
Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MDSE USE CASES

Chapter #3



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

MDSE GOES FAR BEYOND

CODE-GENERATION



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDSE has many applications

• MDD is just the tip of the 

iceberg

• And MDA a specific 

“realization” of MDD when 

using OMG standards



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Three killer MDSE applications

Code

Generation

Software

Modernization

Systems
interoperability



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

USE CASE1 – MODEL 

DRIVEN DEVEOPMENT



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDD contribution: Communication

• Models capture and organize the understanding of the 

system within a group of people

• Models as lingua franca between actors from business 

and IT divisions

Requirements ImplementationAnalysis Design
M2M M2M M2T



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDD contribution: Productivity

• MDD (semi)automates software development

• In MDD, software is derived through a series of model-to-

model transformations (possibly) ending with a model-to-

text transformations that produces the final code

Original 

model
1st

refinement

nth

refinement

Model-to-model 
Transformation

Model-to-text 
Transformation

...



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Executable models

• An executable model is a model complete enough to be 

executable

• From a theoretical point of view, a model is executable 

when its operational semantics are fully specified

• In practice, the executability of a model may depend on 

the adopted execution engine 

• models which are not entirely specified but that can be executed by 

some advanced tools that are able to fill the gaps

• Completely formalized models that cannot be executed because an 

appropriate execution engine is missing.



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Smart vs dumb execution engines

• CRUD operation typically account for 80% of the overall 

software functionality

• Huge spared effort through simple generation rules



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Executable models

• Most popular: Executable UML models

• Executable UML development method (xUML) initially 

proposed by Steve Mellor 

• Based on an action language (kind of imperative 

pseudocode)

• Current standards

• Foundational Subset for Executable UML Models (fUML)

• Action language is the Action Language for fUML (Alf)

• basically a textual notation for UML behaviors that can be attached to a 

UML model 



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Executable models: 2 main approaches

• Code generation: generating running code from a higher 

level model in order to create a working application

• by means of a rule-based template engine

• common IDE tools can be used to render the source code 

produced

• Model interpretation: interpreting the models and making 

them run

• Non-empty intersection between the two options



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Code Generation

• Goal: generating running code from higher level models

• Like compilers producing executable binary files from source code

• Also known as model compilers

• Once the source code is generated state-of-the-art IDEs 

can be used to manipulate the code



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Code Generation: Scope



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Code Generation: Benefits

• Intellectual property

• Separation of modeling and execution

• Multi-platform generation

• Generators simpler than interpreters

• Reuse of existing artefacts

• Adaptation to enterprise policies

• Better performances



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Code Generation: Partial Generation

• Input models are not complete & code generator is not 
smart enough to derive or guess the missing information

• Programmers will need to complete the code manually

• Caution! Breaking the generation cycle is dangerous

Solutions:

• Defining protected areas in the code, which are the ones 
to be manually edited by the developer

• Using round-trip engineering tools (not many available)

• Better to do complete generation of parts of the system 
instead of partial generation of the full system



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Code Generation: Turing test

• A human judge examines the code generated by one 

programmer and one code-generation tool for the same 

formal specification. If the judge cannot reliably tell the 

tool from the human, the tool is said to have passed the 

test



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model interpretation

• A generic engine parses and executes the model on-the-fly 
using an interpretation approach

• Benefits
• Faster changes & Transparent (re)deployment

• Better portability (if the vendor supports several platforms)

• The model is the code. Easier model debugging

• No deployment

• Updates of the model at runtime

• Higher level abstraction of the system (implemented by the interpreter)

• Updates in the interpreter may result in automatic improvements of 
your software

• Danger of becoming dependent of the application vendor. 
Limited influence in the –ities of the SW



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Generation and interpretation

• Can be used together in the same process

• Interpretation at early prototyping / debugging time

• Generation for production and deployment

• Hybrid solutions are possible:

• Model interpretation based on internal code generation 

implementation

• Code generation that relies on predefined, configurable 

components / framework at runtime. The generated code is e.g., 

XML descriptor / configurations of the components



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

USE CASE2 – SYSTEMS 

INTEROPERABILITY



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Interoperability

• Ability of two or more systems to exchange information 

(IEEE)

• Needed for collaborative work (e.g. using different tools), 

tool and language evolution, system integration…

• Interoperability must be done at the syntactic and 

semantic levels



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model-Driven Interoperability

• MDSE techniques to bridge the interoperability gap

• The metamodels (i.e. “schemas”) of the two systems are 

made explicit and aligned

• Transformations follow the alignment to move information

• Injectors (text-to-model) represent system A data as a model 

(syntactic transformation)

• M2M transformation adapts the data to system B metamodel

(semantic transformation)

• Extractors (model-to-text) generate the final System B output data 

(syntactic transformation).



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

MDI: Global schema



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.
www.mdse-book.com

USE CASE3 – MODEL 

DRIVEN REVERSE 

ENGINEERING



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Need for reverse engineering



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model-driven reverse engineering

• Why? Models provide an homogeneous and interrelated 

representation of all legacy components.

No information loss: initial models have a 1:1 

correspondance with the code

Discover

Models

Understand

Viewpoints

Regenerate

New
Software Artifacts

Legacy artifacts :
- source code
- configuration files 
- tests
- databases
- etc.



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Model-Driven Interoperability: Example

COBOL

model

Model 

discovery

COBOL 

system

COBOL

metamodel

T2M

Model 

understanding

Model 

generation

UML

models

UML

metamodel

M2M

M2M (refactorings)

Java

model
Java 

system

Java

metamodel

M2M M2T



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE 

ENGINEERING IN PRACTICE
Marco Brambilla,

Jordi Cabot,

Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

www.morganclaypool.com

or buy it at: www.amazon.com

http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com/gp/product/1608458822/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1608458822&linkCode=as2&tag=marbramoddris-20

