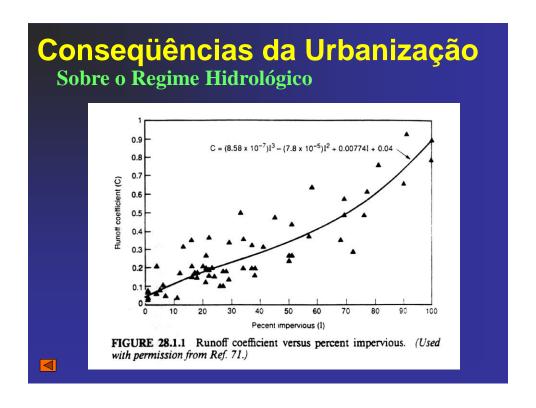
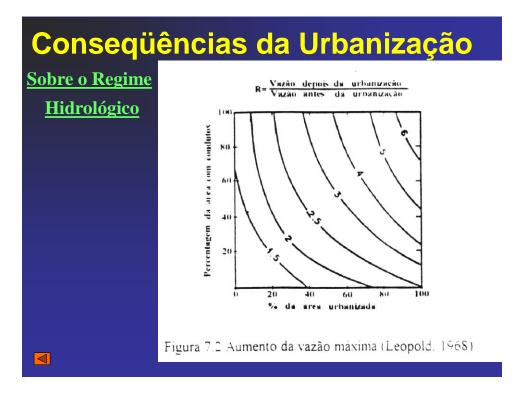


PHD 3337 - Água em Ambientes Urbanos I

DRENAGEM URBANA


Retenção e Detenção


Prof. Dr Joaquin Bonnecarrère

Armazenamento Natural

- Água retida pela vegetação
- Água infiltrada e retida no solo
- Água retida em depressões do terreno
- Água retida em grandes depressões e lagos
- Água armazenada dinâmicamente nos rios

A Cheia de 22.02.1999

Conseqüências da Urbanização Sobre a Qualidade das Águas

- Ocupação desordenada das áreas urbanas gera problemas de poluição nos mananciais.
- Em eventos de chuvas intensas, há o carreamento de material da bacia para a drenagem natural ou artificial.
- Fontes : poluição pontual e poluição difusa.Possíveis soluções: na rede de drenagem ou na fonte.

\triangleleft

Consequências da Urbanização

Sobre o comportamento político e administrativo

- · Não se planeja a médio e longo prazos
- Pressões para ocupação do solo
- Preferência por obras de grande visibilidade

Drenagem Urbana

Conjunto de obras e medidas cujos principais objetivos são :

- minimizar prejuízos por inundações em áreas urbanas
- diminuir riscos a que as propriedades estão sujeitas
- possibilitar desenvolvimento urbano harmônico e articulado

Medidas Estruturais e Não-Estruturais

Estruturais:

- •Tipos:
- Obras de afastamento de cheias
 - Micro e Macro-drenagem
 - Diques de contenção
 - Reversão de Bacias

Medidas Estruturais e Não-Estruturais

Estruturais:

- •Critérios de Projeto:
 - Período de Retorno (Condições sociais, econômicas e culturais
 - Produção de sedimentos (galerias x canais)
 - Coeficientes de Rugosidade
 - Ocupação Máxima da bacia

Medidas Estruturais e Não-Estruturais

Estruturais:

- Precauções:
 - Riscos de rompimentos
 - Ocupação do leito maior

Medidas Estruturais e Não-Estruturais Estruturais:

- •Desvantagens:
 - Execução de obras
 - -Intervenção na drenagem natural
 - -Intervenção no canal
 - -Efeitos localizados : deslocamento das inundações
- -Alto Custo: investimentos concentrados

As Obras de Retificação do rio Tietê na Década de 70

Obras de Aprofundamento na Década de 80

Medidas Estruturais e Não-Estruturais <u>Estruturais:</u>

- •Desvantagens:
 - -Riscos hidrológicos
 - -Alteração do comportamento hidrológico da bacia
 - -Operação e manutenção
 - -Impactos ambientais

