OpenStack Tutorial

I. OpenStack Dashboard

The goal of this part is to familiarize yourself with OpenStack dashboard. The focus
will be on the following operations (for more information:
https://docs.openstack.org/user-guide/dashboard.html):

- Setting up SSH keys

- Setting up networks

- Creating VM

In order to perform these operations you need to login Ericsson’s cloud via
https://129.192.68.4/. This will give you access to your project(s). Once logged in,

you will get a page similar to Fig 1.

Selected project name (Select the appropriate project from the

/drop down menu if you have more projects)
a = CloudCourse -
Project Overview
Identit; Limit Summary
Muran; ’ . l .
Instances VCPUs RAM Floating IPs s
Used 10 of 50 Used 18.1GB of 50GB Allocated 10 of 10

Used 8 of 50

Volume Storage

Volumes
Used 10GB of 100GB

Used 1 of 10

Fig 1. Project Dashboard

Setting up SSH keys
In order to be able to SSH your instances, you need to create and download your

keypair file. For that to happen you need to do the following two steps: enable ssh

service and create keypair.

1)Enabling SSH

On the Project tab, open the Network tab, then Security Groups. You will get a
window similar to Fig 2 under Security Group tab. Check if ssh service is enabled by

clicking Manage Rules button on far right (see Fig 3).

Project v

Compute >

Project / Network / Security Groups

Netvork ~ Security Groups

Network Topology
Networks

Routers

Floating IPs

Orchestration >

Identity >

Displaying 1 item

O Name

O default

Displaying 1 item

Fig 2. Security Group

Description

Default security group

Actions

Manage Rules

+ Create Security Group 1 Delete Security Groups

Projct - Manage Security Group Rules: default
Compute v :

i Security Group Rules + Add i
Overview " Direction Ether Type P Protocol Port Range Actions
Instances U Egress 1Pv4 Any Delete Rule
Volumes O ingress 1PV Any
Images [Egress IPve Any
Access & Security [ingress. IPv6 Any
Network))" Ingress IPv4 TcP 22(SSH)
Object Store » a

O ingress 1Pv4 TcP 80 (HTTP)
Orchestration)
Displaying 6 fems,

Fig 3. List of enabled services

ssh is enabled

If ssh is not in the list, select +Add Rule which will bring up a popup. Select ssh
from the drop down and press Add (see fig 4).

Add Rule

Remote * @

CIDR

CIDR©@

0.0.0.0/0

Fig 4. Adding ssh rule.

v

Description:

Rules define which traffic is allowed to instances assigned
to the security group. A security group rule consists of
three main parts:

Rule: You can specify the desired rule template or use
custom rules, the options are Custom TCP Rule, Custom
UDP Rule, or Custom ICMP Rule.

Open Port/Port Range: For TCP and UDP rules you may
choose to open either a single port or a range of ports.
Selecting the "Port Range" option will provide you with
space to provide both the starting and ending ports for the
range. For ICMP rules you instead specify an ICMP type
and code in the spaces provided.

Remote: You must specify the source of the traffic to be
allowed via this rule. You may do so either in the form of an
IP address block (CIDR) or via a source group (Security
Group). Selecting a security group as the source will allow
any other instance in that security group access to any
other instance via this rule.

Cancel Add

Note that you can follow the same step to enable any service, for example http.

2)Creating key pair

On the Project tab, open the Compute tab, then Key Pairs. You will get similar to Fig
5 under Key Pairs tab. Select +Create Key Pair and provide a name to your key pair.
The file will be downloaded automatically (if not please download the file manually).
Now you can use the ssh command to make a secure connection to your instance (We
will see how that later once a VM is created).

Compute v

Overview Key Pai rS

Volumes + Create Key Pair &, Import Key Pair

Images Key Pair Name Fingerprint Actions

o ftems to cisplay

API Access

Fig 5. Creating Key Pair.

$ ssh -i MyKey.pem ubuntu@10.0.0.2 #make sure that the permission to

Mykey.pem is set to owner.

For Windows user please check:
https://github.com/davidheijkamp/docs/wiki/Howto:-Creating-and-using-OpenStack--
-SSH-keypairs-on-Windows

Setting up Network

This section will show you how to create a new network, set up a subnet associated
with the network and create router.

