

Avaliação de riscos em saúde ambiental: caso de acidentes industriais severos

Profa. Adelaide Cassia Nardocci Departamento de Saúde Ambiental FSP/USP

AVALIAÇÃO DE RISCOS DE ACIDENTES EM INSTALAÇÕES INDUSTRIAIS

Efeitos diretos

ACIDENTE

- 1. Explosões
- 2. Incêndios
- 3. Vazamentos de produtos tóxicos

Pessoas

Efeitos imediatos:

- 1. Lesões graves
- 2. Mortes de pessoas

ACIDENTE:

Acidente é um evento indesejável, não esperado e não intencional que resulta em algum grau de comprometimento, real ou efetivo, do nível de segurança de uma instalação ou empreendimento.

AVALIAÇÃO DE RISCOS DE ACIDENTES INDUSTRIAIS

CARACTERIZAÇÃO DO EMPREENDIMENTO E DO ENTORNO

IDENTIFICAÇÃO DOS PERIGOS

(identificar todos os cenários de acidentes)

AVALIAÇÃO DOS EFEITOS FÍSICOS E VULNERABILIDADE

(calcular a intensidade dos danos)

CÁLCULO DA FREQUÊNCIA

(Qual a probabilidade de cada cenário acontecer?)

CÁLCULO DO RISCO

Individual e social

CARACTERIZAÇÃO DO EMPREENDIMENTO E DO ENTORNO

1. EMPREENDIMENTO

Produtos Químicos;

Atividades e processos;

Equipamentos e sistemas.

2. ENTORNO

Distância e localização dos vizinhos;

Localização e quantidade de pessoas;

Vias, acessos, infraestrutura, etc..

Identificação de Perigos

Aplicação de Técnicas para a Identificação de Perigos

Hipóteses Acidentais

Identificação de Perigos

- Análise de Procedimentos:
- Análise "E se ... ?" (What If...?);
- Checklists (Listas de Verificação);
- Técnica de Incidentes Críticos (TIC);
- Análise Preliminar de Perigos (APP);
- Análise de Modos de Falhas e Efeitos (AMFE);
- Hazard & Operability Analysis (HazOp).

Identificação de Perigos

HIPÓTESES ACIDENTAIS:

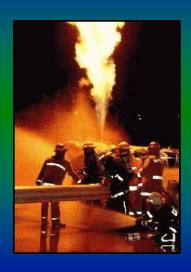
- 1. INCÊNDIOS
- 2. EXPLOSÕES
- 3. VAZAMENTOS DE SUBSTÂNCIAS TÔXICAS

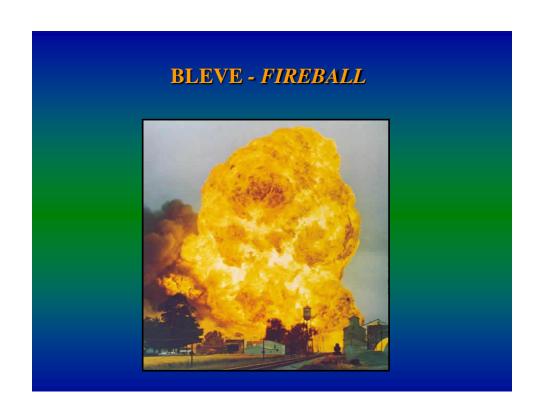
TIPOS DE INCÊNDIOS

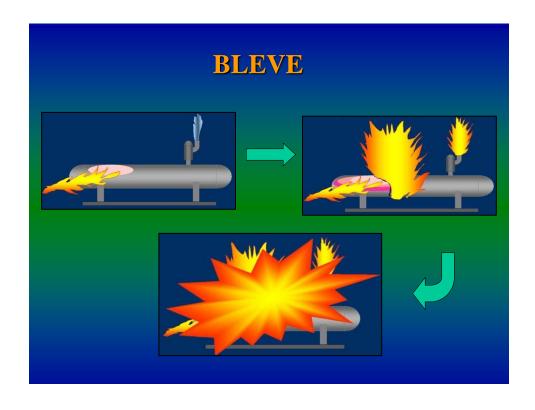
- INCÊNDIO EM TANQUE TANK FIRE
 - INCENDIO EM POÇA POOL FIRE
 - JATO DE FOGO JET FIRE
 - BOLA DE FOGO FIREBALL
- INCÊNDIO EM NUVEM FLASHFIRE

