
Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

INTRODUCTION

Chapter #1 



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Introduction
Contents

 Human cognitive processes

 Models

 Structure of the book



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Abstraction and human mind

• The human mind continuously re-works reality by applying 
cognitive processes

• Abstraction: capability of finding the commonality in 
many different observations:
• generalize specific features of real objects (generalization)

• classify the objects into coherent clusters (classification)

• aggregate objects into more complex ones (aggregation)

• Model: a simplified or partial representation of reality, 
defined in order to accomplish a task or to reach an 
agreement



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Models
What is a model?

Mapping Feature A model is based on an original (=system)

Reduction Feature A model only reflects a (relevant) selection 

of the original‘s properties

Pragmatic Feature A model needs to be usable in place of an 

original with respect to some purpose

ModelrepresentsSystem

Purposes:

• descriptive purposes

• prescriptive purposes



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
What is Model Engineering?

 Model as the central artifact of software development

 Related terms
 Model Driven Engineering (MDE), 

 Model Driven [Software] Development (MDD/MDSD),

 Model Driven Architecture (MDA)

 Model Integrated Computing (MIC)

Model

Rapid prototyping

Static analysis

Code generation

Automated testing

Refactoring/

Transformation

Documentation

[Illustration by Bernhard Rumpe]



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Why Model Engineering?

 Increasing complexity of software
 Increasing basic requirements, e.g., adaptable GUIs, security, network 

capabilities, …

 Complex infrastructures, e.g., operating system APIs, language libraries, 
application frameworks

 Software for specific devices
 Web browser, mobile phone, navigation system, video player, etc.

 Technological progress …
 Integration of different technologies and legacy systems, migration to new 

technologies

 … leads to problems with software development
 Software finished too late

 Wrong functionality realized

 Software is poorly documented/commented

 and can not be further developed, e.g., when the technical environment 
changes, business model/ requirements change, etc.



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Why Model Engineering?

 Quality problems in software development

[Balzert, H.: Lehrbuch der Softwaretechnik: 

Software-Entwicklung, Spektrum, Akad. Verlag, 1996] 

[Slide by Bernhard Rumpe]



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation 
Why Model Engineering?

 Traditional usage of models in software development

 Communication with customers and users (requirement 

specification, prototypes)

 Support for software design, capturing of the intention

 Task specification for programming

 Code visualization for understanding

 What is the difference to Model Engineering?



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Usage of models

 Do not apply models as long as you have not checked the

underlying simplifications and evaluated its practicability.

 Never mistake the model for the reality.

 Attention: abstraction, abbreviation, approximation, visualization, …

chlorine atom

electron

shell

electron

atom

nucleus



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Constructive models (Example: Electrical Engineering)

[Slide by Bernhard Rumpe]



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Declarative models (Example: Astronomy)

 Heliocentric model by Kopernikus



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Application area of modeling

 Models as drafts

 Communication of ideas and alternatives

 Objective: modeling per se

 Models as guidelines

 Design decisions are documented

 Objective: instructions for implementation 

 Models as programs

 Applications are generated automatically

 Objective: models are source code and vice versa

t



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Motivation
Increasing abstraction in software development

 The used artifacts of software development

slowly converge to the concepts of

the application area

Assembler (001001)

Assembler and mnemonic

abbreviations (MV, ADD, GET)

Procedural constructs

(while, case, if)

Libraries (GUI, lists)

Components (provided/required interface)

Business objects

(course, account, customer)

[Illustration by Volker Gruhn]



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Structure of the book
PART 1: MDSE Foundations

 1 Introduction 

 1.1 Purpose and Use of Models

 1.2 Modeling for Software Development

 1.3 How to Read this Book

 2 MDSE Principles

 2.1 MDSE Basics

 2.2 Lost in Acronyms: The MD* Jungle

 2.3 Overview of the MDSE Methodology

 2.3.1 Overall Vision

 2.3.2 Target of MDSE: Domains, Platforms,Technical Spaces, and Scenarios

 2.3.3 Modeling Languages

 2.3.4 Metamodeling

 2.3.5 Transformations

 2.3.6 Model Classification

 2.4 MDSE Adoption in Industry

 2.5 Tool Support

 2.5.1 Drawing Tools vs Modeling Tools

 2.5.2 Model-Based vs Programming-Based MDSE Tools

 2.5.3 Eclipse and EMF

 2.6 Criticisms of MDSE



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Structure of the book
PART 1: MDSE Foundations (continued)