Obras de Desassoreamento - Trabalho Constante

Medidas Estruturais e Não-Estruturais <u>Não-Estruturais:</u>

•Vantagens:

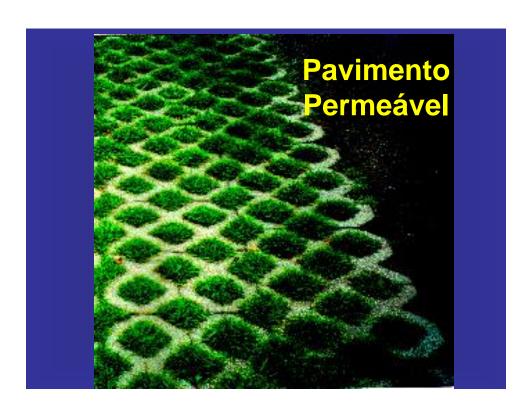
- Apóiam-se em aspectos de caráter sóciopolíticos, como educação da população e participação pública.
- São de custo muito mais baixo, mas nem por isso de aplicação mais fácil.

Armazenamento Artificial

• Objetivo de repor ou aumentar o armazenamento perdido pela alteração do uso e ocupação do solo (urbanização ou agricultura) para retardar a taxa de resposta do escoamento superficial das áreas pavimentadas e do sistema de drenagem artificial (tubos, canais).

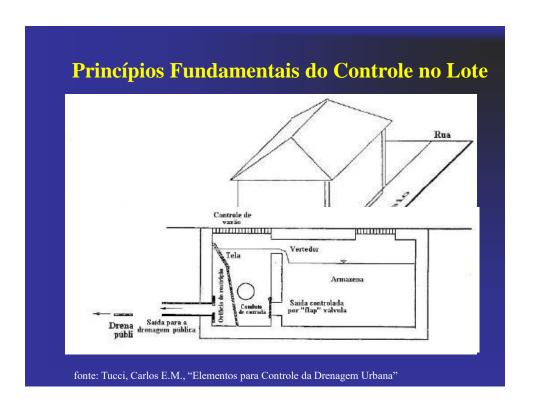
Controle na Fonte x Controle a Jusante

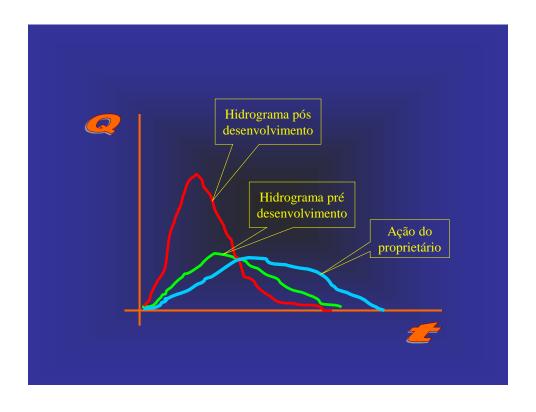
Fonte:


- Armazenamento próximo à formação do escoamento direto:
 - Reservatórios pequenos;
 - Permitem utilização mais eficiente do sistema de drenagem a jusante.

Categorias de Armazenamentos na Fonte:

- Disposição local:
 - infiltração, percolação, pavimento poroso
- Controle na entrada
 - armazenamento em telhados, áreas de estacionamento
- Detenção local:
 - drenos, lagoas "secas" ou "molhadas", reservatórios de concreto




Controle na Fonte: Retenção no lote

Princípios Fundamentais do Controle no Lote

- O proprietário não tem o direito de provocar inundações para jusante e passar os custos de controle para a sociedade
- As vazões descarregadas não podem ser superiores à condição de pré desenvolvimento
- As ações e custos para manter as condições pré desenvolvimento são de responsabilidade do proprietário

Exemplo da Prefeitura de São Paulo

- ▶ elaborou a lei 13.276, sancionada dia 04 de janeiro de 2002 e;
- regulamentada pelo Decreto nº 41.814 em 15 de março de 2002
- também conhecida como a lei das 'piscininhas'
 - obriga a execução de reservatório para as águas coletadas por coberturas e pavimentos nos lotes, edificados ou não, que tenham área impermeabilizada superior a 500 m²

