
Predictive	model	selection	and	evaluation
First	of	all,	we	do	all	necessary	imports	and	load	the	Breast	Cancer	Wisconsin	Diagnostic	dataset.

In	[1]:

import	numpy	as	np
import	pandas	as	pd
import	matplotlib.pyplot	as	plt

from	sklearn.preprocessing	import	LabelEncoder
from	sklearn.model_selection	import	train_test_split,	StratifiedKFold
from	sklearn.neighbors	import	KNeighborsClassifier
from	sklearn.metrics	import	accuracy_score,	zero_one_loss
from	sklearn.metrics	import	roc_curve,	auc
from	sklearn.datasets	import	load_breast_cancer

from	scipy.stats	import	wilcoxon,	friedmanchisquare,	rankdata
from	Orange.evaluation	import	compute_CD,	graph_ranks

DEFAULT_N_NEIGHBORS	=	5

#	Random	seed.	This	is	needed	to	make	all	results	reproducible.
seed	=	10

#	Loading	Breast	Cancer	dataset
breast_cancer	=	pd.read_csv('data/breast_cancer.csv',	index_col=0)
labels	=	'diagnosis'
breast_cancer.head()

Then,	we	encode	the	'diagnosis'	str	values	as	int	values.

In	[16]:

le	=	LabelEncoder()
breast_cancer[labels]	=	le.fit_transform(breast_cancer[labels])

Then,	we	write	a	simple	method	to	train,	test	and	return	a	kNN	classifier,	its	predicted	results,	its	accuracy	score	and	its	0-1	loss	for	a
dataset.

In	[3]:

def	knn_fit_predict_evaluate(X_train,	X_test,	y_train,	y_test,	k=DEFAULT_N_NEIGHBORS):
				knn	=	KNeighborsClassifier(n_neighbors=k,	weights='distance',	metric='euclidean')
				knn.fit(X_train,	y_train)
				y_pred	=	knn.predict(X_test)
				accuracy	=	accuracy_score(y_test,	y_pred)
				loss	=	zero_one_loss(y_test,	y_pred)
				return	knn,	y_pred,	accuracy,	loss

To	train	and	test	sklearn	classifiers,	we	will	need	the	data	as	numpy	arrays.	So,	we	can	extract	them	using	the	code	below.

Out[1]:

mean_radius mean_texture mean_perimeter mean_area mean_smoothness mean_compactness mean_concavity

sample_id

842302 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001

842517 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.0869

84300903 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.1974

84348301 11.42 20.38 77.58 386.1 0.14250 0.28390 0.2414

84358402 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.1980

5	rows	×	31	columns

In	[4]:

np.set_printoptions(precision=4,	suppress=True)

#	Extracting	Breast	Cancer	values	without	the	label	column.
X	=	breast_cancer.drop(labels,	axis=1).values
print('X:\n{}\n'.format(X))

#	Extracting	Breast	Cancer	labels.
y	=	breast_cancer[labels].values
print('y:\n{}\n'.format(y))

Simple	holdout

The	simple	holdout	method	consists	of	splitting	the	original	dataset	in	two	disjoint	subsets:

train:	which	contains	a	proportion	of	p	objects	from	the	original	dataset;
test:	which	contains	a	proportion	of	1 − p	objects	from	the	original	dataset.

The	aforementioned	split	can	be	performed	with	the	train_test_split	method.

In	[5]:

#	Splitting	the	original	dataset.
#	The	train	subset	will	contain	a	proportion	of	0.66	objects	from	the	original	dataset.
#	The	test	subset	will	contain	a	proportion	of	0.34	objects	from	the	original	dataset.
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size=0.34,	stratify=y,	random_state=seed)

#	Training,	testing	and	evaluating	a	kNN	classifier	with	simple	holdout.
knn,	y_pred,	accuracy,	loss	=	knn_fit_predict_evaluate(X_train,	X_test,	y_train,	y_test)
print('Accuracy:	{}'.format(accuracy))
print('0-1	loss:	{}'.format(loss))