1)Creating network and its associated subnet

On the Network tab, open the Networks tab, then press +Create Network on the top
right side. Provide the required information and press Next (see fig 6).

Create Network

Subnet * Subnet Details

Network N
etwork Name Create a new network. In addition, a subnet associated
Test with the network can be created in the next panel.
Admin State * @
UP ;

Cancel « Back m

Fig 6. Creating network.

The UI shown in fig 7 will be displayed after pressing Next in fig 6. Provide the
necessary information and press Next. It is advisable to use private IP address ranges
either from class A, B, or C in Network Address field. You do not have to specify a
subnet when you create a network, but if you do not specify a subnet, the network
cannot be attached to an instance.

Create Network

-m Subnet Details

Create Subnet Create a subnet associated with the new network, in
which case "Network Address" must be specified. If you
Subnet Name wish to create a network without a subnet, uncheck the

"Create Subnet" checkbox.
Test

Network Address * @

172.16.0.0/24

IP Version *

IPv4

W

Gateway IP @

—| Disable Gateway

Cancel « Back m

Fig 7: Creating subnet.

Press Next in fig 7 and press Create in Fig 8. You have now created a network with
subnet!!

Create Network

DRI

Enable DHCP Specify additional attributes for the subnet.

Allocation Pools @

DNS Name Servers @

8.8.4.4
8.8.8.8

Host Routes @

Fig 8: creating subnet final step.

Creating Router

For VMs to communicate with the external world you need to set up a router.

On the Project tab, open the Network tab and click Routers category and press
+Create Router. Specify a name for the router and External Network, and click Create
Router(see fig 9).

Create Router

Router Name *
Test_router DeSC ri ptlo n:

Creates a router with specified parameters.
Admin State

upP

<

T Y T T

Select network

v net04_ext ?

Cancel Create Router

Fig 9: Creating router.

To connect the private network created above to the newly created router, perform the
following steps:
a. On the Routers tab, click the name of the router you created.

b. On the Router Details page, click the Interfaces tab, and then click Add
Interface.

c. Inthe Add Interface dialog box, select the Subnet you created above (see Fig
10).

Add Interface

Select Subnet
cristi: 192.168.0.0/24 (cristi-blah)
CloudCourse: 10.0.0.0/24 (CloudCourse-subnet)

Description:

7

You can connect a specified subnet to the router.

IP Address (optional) @
The default IP address of the interface created is a

gateway of the selected subnet. You can specify
another IP address of the interface here. You must
select a subnet to which the specified IP address

Router Name * _
belongs to from the above list.

Test_router

Router ID *

8cOfac42-76ea-41e4-b1ce-b2737e66f945

Cancel Add interface

Fig 10: Connecting private network with router.

Setting up a VM

It is now time to create a VM and play with it!!

1) Creating VM

On the Project tab, open the Compute tab and click Instances category. The dashboard
shows the instances with its name, its private and floating IP addresses (we will come
to this later), size, status, task, power state, and so on.

Click Launch Instance in the top right corner and provide the necessary information
(see figs 11-15). To see the progress on how the VM is initializing, click the name of
the VM instance in the list of instances, then click 'Log’.

Please provide the initial hostname for the instance, the availability zone where it will be deployed, and the instance e
count. Increase the Count to create multiple instances with the same settings.

Source * Instance Name * Total Instances (10 Max)
TestvM|
Flavor *
30%
Availability Zone
Networks *
nova :
M 2 Current Usage
Network Ports . 1 Added
Count .
7 Remaining
Security Groups 1 <
Key Pair
Configuration
Server Groups
Scheduler Hints
Metadata
% Cancel < Back Next >

Fig 11: Creating VM.

Launch Instance

Details

Flavor
Networks
Network Ports
Security Groups
Key Pair
Configuration
Server Groups
Scheduler Hints

Metadata

% Cancel

Instance source is the template used to create an instance. You can use an image, a snapshot of an instance 9
(image snapshot), a volume or a volume snapshot (if enabled). You can also choose to use persistent storage by

creating a new volume.
Select Boot Source

Image
Volume Size (GB) *

4

Allocated

Name

> ubuntu 16.04

wv Available

Q | Click here for filters.

Updated

5/11/17 4:31 PM

Name Updated
> CirOS-raw 5/11/17 8:50 AM
> CentOS7 5/11/17 2:01 PM

Fig 12. Selecting Source.

