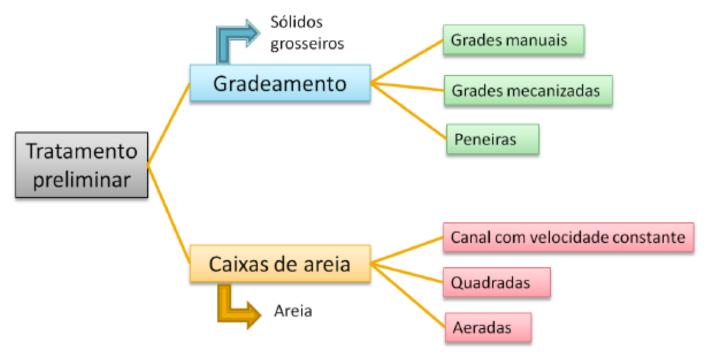
Escola de Engenharia de Lorena — EEL/USP


TRATAMENTO DE ÁGUAS RESIDUÁRIAS (LOB1225)

Aula 7
Tratamento preliminar de esgotos

Prof. MSc. Paulo Ricardo Amador Mendes

Tratamento preliminar

 Proteção às bombas, tubulações e unidades subsequentes do tratamento contra a presença de sólidos grosseiros e areia que compõem o afluente bruto

 Adicionalmente, a remoção de gordura também pode ser considerada como tratamento preliminar em uma ETE.

Gradeamento

Gradeamento

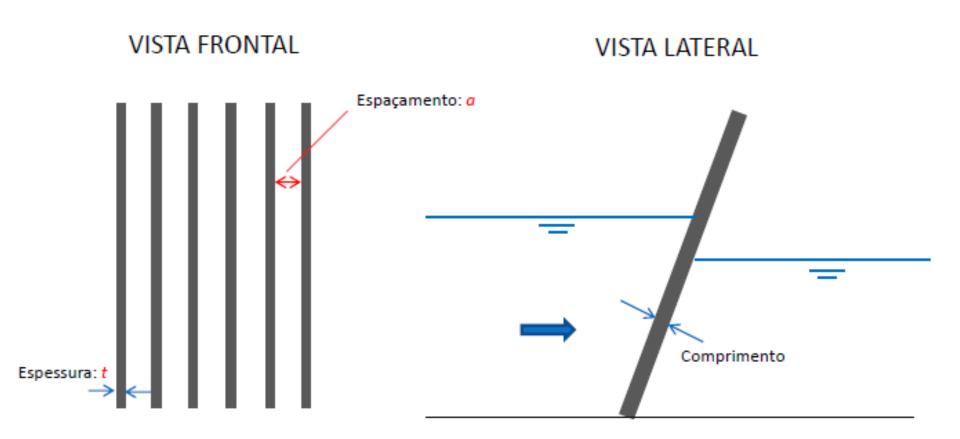
- Barras de ferro ou aço dispostas paralelamente
- Remoção de <u>sólidos grosseiros</u>
 - Presentes pelo uso inadequado do sistema de esgotamento sanitário
 - Função das condições socioeconômicas e do grau de conscientização da população

Finalidade

- Proteger tubulações, bombas, equipamentos da ETE
- Proteger o corpo receptor
- Remover parcialmente a carga poluidora afluente à ETE

Tipos de grades

Em função do espaçamento:


Tipo	Espaçamento (cm)	
Grade grosseira	4 - 10	
Grade média	2 - 4	
Grade fina	1 - 2	
Grade ultrafina ou <u>peneira</u>	0,3 - 1	

- Espessura das barras: 4 a 10 mm
- Comprimento das barras: 25 a 75 mm (estabilidade estrutural)

espaçamento

e

Material retido

Espaçamento (mm)	Retenção de sólidos grosseiros (L/1000 m³)		
12,5	50		
20	38		
25	23		
35	12		
40	9		
50	6		

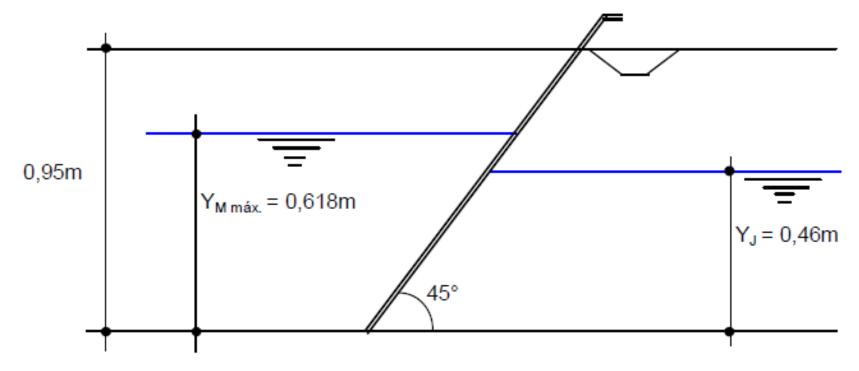
Fonte: Jordão & Pessôa (2014)