#	Since	the	accuracy	and	0-1	loss	are	complementary	measures,	their	sum	must	be	1.0.
print('Accuracy	+	0-1	loss	=	{}'.format(accuracy	+	loss))

K-fold	cross-validation

K-fold	cross-validation	consists	of	splitting	the	original	dataset	in	k	disjoint	subsets	of	approximately	equal	size.	Then,	at	each	iteration,	k − 1
subsets	are	used	as	the	training	set	and	the	remaining	subset	is	used	as	the	test	set.	In	the	end,	we	can	calculate	the	mean	accuracy	as
the	performance	measure.

Sklearn	provides	several	different	classes	to	perform	k-fold	cross-validation.	In	this	example,	we	use	the	StratifiedKFold	class,	since	it	breaks
the	original	dataset	in	k	stratified	disjoint	subsets.	So,	each	subset	will	maintain	the	same	proportion	of	objects	in	each	class	as	in	the	original
dataset.

X:
[[17.99					10.38				122.8				...,				0.2654				0.4601				0.1189]
	[20.57					17.77				132.9				...,				0.186					0.275					0.089]
	[19.69					21.25				130.					...,				0.243					0.3613				0.0876]
	...,
	[16.6						28.08				108.3				...,				0.1418				0.2218				0.0782]
	[20.6						29.33				140.1				...,				0.265					0.4087				0.124]
	[7.76					24.54					47.92			...,				0.								0.2871				0.0704]]

y:
[1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	1	1	0	1	1	0	0	0	0	1	0	1	1	0	0	0	0	1	0	1	1
	0	1	0	1	1	0	0	0	1	1	0	1	1	1	0	0	0	1	0	0	1	1	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0
	0	0	0	0	0	0	1	1	1	0	1	1	0	0	0	1	1	0	1	0	1	1	0	1	1	0	0	1	0	0	1	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	1	0	0	1	1	0	0	1	1	0	0	0	0	1	0	0	1	1	1	0	1
	0	1	0	0	0	1	0	0	1	1	0	1	1	1	1	0	1	1	1	0	1	0	1	0	0	1	0	1	1	1	1	0	0	1	1	0	0
	0	1	0	0	0	0	0	1	1	0	0	1	0	0	1	1	0	1	0	0	0	0	1	0	0	0	0	0	1	0	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	0	0	0	0	0	0	1	0	1	0	0	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	0	1	1	1	0	0
	0	0	1	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1
	1	0	1	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0
	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	1	0	0	0	0	0	1	0	0
	1	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	1	1	0	1	0	1	0	0	0	0	0	1	0	0	1	0	1	0	1	1
	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	1	1	1	1	1	1	0]

Accuracy:	0.9226804123711341
0-1	loss:	0.07731958762886593
Accuracy	+	0-1	loss	=	1.0

In	[6]:

splits	=	10
skfold	=	StratifiedKFold(n_splits=splits,	random_state=seed)
trained_knns	=	[]
accuracies	=	[]

#	skfold.split(X,	y)	returns	an	iterator	over	tuples.
#	In	each	tuple,	the	first	element	consists	of	the	indices	of	examples	from	the	train	set.
#	The	second	element	consists	of	the	indices	of	examples	from	the	test	set.
for	train_idx,	test_idx	in	skfold.split(X,	y):
				X_train,	X_test	=	X[train_idx],	X[test_idx]
				y_train,	y_test	=	y[train_idx],	y[test_idx]
				knn,	y_pred,	acc,	loss	=	knn_fit_predict_evaluate(X_train,	X_test,	y_train,	y_test)
				trained_knns.append(knn)
				accuracies.append(acc)

accuracies	=	np.array(accuracies)
print('{}-fold	cross-validation	accuracy	mean:	{}'.format(splits,	np.mean(accuracies)))
print('{}-fold	cross-validation	accuracy	std:	{}'.format(splits,	np.std(accuracies,	ddof=1)))