 3 MDSE Use Cases 

 3.1 Automating Software Development

 3.1.1 Code Generation

 3.1.2 Model Interpretation

 3.1.3 Combining Code Generation and Model Interpretation

 3.2 System Interoperability

 3.3 Reverse Engineering

 4 Model-Driven Architecture (MDA) 

 4.1 MDA Definitions and Assumptions

 4.2 The Modeling Levels: CIM, PIM, PSM

 4.3 Mappings

 4.4 General Purpose and Domain-Specific Languages in MDA

 4.5 Architecture-Driven Modernization

 5 Integration of MDSE in your Development Process 

 5.1 Introducing MDSE in your Software Development Process

 5.1.1 Pains and Gains of Software Modeling

 5.1.2 Socio-Technical Congruence of the Development Process

 5.2 Traditional Development Processes and MDSE

 5.3 Agile and MDSE

 5.4 Domain-Driven Design and MDSE

 5.5 Test-Driven Development and MDSE

 5.5.1 Model-Driven Testing

 5.5.2 Test-Driven Modeling



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Structure of the book
PART 1: MDSE Foundations (continued)

 6 Modeling Languages at a Glance 

 6.1 Anatomy of Modeling Languages

 6.2 General Purpose vs Domain-Specific Modeling Languages

 6.3 General-Purpose Modeling: The Case of UML

 6.4 UML Extensibility: The MiddleWay Between GPL and DSL

 6.5 Overview on DSLs (Domain Specific Languages)

 6.5.1 Principles of DSLs

 6.5.2 Some Examples of DSLs

 6.6 Defining Modeling Constraints (OCL)

PART 2: MDSE Technologies

 7 Developing yourOwn Modeling Language 

 7.1 Metamodel-Centric Language Design

 7.1.1 Abstract Syntax

 7.1.2 Concrete Syntax

 7.1.3 Language Ingredients at a Glance

 7.2 Example DSML: sWML

 7.3 Abstract Syntax Development

 7.3.1 Metamodel Development Process

 7.3.2 Metamodeling in Eclipse

 7.4 Concrete Syntax Development

 7.4.1 Graphical Concrete Syntax (GCS)

 7.4.2 Textual Concrete Syntax (TCS)



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Structure of the book
PART 2: MDSE Technologies (continued)

 8 Model-to-ModelTransformations 

 8.1 Model Transformations and their Classification

 8.2 Exogenous, Out-Place Transformations

 8.3 Endogenous, In-Place Transformations

 8.4 Mastering Model Transformations

 8.4.1 Divide and Conquer: Model Transformation Chains

 8.4.2 HOT: Everything is a Model, Even Transformations!

 8.4.3 Beyond Batch: Incremental and Lazy Transformations

 8.4.4 Bi-Directional Model Transformations

 9 Model-to-TextTransformations

 9.1 Basics of Model-Driven Code Generation

 9.2 Code Generation Through Programming Languages

 9.3 Code Generation Through M2T Transformation Languages

 9.3.1 Benefits of M2T Transformation Languages

 9.3.2 Template-Based Transformation Languages: an Overview

 9.3.3 Acceleo: An Implementation of the M2T Transformation Standard

 9.4 Mastering Code Generation

 9.5 Excursus: Code Generation Through M2M Transformations and TCS



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Structure of the book
PART 2: MDSE Technologies (continued)

 10 Managing Models

 10.1 Model Interchange

 10.2 Model Persistence

 10.3 Model Comparison

 10.4 Model Versioning

 10.5 Model Co-Evolution

 10.6 Global Model Management

 10.7 Model Quality

 10.7.1 Verifying Models

 10.7.2 Testing and Validating Models

 10.8 Collaborative Modeling

 11 Summary 

 Bibliography

 Authors’ Biographies



Marco Brambilla, Jordi Cabot, Manuel Wimmer. 

Model-Driven Software Engineering In Practice. Morgan & Claypool 2012.

Teaching material for the book

Model-Driven Software Engineering in Practice

by Marco Brambilla, Jordi Cabot, Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

MODEL-DRIVEN SOFTWARE 

ENGINEERING IN PRACTICE
Marco Brambilla,

Jordi Cabot,

Manuel Wimmer.

Morgan & Claypool, USA, 2012.

www.mdse-book.com

www.morganclaypool.com

or buy it at: www.amazon.com

http://www.mdse-book.com
http://www.morganclaypool.com
http://www.amazon.com/gp/product/1608458822/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1608458822&linkCode=as2&tag=marbramoddris-20

