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MDSE GOES FAR BEYOND

CODE-GENERATION
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MDSE has many applications

• MDD is just the tip of the 

iceberg

• And MDA a specific 

“realization” of MDD when 

using OMG standards
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Three killer MDSE applications

Code

Generation

Software

Modernization

Systems
interoperability
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USE CASE1 – MODEL 

DRIVEN DEVEOPMENT
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MDD contribution: Communication

• Models capture and organize the understanding of the 

system within a group of people

• Models as lingua franca between actors from business 

and IT divisions

Requirements ImplementationAnalysis Design
M2M M2M M2T
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MDD contribution: Productivity

• MDD (semi)automates software development

• In MDD, software is derived through a series of model-to-

model transformations (possibly) ending with a model-to-

text transformations that produces the final code

Original 

model
1st

refinement

nth

refinement

Model-to-model 
Transformation

Model-to-text 
Transformation

...
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Executable models

• An executable model is a model complete enough to be 

executable

• From a theoretical point of view, a model is executable 

when its operational semantics are fully specified

• In practice, the executability of a model may depend on 

the adopted execution engine 

• models which are not entirely specified but that can be executed by 

some advanced tools that are able to fill the gaps

• Completely formalized models that cannot be executed because an 

appropriate execution engine is missing.
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Smart vs dumb execution engines

• CRUD operation typically account for 80% of the overall 

software functionality

• Huge spared effort through simple generation rules
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Executable models

• Most popular: Executable UML models

• Executable UML development method (xUML) initially 

proposed by Steve Mellor 

• Based on an action language (kind of imperative 

pseudocode)

• Current standards

• Foundational Subset for Executable UML Models (fUML)

• Action language is the Action Language for fUML (Alf)

• basically a textual notation for UML behaviors that can be attached to a 

UML model 
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Executable models: 2 main approaches

• Code generation: generating running code from a higher 

level model in order to create a working application

• by means of a rule-based template engine

• common IDE tools can be used to render the source code 

produced

• Model interpretation: interpreting the models and making 

them run

• Non-empty intersection between the two options
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Code Generation

• Goal: generating running code from higher level models

• Like compilers producing executable binary files from source code

• Also known as model compilers

• Once the source code is generated state-of-the-art IDEs 

can be used to manipulate the code
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Code Generation: Scope
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Code Generation: Benefits

• Intellectual property

• Separation of modeling and execution

• Multi-platform generation

• Generators simpler than interpreters

• Reuse of existing artefacts

• Adaptation to enterprise policies

• Better performances
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Code Generation: Partial Generation

• Input models are not complete & code generator is not 
smart enough to derive or guess the missing information

• Programmers will need to complete the code manually

• Caution! Breaking the generation cycle is dangerous

Solutions:

• Defining protected areas in the code, which are the ones 
to be manually edited by the developer

• Using round-trip engineering tools (not many available)

• Better to do complete generation of parts of the system 
instead of partial generation of the full system
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Code Generation: Turing test

• A human judge examines the code generated by one 

programmer and one code-generation tool for the same 

formal specification. If the judge cannot reliably tell the 

tool from the human, the tool is said to have passed the 

test
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Model interpretation

• A generic engine parses and executes the model on-the-fly 
using an interpretation approach

• Benefits
• Faster changes & Transparent (re)deployment

• Better portability (if the vendor supports several platforms)

• The model is the code. Easier model debugging

• No deployment

• Updates of the model at runtime

• Higher level abstraction of the system (implemented by the interpreter)

• Updates in the interpreter may result in automatic improvements of 
your software

• Danger of becoming dependent of the application vendor. 
Limited influence in the –ities of the SW
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Generation and interpretation

• Can be used together in the same process

• Interpretation at early prototyping / debugging time

• Generation for production and deployment

• Hybrid solutions are possible:

• Model interpretation based on internal code generation 

implementation

• Code generation that relies on predefined, configurable 

components / framework at runtime. The generated code is e.g., 

XML descriptor / configurations of the components
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USE CASE2 – SYSTEMS 

INTEROPERABILITY
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Interoperability

• Ability of two or more systems to exchange information 

(IEEE)

• Needed for collaborative work (e.g. using different tools), 

tool and language evolution, system integration…

• Interoperability must be done at the syntactic and 

semantic levels
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Model-Driven Interoperability

• MDSE techniques to bridge the interoperability gap

• The metamodels (i.e. “schemas”) of the two systems are 

made explicit and aligned

• Transformations follow the alignment to move information

• Injectors (text-to-model) represent system A data as a model 

(syntactic transformation)

• M2M transformation adapts the data to system B metamodel

(semantic transformation)

• Extractors (model-to-text) generate the final System B output data 

(syntactic transformation).
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MDI: Global schema
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USE CASE3 – MODEL 

DRIVEN REVERSE 

ENGINEERING
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Need for reverse engineering
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Model-driven reverse engineering

• Why? Models provide an homogeneous and interrelated 

representation of all legacy components.

No information loss: initial models have a 1:1 

correspondance with the code

Discover

Models

Understand

Viewpoints

Regenerate

New
Software Artifacts

Legacy artifacts :
- source code
- configuration files 
- tests
- databases
- etc.
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Model-Driven Interoperability: Example

COBOL

model

Model 

discovery

COBOL 

system

COBOL

metamodel

T2M

Model 

understanding

Model 

generation

UML

models

UML

metamodel

M2M

M2M (refactorings)

Java

model
Java 

system

Java

metamodel

M2M M2T
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