ROC	analysis

For	a	binary	classification	problem,	where	we	have	a	positive	(+)	and	a	negative	(−)	class,	we	can	obtain	the	confusion	matrix	of	the
expected	and	predicted	results.	The	confusion	matrix	is	organized	as:

Predicted	 + Predicted	 −

Expected	 + TP FN

Expected	 − FP TN

From	the	above	matrix,	we	can	extract	the	following	quantities:

True	Positives	(TP):	the	number	of	positive	examples	that	were	correctly	predicted	as	positive;
True	Negatives	(TN):	the	number	of	negative	examples	that	were	correctly	predicted	as	negative;
False	Negatives	(FN):	the	number	of	positive	examples	that	were	wrongly	predicted	as	negative;
False	Positives	(FP):	the	number	of	negative	examples	that	were	wrongly	predicted	as	positive.

Then,	we	can	obtain	two	measures:

True	Positive	Rate	(TPR):	also	known	as	sensibility.	It	measures	the	hit	rate	for	the	positive	class.	It	is	calculated	as:	
TPR =

TP
TP + FN ;

False	Positive	Rate	(FPR):	also	known	as	specificity.	It	measures	the	hit	rate	for	the	negative	class.	It	is	calculated	as:	
FPR =

FP
TN + FP .

Many	classifiers	output	scores	(or	probabilities)	when	classifying	an	unseen	example.	These	scores	are	usually	thresholded	in	order	to
return	a	binary	classification.

The	ROC	analysis	consists	of	using	several	thresholds	for	the	output	scores	of	a	classifier.	Then,	for	each	threshold,	the	respective	TPR	and
FPR	values	can	be	calculated.	By	plotting	the	obtained	(TPR,	FPR)	pairs,	we	obtain	the	ROC	curve.

Finally,	a	commonly	used	measure	to	compare	classifiers	is	the	area	under	the	ROC	curve	(ROC	AUC).	Such	a	measure	lies	between	0	and	1,
with	values	close	to	1	indicating	better	results.

We	present	an	example	below.

10-fold	cross-validation	accuracy	mean:	0.9298429262812202
10-fold	cross-validation	accuracy	std:	0.02691043470531831

In	[7]:

#	Splitting	X	and	y	in	train	and	test	sets.
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size=0.34,	stratify=y,	random_state=seed)

#	Creating	and	training	a	kNN	classifier.
knn	=	KNeighborsClassifier(n_neighbors=DEFAULT_N_NEIGHBORS,	weights='distance',	metric='euclidean')
knn.fit(X_train,	y_train)

#	Predicting	probability	scores	for	the	test	set.
y_prob	=	knn.predict_proba(X_test)

#	Calculatting	False	Positive	Rate	and	True	Positive	Rate	values	for	different	thresholds.
#	The	first	parameter	consists	of	the	expected	labels.
#	The	second	parameter	consists	of	the	predicted	scores	for	the	positive	class.	In	this	example
#	the	positive	class	is	assumed	to	be	the	one	with	label	=	1.
false_positive_rate,	true_positive_rate,	thresholds	=	roc_curve(y_test,	y_prob[:,	1])

#	Calculating	the	area	under	the	ROC	curve.
roc_auc	=	auc(false_positive_rate,	true_positive_rate)

Finally,	we	plot	the	ROC	curve.	The	diagonal	line	of	such	a	plot	indicates	a	classifier	with	random	predictions.

In	[8]:

#	setting	linewidth	=	2
lw	=	2

plt.plot(false_positive_rate,
									true_positive_rate,
									color='blue',
									lw=lw,
									label='ROC	curve	(area	=	{:.4f})'.format(roc_auc))

plt.plot([0,	1],	[0,	1],	color='red',	lw=lw,	linestyle='--',	label='Random	classifier')
plt.xlim([0.0,	1.0])
plt.ylim([0.0,	1.05])
plt.xlabel('False	Positive	Rate')
plt.ylabel('True	Positive	Rate')
plt.title('ROC')
plt.legend(loc="lower	right")

plt.show()

Hypothesis	testing

Comparing	two	classifiers	over	multiple	datasets

Usually,	when	comparing	two	classifiers	(namely,	f1	and	f2),	the	null-hypothesis	(H0)	states	that	their	performances	are	equivalent.	For	this
situation,	Demšar	(2006)	recommends	the	Wilcoxon	signed-rank	test.

