

The conversion from non-wetting phase to wetting

phase permeability for the SFIT data is depicted in Fig.

7. Reported SFIT data are listed in Table 1. Physical

constants used in the illustrative calculations are listed
in Table 2.

4. Results and discussion

4.1. Tiva Canyon data set [37]

The lack of complete and definitive data sets for

model testing introduces undesired degrees of freedom

into the evaluation. We thus view the use of the Tiva

Canyon welded tuff data [37] as an illustrative example
rather than a test of model validity in the strict sense.

Input parameters used in the scheme illustrated in Fig. 6

are given in Table 1. Fig. 8a depicts the resulting water

characteristic curves for matrix and the fracture do-

mains (note the fracture domain is seen on the bottom

left corner of Fig. 8a). As expected, the matrix domain

dominates the saturation-matric potential relationships.
In contrast, the permeability function (Fig. 8b) is dom-

inated by the fracture domain at low matric potentials

(close to complete saturation). The transition between

fracture- to matrix-dominated permeability occurs at a

potential of about )50 J/kg. A second transition occurs
at potentials of )2000 J/kg, where matrix film flow

Table 1

Reported and derived model input parameters for the TCwt and SFIT datasets

Property TCwta SFITb

Matrix porosity 1.14· 10�1 3.75· 10�2
Matrix aVG [J/kg]�1 8.40· 10�4 NA

Matrix nVG 1.558 NA

Matrix saturated permeability [m2] 2.55· 10�18 3.00· 10�18
Effective aperture [m] 1.09· 10�3 NA

Aperture spacing [m] 0.180 NA

Fracture porosity 6.10· 10�4 8.50· 10�3
Fracture saturated permeability [m2] 1.18· 10�12 3.00· 10�13
Aperture distribution parameter xðn ¼ 2Þ [m] 3.30· 10�5 2.10· 10�4
Minimum aperture Bmin [m] 1.00· 10�9 6.00· 10�8
Maximum aperture Bmax [m] 5.00· 10�4 4.00· 10�3

NA is not applicable.
a Source is [37].
b Source is [11,13].

Fig. 7. Conversion of non-wetting to wetting phase permeabilities for

the SFIT dataset.

Table 2

Physical constants and dimensions used in the illustrative example calculations

Property Symbol Unit

Acceleration of gravity g 9.81 m s�2

Density of water (20 �C) q 998.21 kgm�3

Hamaker constant (solid–vapor through liquid) Asvl )6.0 · 10�20 J

Surface tension of water (20 �C) r 0.0728 Nm�1

Viscosity of water (20 �C) g0 0.001002 kgm�1 s�1
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provides the dominant contribution to the overall FPM

permeability. The resulting unsaturated permeability

curve contains three ‘‘humps’’––one for each of these

processes. It is interesting to note that fracture film flow

provides only a marginal contribution to transport

processes, probably due to the limited exposed fracture

surface area (i.e., few and mostly small aperture-size
fractures). Finally, all model-fitting parameters are

summarized in Table 3.

4.2. SFIT data set [11,13]

The SFIT data set was less complete than the previous

Tiva Canyon data set. Following a similar path, we

present the model fit to water characteristic data (Fig. 9a)

for matrix and fracture domains. The resulting fracture

size distribution is then used to predict the unsaturated

hydraulic conductivity function. The resulting function

manifests the influences of the various domains and

mechanisms, namely the dominance of the fracture do-

main near saturation, a transition to matrix corner and
capillary flow, and finally, matrix film flow (l � �2000
to�3000 J/kg) [35]. Model parameters for SFIT are given
in Table 3. Attempts to use the fracture aperture distri-

bution reported by Fischer et al. [11] failed to reproduce

either saturation or permeability values. One possibility

for this discrepancy is the fact that the fractures were

filled with porous material [11], hence, in terms of our

model, a fracture size distribution with a smaller mean
was needed to reproduce measured hydraulic functions.