Launch Instance

Details

Source
Networks
Network Ports
Security Groups
Key Pair
Configuration
Server Groups
Scheduler Hints

Metadata

% Cancel

Create New Volume

Yes

<«

No

Delete Volume on Instance Delete

: Yes IEJ

Size

2.20GB

Size

39.22 MB

8.00 GB

Type

raw

Type

raw

raw

<Back

Visibility
Public L 4
Select one
x
Visibility
Public +
Public +
Next >

Flavors manage the sizing for the compute, memory and storage capacity of the instance.

Allocated
Name VCPUS

> c2m3 2

v Available

Q | Click here for filters.

Name VCPUS

> c2m2 2

> c2mi 2
> c3m2 3
> c3m4 3
> c2md 2
> c3m1 3

Fig 13. Selecting Flavor.

RAM

3GB

RAM

2GB

1GB

2GB

4GB

4GB

1GB

Total Disk

20 GB

Total Disk

20 GB

20 GB

20 GB

20 GB

20 GB

20 GB

Root Disk

20 GB

Root Disk

20 GB

20 GB

20 GB

20GB

20 GB

20 GB

Ephemeral Disk

0GB

Ephemeral Disk

0GB

0GB

0GB

0GB

0GB

0GB

<Back

Next >

Public
Yes L 4
Select one
x

Public

Yes 1+
Yes +
Yes |
Yes |
Yes |
Yes |

& Launch Instance

Launch Instance

Detail A key pair allows you to SSH into your newly created instance. You may select an existing key pair, import a key 9
etalls pair, or generate a new key pair.

Source * <+ Create Key Pair &, Import Key Pair

Flavor * Allocated

Displaying 0 items
Networks
Name Fingerprint

Network Ports
Select a key pair from the available key pairs below.

Security Groups Displaying 0 items

Key Pair
v Available Select one
Configuration Q ck here for ers *
Server Groups Displaying 1 item
i int A&
Scheduler Hints Name Fingerprint $

> bayuh 19:fb:c8:71:6d:70:55:€6:9b:02:06:01:e3:2c:c8:cf +
Metadata

Displaying 1 item

Fig 14: Select the key pair if you have more than one (Choose the key pair you
created above).

Launch Instance

Networks provide the communication channels for instances in the cloud.

Details
v Allocated Select networks from those listed below.
*
Source k b A iated Shared Admin State Status
*
Flavor $1 > TestNetwork test No Up Active v
v Available Select at least one network
Network Ports Q| Click here for ers *
Security Groups Network Subnets Associated Shared Admin State Status
Key Pair > ck-net ck-subnet No Up Active 1+
Configuration
> ekernet ekernet-sub No Up Active +
Server Groups
> internet internet-sub1 Yes Up Active 1

Scheduler Hints

Metadata

Fig 15: Network setup (choose the network you created above)

2) Associated floating IP to a VM

Associating floating IP to a VM helps to associate public IP address to your VM so
that it can be accessed externally.

On the Project tab, open the Compute tab and click Instances category. On the far
right parallel to the instance click the drop down menu and select Associate Floating
IP. Choose from the list and click Associate (see fig 16). Sometimes, you may not see

any Floating IPs, in which case you need to click the "+" button to the right of the
floating IP. Your VM is now accessible from anywhere!! Please remember the IP, you
will need it soon!!

Manage Floating IP Associations

IP Address *

IP Address * X .)
Select the IP address you wish to associate with the

+ Select an IP address selected instance or port.
94.246.117.148

94.246.117.149

94.246.117.15

94.246.117.147

Rl
+

Fig 16: Associating floating IP.

It is now time to play with the VM. Let us login to the VM. Remember the key pair
file that you downloaded sometime ago. It is time to use it now to connect to the vm.

Use the ssh command to make a secure connection to the instance as shown below.

$ ssh -i MyKey.pem ubuntu@floating_ip

I1. Python Script

The operations that you did using the dashboard can also be done using python. To do
that we use the VM that you created above as a devVM. Please login to the selected
devVM. Once you are there, you need to install the following OpenStack libraries
(This tutorial uses python-novaclient 7.1.0).