Next,	we	present	an	example	extracted	from	(Demšar,	2006).	In	such	an	example,	we	have	the	area	under	the	curve	(AUC)	for	the	C4.5
algorithm	with	the	parameter	m	(the	minimal	number	of	examples	in	a	leaf)	equal	to	0	and	C4.5	with	tunned	m	(C4.5+m)	considering	14
datasets.

In	[9]:

#	Loading	the	example	DataFrame.
performances	=	pd.read_csv('data/example_wilcoxon_demsar.csv')
performances

In	[10]:

#	Getting	C4.5	AUC	values.
c45	=	np.array(performances['C4.5'])

#	Getting	C4.5+m	AUC	values.
c45m	=	np.array(performances['C4.5+m'])

#	Running	Wilcoxon	test.	When	zero_method='zsplit'	the	zero	ranks	are	splitted	between	positive	and	negative	ones.
wilcoxon(c45,	c45m,	zero_method='zsplit')

The	Wilcoxon	signed-rank	test	outputs	a	p-value	close	to	0.01.	If	we	consider	a	significance	level	(α)	of	0.05	we	can	conclude	that	C4.5	and
C4.5+m	performances	are	not	equivalent.

Comparing	multiple	classifiers	over	multiple	datasets

The	Wilcoxon	signed-rank	test	was	not	designed	to	compare	multiple	random	variables.	So,	when	comparing	multiple	classifiers,	an
"intuitive"	approach	would	be	to	apply	the	Wilcoxon	test	to	all	possible	pairs.	However,	when	multiple	tests	are	conducted,	some	of	them	will
reject	the	null	hypothesis	only	by	chance	(Demšar,	2006).

For	the	comparison	of	multiple	classifiers,	Demšar	(2006)	recommends	the	Friedman	test.

The	Friedman	test	ranks	the	algorithms	from	best	to	worst	on	each	dataset	with	respect	to	their	performances.	Its	null-hypothesis	(H0)
states	that	all	algorithms	are	equivalent	and	their	mean	ranks	are	equal.

Next,	we	present	an	example	extracted	from	(Demšar,	2006).	In	such	an	example,	we	have	the	AUC	for	four	classifiers:	C4.5	with	m = 0	and
the	confidence	interval	parameter	cf = 0.25,	C4.5	with	tunned	m,	C4.5	with	tunned	cf	and	C4.5	with	both	parameters	tunned.

Out[9]:

dataset C4.5 C4.5+m

0 adult(sample) 0.763 0.768

1 breast_cancer 0.599 0.591

2 breast_cancer_wisconsin 0.954 0.971

3 cmc 0.628 0.661

4 ionosphere 0.882 0.888

5 iris 0.936 0.931

6 liver_disorders 0.661 0.668

7 lung_cancer 0.583 0.583

8 lymphography 0.775 0.838

9 mushroom 1.000 1.000

10 primary_tumor 0.940 0.962

11 rheum 0.619 0.666

12 voting 0.972 0.981

13 wine 0.957 0.978

Out[10]:

WilcoxonResult(statistic=12.0,	pvalue=0.010968496564224731)

In	[11]:

#	Loading	the	example	DataFrame.
performances	=	pd.read_csv('data/example_friedman_nemenyi_demsar.csv')
performances

In	[12]:

#	First,	we	extract	the	algorithms	names.
algorithms_names	=	performances.drop('dataset',	axis=1).columns

#	Then,	we	extract	the	performances	as	a	numpy.ndarray.
performances_array	=	performances[algorithms_names].values

#	Finally,	we	apply	the	Friedman	test.
friedmanchisquare(*performances_array)

The	Friedman	test	outputs	a	very	small	p-value.	For	many	significance	levels	(α)	we	can	conclude	that	the	performances	of	all	algorithms	are
not	equivalent.