4.3. Hydraulic conductivity function for non-equilibrium

conditions

Thus far, the analyses and resulting hydraulic con-

ductivity functions were based on the assumption of

hydraulic equilibrium between matrix and fracture do-

mains. There is considerable interest in hydraulic func-

tions for situations where matrix and fractures are not in
equilibrium, such as due to arrival of a rapid wetting

front from a rainfall event via preferential pathways

or ventilation of the fracture domain [17,30]. We should

clarify that details regarding rates and amounts of liq-

uid exchange between these domains are usually not

addressed in standard medium characterization. These

Fig. 8. Calculated saturation and predicted permeability curves for the Tiva Canyon welded tuff unit. Note the corner and film flow contributions

within the matrix and fracture domains.

Table 3

Fitted model parameters for the TCwt and SFIT datasets

Datasets TCwt SFIT

Matrix model parametersa

Slit length scaling parameter b 80,000 10

Pore size distribution parameter x [m] 6.1· 10�7 2.8 · 10�7
Matric potential ld at the onset of
drainage [m]

)3.5 )5.0

Distribution overlap parameter k 57 15

Fracture model parameters

Fracture length scaling parameter t 5 10

Pit depth scaling parameter sb 8.0· 10�1 3.5 · 10�2
Pit connectivity factor d 0.3 1.0

Pit angle c [�] 60 150

a See [20].
b The pit depth scaling parameter was set to s P cosðc=2Þ=

ð2 tanðc=2ÞÞ to facilitate analytical solutions.
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questions lie in the realm of solution of a particular flow

problem rather than medium characterization often re-

quiring standardized steady state conditions. Neverthe-

less, under certain non-equilibrium conditions when

mass exchange between the domains is ignored (e.g., due
to relatively long time scale for imbibition relative to

rapid downward flow [17]), we may assemble a generic

unsaturated permeability function for different values of

potential differential (Dl). For the example depicted in
Fig. 10, we assume that the matrix domain is wetter than

the fracture domain (Dl ¼ lmatrix � lfracture > 0). Under
these conditions, for each value of matrix permeability

at a given potential l, we calculate fracture domain
permeability at l þ Dl and combine the contributions
according to Eq. (24) (with the assumption of parallel

pathways). The resulting family of permeability curves

(Fig. 10) reflects the dependency of overall FPM per-

meability on the ‘‘distance’’ from equilibrium (Dl) up to
the potential difference value where no flow through the

fracture domain occurs (i.e., Dl > 20 J/kg) which also
coincides with the matric potential value marking the
transition to matrix-dominated permeability (l � �20 J/
kg). The situation where the fracture domain is wetter

than the matrix is trivial, due to the large disparity in

permeability near saturation; the composite permeabil-

ity function will not be significantly different than the

original equilibrium case. Kwicklis and Healy [16] pre-

sented results similar to Fig. 10 (their Fig. 12) in the

equivalent continuum representation of permeability of
networks with different fracture aperture sizes (small

and large size networks resemble our matrix and frac-

ture domains, respectively).

4.4. Simple approximations for three-dimensional network

effects

An obvious limitation of the foregoing analysis is the

description of hydraulic properties for a two-dimen-

Fig. 9. Calculated saturation and predicted permeability curves for the SFIT dataset compared to measured data.

Fig. 10. Permeability curves for TCwt under non-equilibrium condi-

tions.
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sional (2-D) cross-section, neglecting potentially im-

portant three-dimensional (3-D) network effects (net-

work connectivity and phase interference). Two

relatively simple approaches are proposed for incor-

poration of 3-D influences into the 2D model. The first
is to measure the saturated hydraulic conductivity or

permeability of the FPM and use it as input parameter

to constraint model parameters. Such a measurement,

which presumably incorporates the 3-D nature (con-

nectivity) of the fracture network, will provide con-

straints for estimation of geometrical distribution of

aperture sizes. We envision that the resulting fracture

aperture distribution will be a 2-D equivalent that
faithfully preserves the 3-D hydrodynamics (for fully

saturated conditions). In the absence of detailed infor-

mation regarding fracture size distribution, we have

tested this approach for the Tiva Canyon data set

(TCwt).

Alternatively, a theoretical approach based on con-

cepts of critical path analysis (CPA) from percolation

theory [1,2,12,15] is proposed. The implementation of
CPA in this context is based on the following argument;

given a broad aperture distribution forming a 3-D

fracture network, we begin by removing all the frac-

tures, and then replace the fracture segments in order of

decreasing size back to their original location. The ap-

erture size that completes a conductive pathway across

the network is labeled as the ‘‘critical’’ aperture size.

