
OpenStack Tutorial

I. OpenStack Dashboard

The goal of this part is to familiarize yourself with OpenStack dashboard. The focus
will be on the following operations (for more information:	 	
https://docs.openstack.org/user-guide/dashboard.html):

- Setting up SSH keys
- Setting up networks
- Creating VM

In order to perform these operations you need to login Ericsson’s cloud via
https://129.192.68.4/. This will give you access to your project(s). Once logged in,
you will get a page similar to Fig 1.
	
	
	 	 	 	 	 	 	
	
	 	

	
	 Fig	 1.	 	 Project	 Dashboard	

	
Setting up SSH keys

In order to be able to SSH your instances, you need to create and download your
keypair file. For that to happen you need to do the following two steps: enable ssh
service and create keypair.

1) Enabling SSH
On the Project tab, open the Network tab, then Security Groups. You will get a
window similar to Fig 2 under Security Group tab. Check if ssh service is enabled by
clicking Manage Rules button on far right (see Fig 3).

Selected project name (Select the appropriate project from the
drop down menu if you have more projects)

Fig 2. Security Group

Fig 3. List of enabled services
	

If ssh is not in the list, select +Add Rule which will bring up a popup. Select ssh
from the drop down and press Add (see fig 4).

	
Fig 4. Adding ssh rule.
	
Note that you can follow the same step to enable any service, for example http.

ssh	 is	 enabled	

2) Creating key pair

On the Project tab, open the Compute tab, then Key Pairs. You will get similar to Fig
5 under Key Pairs tab. Select +Create Key Pair and provide a name to your key pair.
The file will be downloaded automatically (if not please download the file manually).
Now you can use the ssh command to make a secure connection to your instance (We
will see how that later once a VM is created).

Fig 5. Creating Key Pair.

$ ssh -i MyKey.pem ubuntu@10.0.0.2 #make sure that the permission to
Mykey.pem is set to owner.

For Windows user please check:
https://github.com/davidheijkamp/docs/wiki/Howto:-Creating-and-using-OpenStack--
-SSH-keypairs-on-Windows

Setting	 up	 Network	

This section will show you how to create a new network, set up a subnet associated
with the network and create router.

1) Creating network and its associated subnet

On the Network tab, open the Networks tab, then press +Create Network on the top
right side. Provide the required information and press Next (see fig 6).

Fig 6. Creating network.

The UI shown in fig 7 will be displayed after pressing Next in fig 6. Provide the
necessary information and press Next. It is advisable to use private IP address ranges
either from class A, B, or C in Network Address field. You do not have to specify a
subnet when you create a network, but if you do not specify a subnet, the network
cannot be attached to an instance.

Fig 7: Creating subnet.

Press Next in fig 7 and press Create in Fig 8. You have now created a network with
subnet!!

Fig 8: creating subnet final step.

Creating Router

For VMs to communicate with the external world you need to set up a router.

On the Project tab, open the Network tab and click Routers category and press
+Create Router. Specify a name for the router and External Network, and click Create
Router(see fig 9).

Fig 9: Creating router.

To connect the private network created above to the newly created router, perform the
following steps:

a. On the Routers tab, click the name of the router you created.

b. On the Router Details page, click the Interfaces tab, and then click Add
Interface.

c. In the Add Interface dialog box, select the Subnet you created above (see Fig
10).

Fig 10: Connecting private network with router.

Setting	 up	 a	 VM	
	
It is now time to create a VM and play with it!!
	

1) Creating VM

On the Project tab, open the Compute tab and click Instances category. The dashboard
shows the instances with its name, its private and floating IP addresses (we will come
to this later), size, status, task, power state, and so on.

Click Launch Instance in the top right corner and provide the necessary information
(see figs 11-15). To see the progress on how the VM is initializing, click the name of
the VM instance in the list of instances, then click 'Log’.

	
Fig 11: Creating VM.

	

	
Fig 12. Selecting Source.

	

	
Fig 13. Selecting Flavor.

	
Fig 14: Select the key pair if you have more than one (Choose the key pair you
created above).
	

	 	
Fig 15: Network setup (choose the network you created above)

	

2) 	 Associated	 floating	 IP	 to	 a	 VM	

Associating floating IP to a VM helps to associate public IP address to your VM so
that it can be accessed externally.

On the Project tab, open the Compute tab and click Instances category. On the far
right parallel to the instance click the drop down menu and select Associate Floating
IP. Choose from the list and click Associate (see fig 16). Sometimes, you may not see

any Floating IPs, in which case you need to click the "+" button to the right of the
floating IP.	 Your VM is now accessible from anywhere!! Please remember the IP, you
will need it soon!!	

Fig 16: Associating floating IP.

It is now time to play with the VM. Let us login to the VM. Remember the key pair
file that you downloaded sometime ago. It is time to use it now to connect to the vm.

Use the ssh command to make a secure connection to the instance as shown below.

