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Answer Key  

Exercise 1.  Please undertake the following routine in Stata. What do you observe from the results 

of both regressions for the coefficient estimates? How are these results related? Please explain.  

1. set obs 100 

2. gen x = invnorm(uniform())  

3. gen e1 = invnorm(uniform())  

4. gen y1 = 2 + 3*x + e1  

5. reg y1 x  

6. gen e2 = invnorm(uniform())  

7. gen y2 = 2 + 3*x + e2  

8. reg y2 x 

Answer: This routine is to stress what we understand is behind the results of any regression 

model. In this example, we are modeling the sampling variability from the error and this is 

why each time we will get slightly or somewhat different estimates for the α and β.  In 

empirical analysis, we only observe the results of one draw (of the many possible theoretical 

draws). In fact, we understand that we could have observed different yi’s in a hypothetical 

replication, where the other causes came out a differently.  

 

Exercise 2. Now let us assume that the explanatory variable, X, is measured with error. This 

measurement error is relatively small (.01). What are the consequences for the regression results 

reported in Exercise 1? 

* p<0.05, ** p<0.01, *** p<0.001

95% confidence intervals in brackets

                                                                

R-sq                          0.919                     0.921   

N                               100                       100   

                                                                

                      [1.902,2.309]             [1.772,2.165]   

_cons                         2.106***                  1.968***

                      [2.875,3.238]             [2.811,3.161]   

x                             3.056***                  2.986***

                                                                

                                 y1                        y2   

                                (1)                       (2)   
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Case 1. Due to how we chose to model the measurement error (as a small constant error), 

there is only a small effect on the intercept as compared to the regression results reported 

in Exercise 1.  

 

Here we see the figure with jittering to make it easier to distinguish between the scatterplot 

of x and y1 versus the scatterplot of xerror and y1_xerror. 

 

 

We know that the measurement error modeled in this manner should be reflected in the 

intercept. We can see this by thinking about our formulas: 

* p<0.05, ** p<0.01, *** p<0.001

Standard errors in parentheses

                                            

R-sq                0.919           0.919   

N                     100             100   

                                            

                  (0.103)         (0.103)   

_cons               2.106***        2.105***

                                 (0.0915)   

xerror                              3.056***

                 (0.0915)                   

x                   3.056***                

                                            

                       y1       y1_xerror   

                      (1)             (2)   

                                            

. esttab m1 m1x_error,  se r2 
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we have x  where c is a constant
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Case 2. We can also see this empirically by increasing the error in X to be a larger number 

(x+10). The red is the original scatterplot and the blue dots is the measurement error 

scatterplot. 

 

 

Case 3. We can show that the implications of measurement error in x are even more serious 

when we model measurement error as a variable that is measured with variability.  
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* p<0.05, ** p<0.01, *** p<0.001

Standard errors in parentheses

                                            

R-sq                0.919           0.919   

N                     100             100   

                                            

                  (0.103)         (0.916)   

_cons               2.106***        1.543   

                                 (0.0915)   

xerror10                            3.056***

                 (0.0915)                   

x                   3.056***                

                                            

                       y1     y1_xerror10   

                      (1)             (2)   

                                            

. esttab m1 m1x_error10,  se r2 
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we have x  where u has a mean 0 and standard deviation of 6.

( )
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ase the residual error and also bias .

 

 

 

Exercise 3. Now let us assume that the dependent variable, Y, is measured with error. This 

measurement error is relatively small (.01). What are the consequences for the regression results 

reported in Exercise 1?  

Given the assumptions of the CLRM (we will discuss these further), we will still obtain 

unbiased estimates of the beta coefficient.  

However, again have to think about our cases.  If the measurement error in y is a constant, 

it will change the intercept. Consider the case where the error is larger (10). 

 

 

* p<0.05, ** p<0.01, *** p<0.001

Standard errors in parentheses

                                                                            

rmse                1.025           1.025           1.025           1.026   

r2                  0.919           0.919           0.919           0.998   

N                     100             100             100             100   

                                                                            

                  (0.103)         (0.103)         (0.916)         (0.103)   

_cons               2.106***        2.105***        1.543           2.103***

                                                                 (0.0147)   

xerrorcase3                                                         3.007***

                                                 (0.0915)                   

xerror10                                            3.056***                

                                 (0.0915)                                   

xerror                              3.056***                                

                 (0.0915)                                                   

x                   3.056***                                                

                                                                            

                       y1       y1_xerror     y1_xerror10    y1_xerrorc~3   

                      (1)             (2)             (3)             (4)   

                                                                            

. esttab m1 m1x_error m1x_error10 m3_xerrorcase3, se scalars(r2 rmse)
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If the measurement error in y is a variable with a mean 0 and standard deviation of 3, it will 

change the standard errors and variance. 