According to CPA, all aperture sizes larger than the
‘‘critical’’ are essentially in series (all flow must pass

through the ‘‘critical’’ size), and all aperture sizes

smaller than the ‘‘critical’’ size could be in parallel but

are much less conductive, thus providing a limited

contribution to the overall hydraulic conductivity.

Consequently, the hydraulic conductivity of the fracture

network can be represented by the hydraulic conduc-

tivity of the ‘‘critical’’ unit fracture element. The critical
fracture size is determined by finding the cumulative

fraction of fracture sizes larger than the critical size (Bcr)
that equals the percolation threshold of the network

ðpcÞ:

pc ¼
Z 1

Bcr

f ðBÞdB ð27Þ

The percolation threshold is the minimal fraction of

aperture sizes that span a conductive pathway, and its

value depends mainly on the dimensionality of the net-
work (d ¼ 1, 2, or 3) and on the coordination number,
Z. For simple cubic lattices pc ¼ 0:2488; other values
may be estimated as [29]:

Zpc ffi
d

d � 1 ð28Þ

The value of the coordination number Z is difficult to
determine a priori, however, evidence suggests that for

diluted fracture networks (and soil macropore net-

works), Z values close to 3 are common [9,22,29]. Hence,
for Z ¼ 3 in a 3-D fracture network, the value of

pc ¼ 0:5 and the critical aperture size is equal to the
mean value of the aperture size distribution. The value

of Bcr can be used to estimate the saturated hydraulic
conductivity of a unit fracture element (using Eq. (16))

to represent the entire fracture domain and the FPM.

Performing this calculation (3-D network, Z ¼ 3, pc ¼
0:5) for the SFIT dataset yields a KSAT of 4.6 · 10�15 m2,

compared to 6.1 · 10�15 m2 calculated with Eq. (20).

Although such a match should be regarded with cau-

tion, it illustrates the potential usefulness of the CPA in

using univariate distribution of fracture apertures to
obtain an estimate for network KSAT [12,15].
In summary, we propose to constrain our estimates of

fracture size distribution such that the calculated planar

(2-D) saturated hydraulic conductivity will match the

3-D estimated from the critical aperture identified by

CPA. This could be an iterative process constrained by

other input parameters, such as measured saturated

hydraulic conductivity.

5. Summary and conclusions

The large disparity in hydraulic behavior between
fracture and matrix domains in partially saturated FPM

presents a challenge to developing constitutive hydraulic

relationships required for modeling total system re-

sponse. This study builds upon recent developments in

modeling equilibrium liquid–vapor interfacial configu-

rations in various pore spaces to provide approximate

boundary conditions for introduction of hydrodynamic

behavior. The media pore space is represented by a
bimodal distribution of the two disparate populations

of matrix pores and fracture apertures. Additionally,

fracture surface roughness is represented by a distribu-

tion of angular pits and grooves. The model considers a

cross-section in the FPM where liquid configurations

take place in the plane, and steady flow takes place in

the perpendicular direction (no lateral interactions are

considered). In this study we focus on derivation of
hydraulic conductivity of the fracture domain, and refer

interested readers to a study by Tuller and Or [35] for

details on matrix hydraulic conductivity functions.

Unlike the negligible role of the fracture domain in

liquid retention behavior, flow in this domain dominates

the hydraulic conductivity of the FPM near saturation.

The composite unsaturated hydraulic conductivity

function contains multiple ‘‘humps’’ representing at
least three processes: (1) fracture flow (dominates under

wet conditions); (2) matrix capillary flow (controls

conductivity for intermediate wetness range); and (3)

film flow (dry conditions). Aside from several concep-

tual limitations, the primary constraint to model testing

and application is the lack of definitive data sets.
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The 2-D analysis presented in this study relies on

some measure of fracture aperture distribution, which is

likely to be derived from image analysis, due to the

limited information contained in fracture domain liquid

retention. However, considering evidence suggesting
that less than 20% of the fractures are water conducting

[7,17], this casts some doubts on the direct use of such

information. We are thus left with limited options with

respect to reliable input data for the model, and the

most robust input variable is a direct measurement of

FPM saturated permeability. Critical path analysis of-

fers an additional avenue for considerations of potential

3-D effects using fracture aperture distribution (rather
the detailed 3-D network). The results reduce the

problem to calculation of the saturated permeability

of a ‘‘critical’’ unit fracture element.