Controle na Fonte x Controle a Jusante

Exemplo da Prefeitura de São Paulo

• O volume de armazenamento do reservatório obedece à equação:

 $V = 0.15 \times Ai \times IP \times t$, onde

V = volume do reservatório (m³),

Ai =área impermeabilizada (m^2),

- IP = índice pluviométrico igual a 0,06 m/h, t = tempo de duração da chuva igual a um hora.
- Os estacionamentos em terrenos autorizados, existentes e futuros, deverão ter 30% (trinta por cento) de sua área com piso drenante ou com área naturalmente permeável.

Exemplo da Prefeitura de São Paulo

 A água contida pelo reservatório deverá preferencialmente infiltrar-se no solo, podendo ser despejada na rede pública de drenagem após uma hora de chuva ou ser conduzida para outro reservatório para ser utilizada para finalidades não potáveis.

Controle na Fonte x Controle a Jusante

Exemplo da Prefeitura de São Paulo

- A Lei 13.276 tem função tripla: aumentar a área permeável do solo, diminuir o risco de inundações e reservar água para fins não potáveis nos empreendimentos;
- A lei paulista apesar de não ser perfeita já é um avanço na legislação pois leva em consideração a possibilidade de uso da água de drenagem.

Exemplo da Prefeitura de São Paulo

- Toda retenção é válida, pois descongestiona os dutos da cidade, e ajuda a respeitar as vazões de restrição;
- Com o aumento do número de edifícios com reservatórios, os resultados benéficos da retenção tendem a ser mais significativos;
- Caso o destino da água seja a infiltração no solo, haverá recarga de aquiferos;

Controle na Fonte x Controle a Jusante

Exemplo da Prefeitura de São Paulo

- Possibilidade de proliferação de animais transmissores de doenças se não houver regulamentação de mecanismos que impeçam acesso de animas e facilitem a manutenção da limpeza do reservatório;
- O índice pluviométrico (60 mm/h) usado na Lei 13.276 para o cálculo do volume do reservatório é o de uma chuva bastante intensa (TR = 10 anos);
- Lei 13.276 não dá diretrizes de execução e mecanismos de fiscalização do escoamento adequado da água;

Exemplo da Prefeitura de São Paulo

- Se a rotina de bombeamento não for regulamentada, já que em geral, está a cargo dos zeladores, as bombas podem ser ligadas aleatoriamente, lançando água quando ainda estiver chovendo em áreas críticas;
- Adição de custos à construção civil;
- Aumento no consumo de energia;

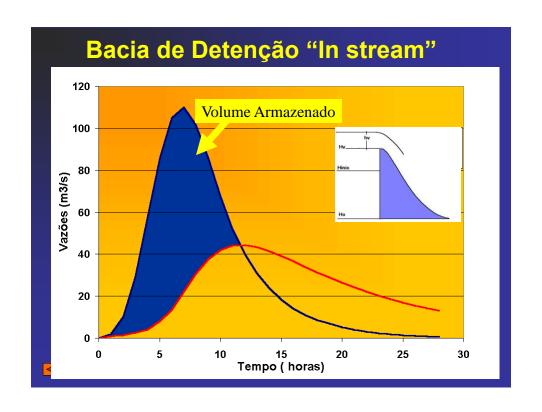
Controle na Fonte x Controle a Jusante

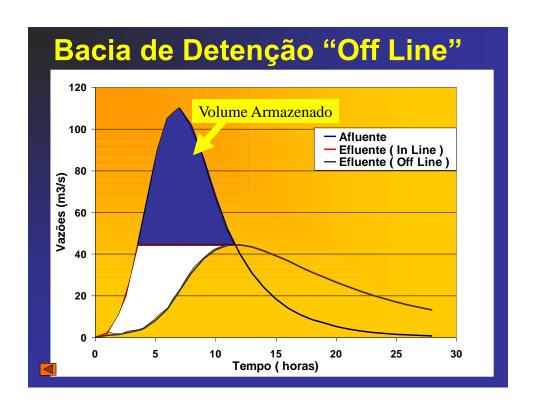
Jusante

- Redução nos custos de construção, operação e manutenção (efeito de escala)
- Dificuldade em encontrar local adequado
- Grandes barragens ou reservatórios podem encontrar oposição pública