8 sudo apt-get update

$ sudo apt install python-dev python-pip

8 export LC ALL=C

8 sudo pip install python-novaclient==7.1.0

$ sudo pip install python-swiftclient

VM-related Operations

We have provided a python script for some of the operations. Please clone
https://github.com/ewnetu/WASP.git and check vm-operations.py and vm-init.sh
scripts (the scripts are the basis for the micro services section below). The script is
based on python-novaclient 7.1.0 and some of the operations may not work if you use
a different version (for more: https://docs.openstack.org/developer/python-
novaclient/ref/v2/).

$git clone https://github.com/ewnetu/WASP.git

In order to run the script you need to specify the right information in
config.properties file. Below is a sample example (Note that you only need to change
the values for the username, password,projectName, keyName and netld properties).
Don’t forget to put your key file in the same directory as vm-operations.py since
it will be used during VM instantiation (check createVM() method)

[user]

username:your username

password: your pass

[openstack]

projectName:your project name

user_domain_name:xerces

project_domain_name:xerces

project_domain_id: to get project id login to the dashboard select identity tab then projects
authUrl:https://xerces.ericsson.net:5000/v3

keyName:your keyname

netld:your network name

Add the following line in /etc/hosts file.

129.192.68.4 xerces.ericsson.net

The examples below show how to create a vi called “WASP” as well as list all VMs
for the tenant specified in the property file. Go through the source and try out the
different operations implemented in the script and see their effect.

$ python vm-operations.py -o create -n WASP

$ python vm-operations.py -o listVM

Micro services
We have also added a small micro service inside WASP vm. Get the IP address of
the WASP VM ceither from the dashboard or using python as shown below.

$ python vm-operations.py -o VMIP -n WASP

Then you can access the service as follows (Make sure to enable port 5000) (it is
based on Flask rest API, for more http://flask.pocoo.org/docs/0.12/quickstart/):

$curl -i

Please note that the VM might take as much as 5 minutes to download the necessary
packages. If the above command does not work the first time, retry a few minutes
later or check the VM log for errors.

We will now introduce a simple master-worker service with three VMs (Frontend,
RabbitMQ and Backend) each having different roles. The Frontend posts messages to
RabbitMQ while the Backend pulls messages from RabbitMQ and prints them. For
more information on RabbitMQ visit https://www.rabbitmq.com/tutorials/tutorial-
one-python.html.

$git clone https://github.com/muyiibidun/WASP.git

In order to deploy the three VMs, please create credentials.txt file and put the
following info (and don’t forget to replace the values with your credentials and
project name):

[auth]

username:your username
password: your pass
tenant_name: your project name
user_domain_name:xerces
project_domain_name:xerces

project_domain_id: to get project id login to the dashboard select identity tab then projects

auth_url: https://xerces.ericsson.net:5000/v3

net_id: net_id

pkey_id:pkey_id

Now you can deploy the three VMs as:

$./deploy-waspmq.sh

Get the IP addresses of the Frontend, RabbitMQ, and the Backend. ssh to the
Frontend and Backend VMs and perform the following operations. You must copy the
SSH key (PEM file) generated at the start of the tutorial on the devVM. You need to
open 3 terminals, one with the devVM, one with the frontend VM (via the devVM),
and one with the backend VM (via the devVM).

a) Frontend VM
Once you are inside the Frontend VM, perform the following operations.

$cd /var/www/WASP/waspmq

Then edit credentials.txt file and insert the IP address of rabbitmq server. Once you
are done editing, run the service.

$python frontend.py -c credentials.txt

b) Backend VM

Once you are inside the Backend VM, perform the following operations.

$cd /usr/local/WASP/waspmq

Then edit credentials.txt file and insert the IP address of rabbitmq server. Once you
are done editing, run the service.

$ python backend.py -c credentials.txt

Now everything is ready, go back to your devVM and test the services.

$curl -i http://[frontend-ip]:5000/v1/waspmqg/hej

$curl -i http://[frontend-ip]:5000/v1/waspmqg/welcome+to+umea

Notice how the backend VM is picking up the 'work' submitted through the frontend
VM. Thanks to their decoupling through a message queue (here RabbitMQ), you can
scale up the application by adding several frontend VMs and backend VMs.

Exercise

How can the above manual operations (setting IP address of rabbitMQ to frontend and
backend config files) be automated? (Hint: Start the rabbitMQ service first, get its IP
and set the IP to credentials.txt. This should be done after the cloning but before
starting the services.)