Case 2.

we have y  where u has a mean 0 and standard deviation of 3.

(y )

In this case, the measurement error in y will increase the residual error 

and the standard errors of  and . 

y x

y u

u x

  

  

 

  

 

   
 

Exercise 4. Based on your analysis of the results in Exercises1, 2 and 3, what do you conclude? 

How do your conclusions related to the regression assumptions outlined by Gujarti?  

To review, there are several important assumptions of the Classical Linear Regression Model that 

are necessary to guarantee that we obtain BLUE estimators in OLS. These are assumptions about 

the Population Regression Function and not the Sample Regression Function.  

1. Linearity in parameters.  

2. E(error|x)=0 or E(error)=0 if x is non-stochastic. 

3. Error has constant variance.  

4. Cov (x, e)=0 

5. Cov ( ,i ju u  )=0 

6. N>k 

7. x must vary and there can be no outliers.  

 

This exercise is calling attention to Assumption #7 and Assumption #4 which are both 

being violated. When we have measurement error (large measurement error can produce 

outliers) in the explanatory variables, OLS estimates will be biased.   See Chapter 13 of 

Gujarati and Porter  for a helpful discussion.  

Parte I1. The Multiple Regression Model  

Exercise 5. Now let’s add a second explanatory variable, Z.  One of the assumptions of the 

regression model is that there is no exact collinearity between the explanatory variables in a 

* p<0.05, ** p<0.01, *** p<0.001

Standard errors in parentheses

                                            

rmse                1.025           1.025   

r2                  0.919           0.919   

N                     100             100   

                                            

                  (0.103)         (0.103)   

_cons               2.106***        12.11***

                 (0.0915)        (0.0915)   

x                   3.056***        3.056***

                                            

                       y1         y1error   

                      (1)             (2)   

                                            

. esttab m1 my1error, se scalars (r2 rmse)
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multiple regression model. Please create a variable Z that does not violate this assumption. Now, 

do a scatterplot to analyze the relationship between X and Z.  

2Let's generate z such that z=x . Note that this does not violate OLS assumptions.   

 

Exercise 6. Please re-do the analysis reported in Exercise 1 adding a second explanatory variable 

to the model. What do you observe from the results of both regressions for the coefficient 

estimates? How is the interpretation of the coefficients different from Exercise 1?  

 

The second model is now testing the effect of x and z on y. In this model, x continues to have a 

statistically significant effect on y. However, the interpretation of this effect is different. The 

effect is now contingent on holding z constant. Similarly, z does not seem to influence Y holding 

x constant.   
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* p<0.05, ** p<0.01, *** p<0.001

Standard errors in parentheses

                                            

rmse                1.025           1.023   

r2                  0.919           0.920   

N                     100             100   

                                            

                  (0.103)         (0.126)   

_cons               2.106***        2.192***

                                 (0.0590)   

z                                 -0.0692   

                 (0.0915)        (0.0919)   

x                   3.056***        3.044***

                                            

                       y1              y1   

                      (1)             (2)   

                                            

. esttab m1 model_z, se scalars(r2 rmse)
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Exercise 7. Now let’s add a third explanatory variable, V.  Please create a variable V that is a 

dummy variable where precisely 40% of the observations are coded as 1 and 60% are coded as 0. 

Please re-do the analysis reported in Exercise 1 adding V as a second explanatory variable to the 

model. What do you observe from the results of both regressions for the coefficient estimates? 

How is the interpretation of the coefficients different from Exercise 1?  

 

 

The third model is now testing the effect of x, z and v on y. In this model, x continues to have a 

statistically significant effect on y. However, the interpretation of this effect is different. The 

effect is now contingent on holding z and v constant. As v is a dummy variable, the concept of 

holding v constant is less insightful. We will discuss this further in the class on interactions.   

 

* p<0.05, ** p<0.01, *** p<0.001

Standard errors in parentheses

                                                            

rmse                1.025           1.023           1.011   

r2                  0.919           0.920           0.923   

N                     100             100             100   

                                                            

                  (0.103)         (0.126)         (0.126)   

_cons               2.106***        2.192***        2.164***

                                                  (1.018)   

v                                                   1.885   

                                 (0.0590)        (0.0585)   

z                                 -0.0692         -0.0618   

                 (0.0915)        (0.0919)        (0.0909)   

x                   3.056***        3.044***        3.050***

                                                            

                       y1              y1              y1   

                      (1)             (2)             (3)   

                                                            

. esttab m1 model_z model_zv, se scalars(r2 rmse)