Categorias de Armazenamento a Jusante

- Reservatórios no Rio ("in stream")
- Reservatórios fora do rio ("off-stream")

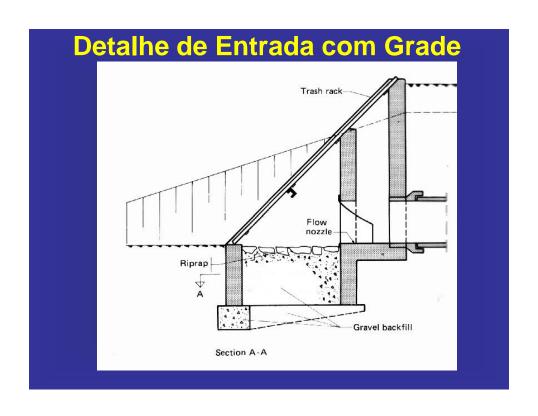




Tipos de armazenamento • Retenção • Detenção • Condução

Tipos de Armazenamento RETENÇÃO:

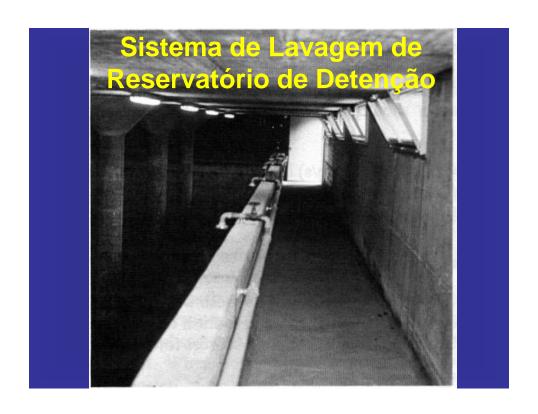
- O escoamento de um dado evento de cheia é armazenado e NÃO é descarregado no sistema de drenagem a jusante durante o evento.
- A água armazenada pode ser utilizada para irrigação, manutenção de vazão mínima ou para ser evaporada ou infiltrada no solo.
- O reservatório é permanentemente preenchido com água (reservatório "molhado")


Tipos de Armazenamento

DETENÇÃO:

- O armazenamento é de curto prazo, com atenuação do pico de vazão de saída a um valor inferior ao de entrada.
- O volume de água descarregada é igual ao afluente, apenas distribuído em um tempo maior.
- Usualmente, esvaziam em menos de um dia.
- A área é seca e pode ser utilizada para fins recreacionais.

Lagoas de Detenção em Série



Vertedor de Emergência

Tipos de Armazenamento

CONDUÇÃO:

- O armazenamento é feito de forma transitória, quando os canais, várzeas e drenos conduzem o escoamento superficial.
- Construção de canais de baixa velocidade, com seções transversais largas ajudam nesse armazenamento.

soleiras - Aricanduva

Opções de Estruturas de Entrada e Saída

Entrada por Gravidade:

Quando a área do reservatório está abaixo da cota da água a ser armazenada.

Entrada por Bombeamento:

Este tipo só é vantajoso quando há um local privilegiado para o reservatório.

Opções de Estruturas de Entrada e Saída

Saída por Gravidade:

Condição típica de reservatórios criados com barramentos nos cursos d'água

Saída por Bombeamento:

Quando a escavação é feita abaixo do nível do curso d'água. Exige custo de energia e cuidados na operação.

Requisitos Gerais

As obras devem ser coordenadas considerando os cenários futuros de desenvolvimento e uso do solo.