In summarizing the results of this study, it is impor-

tant to bear in mind several critical assumptions: (1)

equilibrium between matrix and fracture domains; (2)

flow occurs in parallel flow pathways perpendicular to

the partially saturated FPM cross-section (no 3-D or
cross flows considered); (3) interfacial configurations

remain unchanged under slow and steady laminar flow;

and (4) we do not consider rivulet flows and similar

processes arising under strong dominance of gravita-

tional forces.

The primary results of this study include (1) intro-

duction of a new geometrical model for FPM pore space

representation; (2) derivation of closed-form expressions
for FPM liquid saturation, considering individual con-

tributions of matrix and fracture domains; (3) derivation

of physically based functions for prediction of FPM

unsaturated hydraulic conductivity; (4) illustration of

potential effects of non-equilibrium conditions between

matrix and fractures on the unsaturated hydraulic con-

ductivity function; and (5) introduction of potential

strategies for inclusion of 3-D network effects via mea-
sured saturated permeability or CPA. Future work will

focus on detailed experimental characterization of FPM

properties to be used as input parameters for testing

and refining the proposed model.
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Appendix A. Average flow velocity in isosceles triangular
surface grooves

A solution for average flow velocity in isosceles tri-

angular ducts with a solid–liquid (no-slip) boundary at

the legs of the triangle and a liquid–liquid boundary at

the triangle base was derived using a finite difference-

based numerical scheme. The results were generalized

and expressed as:

�vv ¼ f
s2B2

g0

�
� dP
dz

�
ðA:1Þ

where f is a dimensionless flow resistance parameter

dependent on the vertex angle (pit angle), g0 is the liquid
viscosity, and dP=dz is the hydraulic head gradient in
flow direction z. The relationship between flow resis-

tance parameter f and pit angle c may be parameterized
as:

f ¼ 3:324� 10�4 þ 6:057� 10�6c2 � 1:963� 10�8c3

ðA:2Þ

with c in degree (r2 ¼ 0:99998). The validity of Eq. (A.2)
and the solution for flow in corners bounded by a liq-

uid–vapor interface [21,27,35] are limited to a range of

pit angles of 30� 6 c 6 150�, because of errors at very
small and very large pit angles emerging from the ap-
plied numerical evaluation schemes.

Appendix B. Analytical solution for sample scale liquid

saturation and hydraulic conductivity for the fracture

domain

For all geometrical configurations with sP cosðc=2Þ=
ð2 tanðc=2ÞÞ Eq. (4), we are able to obtain closed-form
expressions for the sample-scale response of the fracture

domain by multiplying the single element expressions

for liquid saturation Eqs. (6) and (8) and hydraulic

conductivity Eqs. (16) and (18) with the gamma distri-

bution for aperture sizes, and integrating the resulting

expressions over part of the fracture population associ-

ated with the different filling stages, as discussed in

Section 2.2. The resulting integral equations may be
expressed by the following general integral:

H ¼
Z BU

BL

ðc1B4 þ c2B2 þ c3Bþ c4ÞExp


� B

x

�
dB ðB:1Þ

where H represents the sample-scale hydraulic function,

BL and BU are the lower and upper integration limits,
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and c1, c2, c3, and c4 are constants or variables listed in
Table 4. The analytical solution of the integral in Eq.

(B.1) is given as:

H ¼ F ðBLÞ � F ðBUÞ ðB:2Þ

with

F ðBÞ ¼ x e�B=x½BðB3c1
�

þ Bc2 þ c3Þ þ c4

þ xð4B3c1 þ 2Bc2 þ c3Þ þ 2x2ð6B2c1 þ c2Þ
þ 24x3Bc1 þ 24x4c1�

�
ðB:3Þ
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