INCÊNDIO EM TANQUE

INCÊNDIO EM POÇA



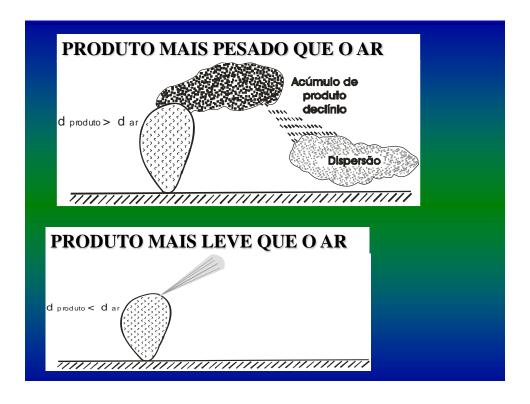

FATORES QUE INTERFEREM NA FORMAÇÃO

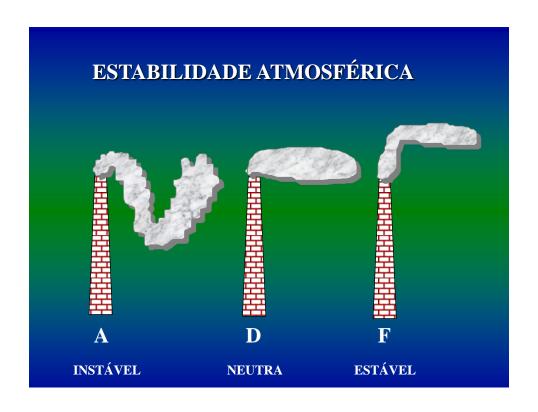

- TAXA DE VAZAMENTO
- CARACTERÍSTICAS DO PRODUTO
 - SOLO
 - OBSTÁCULOS

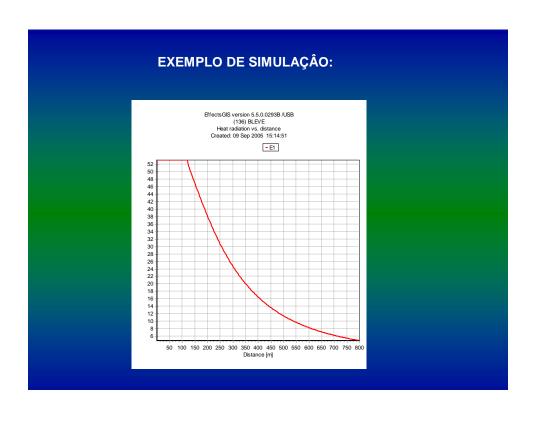
JATO DE FOGO

TIPOS DE EXPLOSÕES


• EXPLOSÕES CONFINADAS – efeitos são mais graves


• EXPLOSÕES NÃO CONFINADAS - áreas abertas


DISPERSÃO DE GASES E VAPORES


FATORES DE INFLUÊNCIA

- ✓ TURBULÊNCIA ATMOSFÉRICA
- ✓ ESTABILIDADE ATMOSFÉRICA
- ✓ PRESENÇA DE OBSTÁCULOS
- ✓ CARACTERÍSTICAS DO PRODUTO
- ✓ CARACTERÍSTICAS DO VAZAMENTO

CÁLCULO DOS EFEITOS FÍSICOS:

AVALIAR O COMPORTAMENTO DE UM PRODUTO QUANDO DE UMA LIBERAÇÃO ACIDENTAL

INCÊNDIOS **EXPLOSÃO VAZAMENTO**

RADIAÇÃO TÉRMICA TAXA DE SOBREPRESSÃO **CONCENTRAÇÃO TÓXICA**

ANÁLISE DE VULNERABILIDADE

ESTIMATIVA DOS DANOS GERADOS AO HOMEM. AS ESTRUTURAS E AO MEIO AMBIENTE DEVIDO AS LIBERAÇÕES ACIDENTAIS DE PRODUTOS **QUÍMICOS**

> • RADIAÇÃO TÉRMICA • SOBREPRESSÃO • CONCENTRAÇÃO TÓXICA

VULNERABILIDADE

FUNÇÃO MATEMÁTICA DE PROBIT

 $Pr = a + b \ln x$

- Pr REPRESENTA A PROBABILIDADE DE FATALIDADE E/OU FERIDOS:
- a, b Constantes e função do produto e cenário;
- X VARIÁVEL QUE DESCREVE A MAGNITUDE DO IMPACTO FÍSICO.

VULNERABILIDADE PARA SUBSTÂNCIA TÓXICA

Estimativa das Conseqüências

Exemplo de Cálculo

<C> para 50% de fatalidade em 30 minutos de exposição à amônia? E ao cloro? Sendo:

Amônia: a = -35,9, b = 1,85 e n = 2,0

Cloro: a = -8,29, b = 0,92 e n = 2,0

Segundo a tabela, o Probit para 50% de fatalidade é de 5,00

Para a amônia:

Probit =
$$a + b \times \ln(c^n \times t)$$

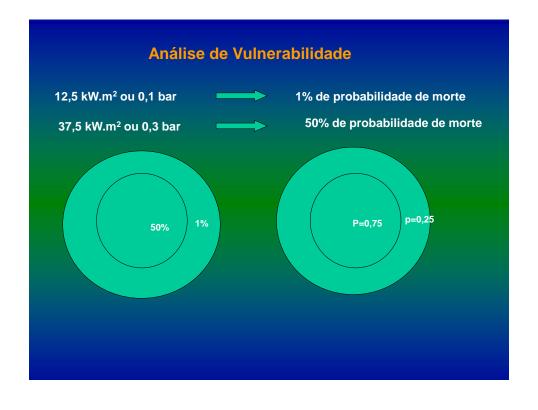
5,00 = -35,9 + 1,85 \times \ln(c^{2,0} \times 30)
C = 11.540 ppm