$ ssh -i MyKey.pem ubuntu@floating_ip

II. Python Script

The operations that you did using the dashboard can also be done using python. To do
that we use the VM that you created above as a devVM. Please login to the selected
devVM. Once you are there, you need to install the following OpenStack libraries
(This tutorial uses python-novaclient 7.1.0).

$ sudo apt-get update

$ sudo apt install python-dev python-pip

$ export LC_ALL=C

$ sudo pip install python-novaclient==7.1.0

$ sudo pip install python-swiftclient

VM-related Operations

We have provided a python script for some of the operations. Please clone
https://github.com/ewnetu/WASP.git and check vm-operations.py and vm-init.sh
scripts (the scripts are the basis for the micro services section below). The script is
based on python-novaclient 7.1.0 and some of the operations may not work if you use
a different version (for more:	 https://docs.openstack.org/developer/python-
novaclient/ref/v2/).

$ git clone https://github.com/ewnetu/WASP.git

 In order to run the script you need to specify the right information in
config.properties file. Below is a sample example (Note that you only need to change
the values for the username, password,projectName, keyName and netId properties).
Don’t forget to put your key file in the same directory as vm-operations.py since
it will be used during VM instantiation (check createVM() method)

[user]

username:your username

password: your pass

[openstack]

projectName:your project name

user_domain_name:xerces

project_domain_name:xerces

project_domain_id: to get project id login to the dashboard select identity tab then projects

authUrl:https://xerces.ericsson.net:5000/v3

keyName:your keyname

netId:your network name

Add the following line in /etc/hosts file.

129.192.68.4 xerces.ericsson.net

The examples below show how to create a vm called ‘WASP” as well as list all VMs
for the tenant specified in the property file. Go through the source and try out the
different operations implemented in the script and see their effect.

$ python vm-operations.py -o create -n WASP

$ python vm-operations.py -o listVM

Micro services
We have also added a small micro service inside WASP vm. Get the IP address of
the WASP VM either from the dashboard or using python as shown below.

$ python vm-operations.py -o VMIP -n WASP

Then you can access the service as follows (Make sure to enable port 5000) (it is
based on Flask rest API, for more http://flask.pocoo.org/docs/0.12/quickstart/):

$ curl -i http://10.0.0.37:5000/v1/hello

Please note that the VM might take as much as 5 minutes to download the necessary
packages. If the above command does not work the first time, retry a few minutes
later or check the VM log for errors.

We will now introduce a simple master-worker service with three VMs (Frontend,
RabbitMQ and Backend) each having different roles. The Frontend posts messages to
RabbitMQ while the Backend pulls messages from RabbitMQ and prints them. For
more information on RabbitMQ visit https://www.rabbitmq.com/tutorials/tutorial-
one-python.html.

$ git clone https://github.com/muyiibidun/WASP.git

In order to deploy the three VMs, please create credentials.txt file and put the
following info (and don’t forget to replace the values with your credentials and
project name):

[auth]

username:your username

password: your pass

tenant_name: your project name

user_domain_name:xerces

project_domain_name:xerces

project_domain_id: to get project id login to the dashboard select identity tab then projects

auth_url: https://xerces.ericsson.net:5000/v3

net_id: net_id

pkey_id:pkey_id

Now you can deploy the three VMs as:

$./deploy-waspmq.sh

Get the IP addresses of the Frontend, RabbitMQ, and the Backend. ssh to the
Frontend and Backend VMs and perform the following operations. You must copy the
SSH key (PEM file) generated at the start of the tutorial on the devVM. You need to
open 3 terminals, one with the devVM, one with the frontend VM (via the devVM),
and one with the backend VM (via the devVM).

a) Frontend VM
Once you are inside the Frontend VM, perform the following operations.

$ cd /var/www/WASP/waspmq

Then edit credentials.txt file and insert the IP address of rabbitmq server. Once you
are done editing, run the service.

$ python frontend.py -c credentials.txt

b) Backend VM

Once you are inside the Backend VM, perform the following operations.

$ cd /usr/local/WASP/waspmq

Then edit credentials.txt file and insert the IP address of rabbitmq server. Once you
are done editing, run the service.

$ python backend.py -c credentials.txt

Now everything is ready, go back to your devVM and test the services.

$ curl -i http://[frontend-ip]:5000/v1/waspmq/hej

$ curl -i http://[frontend-ip]:5000/v1/waspmq/welcome+to+umea

Notice how the backend VM is picking up the 'work' submitted through the frontend
VM. Thanks to their decoupling through a message queue (here RabbitMQ), you can
scale up the application by adding several frontend VMs and backend VMs.

 Exercise

How can the above manual operations (setting IP address of rabbitMQ to frontend and
backend config files) be automated? (Hint: Start the rabbitMQ service first, get its IP
and set the IP to credentials.txt. This should be done after the cloning but before
starting the services.)