As obras devem ser projetadas considerando toda a bacia hidrográfica e não só a porção imediatamente a jusante. Cuidado com o SINCRONISMO dos hidrogramas

Requisitos Gerais

As obras devem devem ser avaliadas em relação aos eventos normais (T = 5 a 10 anos) e aos eventos menos freqüentes (T = 100 anos), para provar que não pioram as condições de inundação a jusante.

As obras devem ser projetadas com base na topografia, solo e geologia do local.

Requisitos Gerais

As obras devem ser projetadas para reduzir o máximo possível as necessidades de operação e manutenção.

As várzeas a jusante não devem ser estimuladas a serem ocupadas nas áreas anteriormente inundáveis.

Benefícios do Armazenamento de Cheias

- Reduz os problemas de enchentes localizadas.
- Reduz os custos das galerias de drenagem.
- Melhora a qualidade da água, desde que haja manutenção.
- Minora a erosão em pequenos tributários pela redução das vazões.
- Cria oportunidade de reúso e recarga de aquiferos.

Eficiência dos Reservatórios de Detenção

- Medida efetiva para pequenos cursos d'água.
- Efeito maior junto ao reservatório; diminui para jusante.
- Pouco efetiva em rios grandes.
- Eficiência maior quando constituem medida preventiva.

Eficiência dos Reservatórios de Detenção

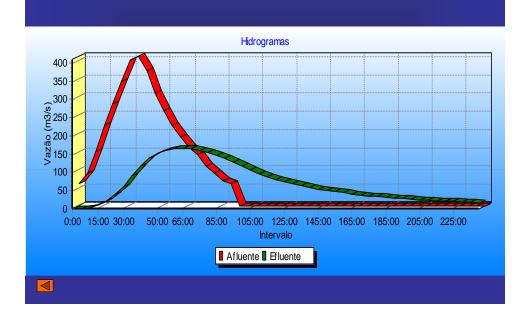
MEDIDA PREVENTIVA:

- Menores custos
- Legalidade pacífica (não agravar situação pré-existente)
- Custos por conta do empreendedor
- Desencoraja desenvolvimentos indevidos

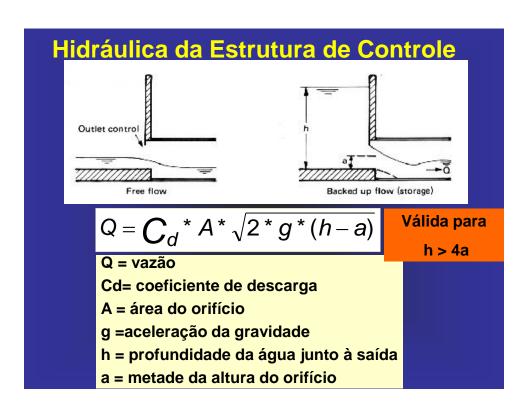
Eficiência dos Reservatórios de Detenção

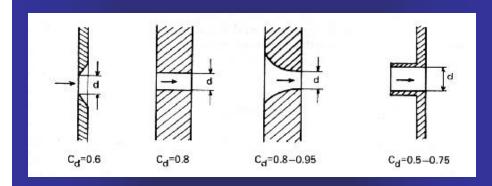
MEDIDA CORRETIVA:

- Maiores custos
- · Legalidade pode ser contestada
- Necessidade de novas leis
- Desgastes políticos
- Desapropriações mais caras e complexas
- Custos por conta do governo



Cálculo do Reservatório DADOS DE ENTRADA


- Hidrograma afluente ao reservatório
- Curva cota-volume do reservatório
- Equações de descargas dos órgãos de extravasão da barragem


Exemplo de Resultado

Coeficientes de Descarga

Tempo de Esvaziamento

$$t = -\frac{1}{C_d.A.\sqrt{2g}}.\int_{h_1}^{h_2} \frac{A_R}{\sqrt{h}}.dh$$

Quando a área do reservatório A_R é constante :

$$t = \frac{2.A_R}{C_d.A.\sqrt{2g}}.(\sqrt{h_1} - \sqrt{h_2})$$

Curvas de Descarga de Vertedores

$$Q = CLH^{3/2}$$

Vertedor de soleira livre

$$Q = \frac{2}{3} \sqrt{2g} c L \left(H_1^{\frac{3}{2}} - H_2^{\frac{3}{2}} \right)$$