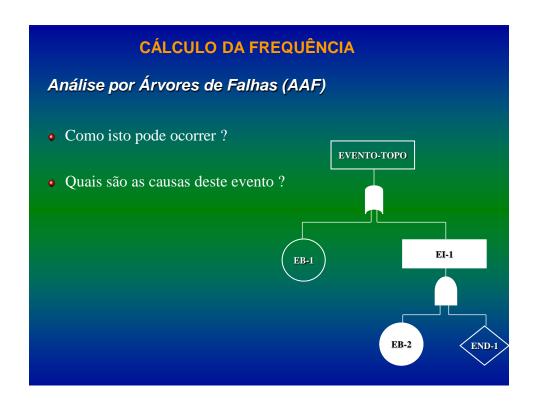
Para o cloro:

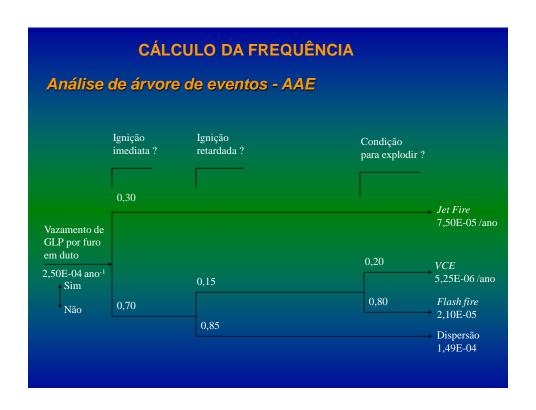
Probit =
$$a + b x \ln(c^n x t)$$

 $5,00 = -8,29 + 0,92 x \ln(c^{2,0} x 30)$
 $C = 250,2 \text{ ppm}$

VULNERABILIDADE A RADIAÇÃO TÉRMICA


Nível de Radiação Térmica (kW/m²)	Efeitos Observados
1,0 a 1,6	Radiação suportável sem uso de roupas protetoras.
4,0 a 5,0	Radiação suportável com uso de roupas protetoras. Mal estar.
12,5	Radiação que provoca queimaduras não letais. Perigo à saúde e à vida. Fusão de tubulações plásticas. Ignição de roupas. Ignição
37,5	Radiação que provoca queimaduras letais. Perigo à vida. Danos aos equipamentos industriais. Perigo à vida.


VULNERABILIDADE A RADIAÇÃO TÉRMICA

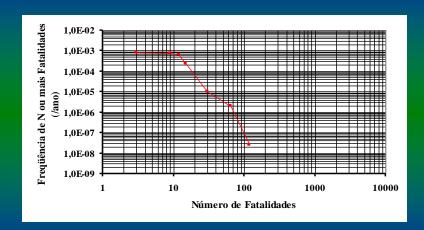

Radiação Térmica (kW/m²)	Tempo de Exposição (s)		
	Probabilidade de Fatalidade (%)		
	1	50	99
4,0	150	370	930
12,5	30	80	200
37,5	8	20	50

VULNERABILIDADE A SOBREPRESSÃO

Sobrepressão (bar)	Efeitos Observados
0,30	Danos graves em prédios, estruturas e equipamentos. Perigo à vida.
0,10	Danos reparáveis em prédios e estruturas. Perigo à saúde e à vida.
0,03	Ruptura total de vidros, podendo causar ferimentos por lançamento de estilhaços. Mal estar à saúde.
0,01	Ruptura de aproximadamente 10 % dos vidros, com pequena probabilidade de causar ferimentos.

Risco Individual

Risco para uma pessoa presente na vizinhança de um perigo, considerando a natureza do dano, a probabilidade de ocorrer o dando e o período de tempo em que o mesmo pode acontecer. Normalmente, o dano é estimado em termos de fatalidade.


Curvas de Iso-Risco

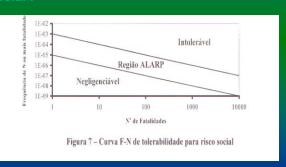
Risco Social

O Risco Social é a relação entre a frequência e o número de pessoas expostas a um nível de dano específico de uma determinada população, em função da ocorrência de perigos específicos (*IChemE*, 1992).

Risco Social – Curva F-N

Aceitabilidade dos Riscos - Critérios CETESB

Risco Individual


Risco máximo tolerável: 1x10⁻⁵ ano⁻¹;

Risco negligenciável: <1x10⁻⁶ ano⁻¹;

Para dutos:

Risco máximo tolerável: 1x10-4 ano-1; Risco negligenciável: <1x10-5 ano-1;

Risco Social:

Em caso de acidentes severos, o risco social é critério prioritário.