Considering	that	the	null-hypothesis	was	rejected,	we	usually	have	two	scenarios	for	a	post-hoc	test	(Demšar,	2006):

All	classifiers	are	compared	to	each	other.	In	this	case	we	apply	the	Nemenyi	post-hoc	test.
All	classifiers	are	compared	to	a	control	classifier.	In	this	scenario	we	apply	the	Bonferroni-Dunn	post-hoc	test.

To	perform	both	of	the	aformentioned	post-hoc	tests,	we	need	the	average	rank	of	each	algorithm,

In	[13]:

#	Calculating	the	ranks	of	the	algorithms	for	each	dataset.	The	value	of	p	is	multipled	by	-1
#	because	the	rankdata	method	ranks	from	the	smallest	to	the	greatest	performance	values.
#	Since	we	are	considering	AUC	as	our	performance	measure,	we	want	larger	values	to	be	best	ranked.
ranks	=	np.array([rankdata(-p)	for	p	in	performances_array])

#	Calculating	the	average	ranks.
average_ranks	=	np.mean(ranks,	axis=0)

print('\n'.join('{}	average	rank:	{}'.format(a,	r)	for	a,	r	in	zip(algorithms_names,	average_ranks)))

Then,	we	will	calculate	the	critical	differences	and	plot	the	results	of	each	test	(Nemenyi	and	Bonferroni-Dunn).

Out[11]:

dataset C4.5 C4.5+m C4.5+cf C4.5+m+cf

0 adult(sample) 0.763 0.768 0.771 0.798

1 breast_cancer 0.599 0.591 0.590 0.569

2 breast_cancer_wisconsin 0.954 0.971 0.968 0.967

3 cmc 0.628 0.661 0.654 0.657

4 ionosphere 0.882 0.888 0.886 0.898

5 iris 0.936 0.931 0.916 0.931

6 liver_disorders 0.661 0.668 0.609 0.685

7 lung_cancer 0.583 0.583 0.563 0.625

8 lymphography 0.775 0.838 0.866 0.875

9 mushroom 1.000 1.000 1.000 1.000

10 primary_tumor 0.940 0.962 0.965 0.962

11 rheum 0.619 0.666 0.614 0.669

12 voting 0.972 0.981 0.975 0.975

13 wine 0.957 0.978 0.946 0.970

Out[12]:

FriedmanchisquareResult(statistic=51.285714285714278,	pvalue=1.7912382226666844e-06)

C4.5	average	rank:	3.142857142857143
C4.5+m	average	rank:	2.0
C4.5+cf	average	rank:	2.9285714285714284
C4.5+m+cf	average	rank:	1.9285714285714286

In	[14]:

#	This	method	computes	the	critical	difference	for	Nemenyi	test	with	alpha=0.1.
#	For	some	reason,	this	method	only	accepts	alpha='0.05'	or	alpha='0.1'.
cd	=	compute_CD(average_ranks,
																n=len(performances),
																alpha='0.1',
																test='nemenyi')

#	This	method	generates	the	plot.
graph_ranks(average_ranks,
												names=algorithms_names,
												cd=cd,
												width=10,
												textspace=1.5,
												reverse=True)

plt.show()

In	[15]:

#	This	method	computes	the	critical	difference	for	Bonferroni-Dunn	test	with	alpha=0.05.
#	For	some	reason,	this	method	only	accepts	alpha='0.05'	or	alpha='0.1'.
cd	=	compute_CD(average_ranks,
																n=len(performances),
																alpha='0.05',
																test='bonferroni-dunn')

#	This	method	generates	the	plot.
graph_ranks(average_ranks,
												names=algorithms_names,
												cd=cd,
												cdmethod=0,
												width=10,
												textspace=1.5,
												reverse=True)

plt.show()

References
Demšar,	J.	(2006).	Statistical	comparisons	of	classifiers	over	multiple	data	sets.	Journal	of	Machine	learning	research,	7,	1-30.