Vertedor com comporta

$$Q = C_0 \left(2\pi R_S \right) H^{\frac{3}{2}}$$

Vertedor Tulipa

$$Q = CWD\sqrt{2gH}$$

Bueiro

Curvas de Descarga de Vertedores

Onde:

Q = vazão de descarga;

C = coeficiente de descarga;

L = largura da crista do vertedor;

 H_1 = carga total referente à crista do vertedor;

 H_2 = carga total referente ao topo da abertura;

 C_0 = coeficiente que relaciona H_1 e R_S ;

 R_S = raio de abertura do vertedor;

D = altura da abertura;

W = largura da embocadura.

Algoritmo de Cálculo

Equação da continuidade

$$\frac{Q_{e1} + Q_{e2}}{2} * \Delta t + V_1 - \frac{Q_{s1}}{2} * \Delta t = V_2 + \frac{Q_{s2}}{2} * \Delta t$$

•Reordenando-se os termos da equação, obtém-se:

$$Q_{e1} + Q_{e2} + \frac{V_1}{\Delta t/2} - Q_{s1} - Q_{s2} = \frac{V_2}{\Delta t/2}$$

Algoritmo de Cálculo

Int	Q_{e1}	Q_{e2}	V₁/(∆t/2)	Q _{s1}	NA_2	Q _{s2}	V ₂ /(∆t/2)	NA _{2calc}
1	60	84	157778	0.00	200.00	0.00	157922	200.09
					200.09	1.02	157921	200.09
2	84	150	157921	1.02	200.09	1.02	158153	200.24
					200.24	4.43	158150	200.24
3	150	216	158150	4.43	200.24	4.43	158507	200.46
					200.46	11.74	158500	200.46

- 1. Com o nível inicial NA₁, calculam-se V₁ e Q_{s1};
- 2. Adota-se uma primeira estimativa para $NA_2 = NA_1$;
- 3. Calcula-se Q_{e2} em função de NA₂ estimado;
- 4. Somam-se os termos do lado esquerdo da equação e obtém-se V₂ calculado;
- 5. Com a curva cota-volume obtém-se NA₂ calculado;

Algoritmo de Cálculo

Int	Q _{e1}	Q _{e2}	V₁/(∆t/2)	Q _{s1}	NA ₂	Q _{s2}	V ₂ /(∆t/2)	NA _{2calc}
1	60	84	157778	0.00	200.00	0.00	157922	200.09
					200.09	1.02	157921	200.09
2	84	150	157921	1.02	200.09	1.02	158153	200.24
					200.24	4.43	158150	200.24
3	150	216	158150	4.43	200.24	4.43	158507	200.46
					200.46	11.74	158500	200.46

- 6. Se a diferença entre NA_2 calculado e NA_2 estimado for grande , adota-se um novo NA_2 estimado como sendo igual ao NA_2 calculado ;
- 7. Se a diferença entre NA_2 calculado e NA_2 estimado for pequena, encerra-se a iteração do período.
- 8. Atualizam-se os valores iniciais do período seguinte com os valores do final deese período ;
- 9. Volta-se ao passo 1.

Referências

- Urbonas, Bem & Stahre, Peter <u>Stormwater Best management</u> practices and detention for water quality, drainage, and <u>CSO</u> <u>management</u> - PTR Prentice Hall, Inc., 1993, 449 pg.
- Sheaffer, John R. et al. <u>Urban Storm Drainage Management</u> Marcel Dekker, Inc. - 1982, 271 pg.
- Tucci, C. E. et al. <u>Hidrologia : Ciência e Aplicação</u> Ed. da Universidade - UFRGS/ABRH ,2a ed. 1997, 943 pg.
- Tucci, C. E. <u>Drenagem Urbana</u>, Ed. da Universidade **IPRGS/ABRH** ,1a ed. 1995, 428 pg.