- Condicionamento
 - Lavagem
 - Secagem
 - Adição de químicos
- Destino: aterro ou incineração

Tipos de grades

Em função da mecanização da limpeza:

Grades de limpeza manual Inclinação das barras: 45 a 60°


(facilita limpeza; maior comprimento)

Grades mecanizadas Inclinação das barras: 70 a 90°

(Permite canais mais profundos)

Grades de limpeza manual

- Limpeza periódica de acordo com a necessidade, com uso de rastelos manuseados por um operador.
- Recomendado para até 100 L/s (NBR12209:2011)

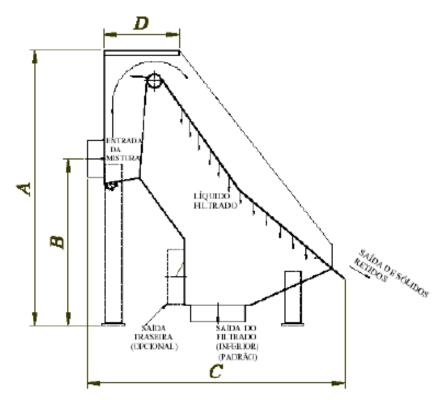
Grades de limpeza manual

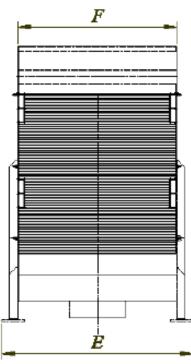
Grades de limpeza manual

ETE Piçarrão - Campinas

ETE Limoeiro (Presidente Prudente)

Grades rolantes ou escalares

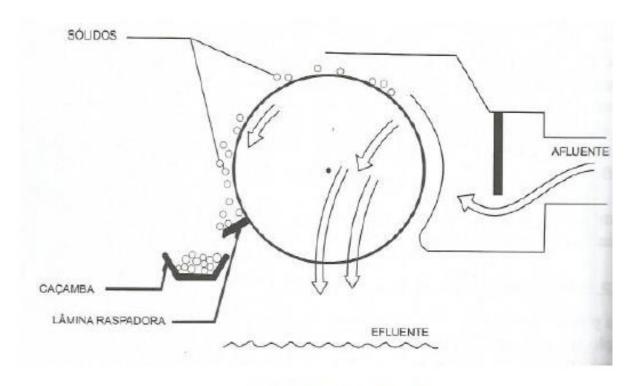



Fonte: http://www.huber.de

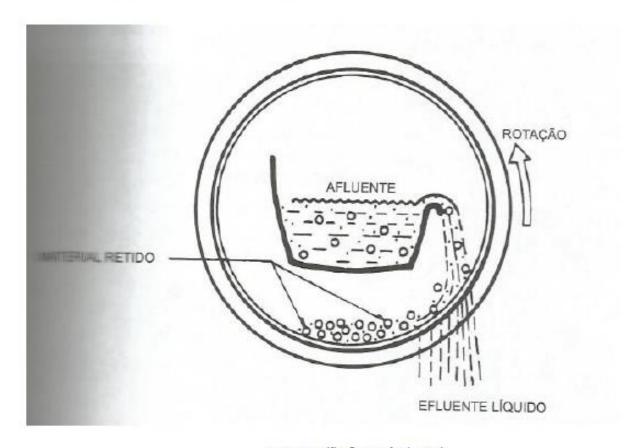
- Devem ser precedidas de grade
- Peneiras estáticas

Barras: aço inoxidável;

Espaçamento: 0,25-2,50 mm


Peneiras móveis

Tambores giratórios; Velocidade: até 4 rpm.



Peneiras móveis de fluxo tangencial "Rotostrainer"

Fonte: Jordão & Pessôa (2014)

Peneiras móveis de fluxo axial "Contrashear"

Fonte: Jordão & Pessôa (2014)

- Velocidades de passagem na grade (v)
 - 0,6 a 1,2 m/s (limpeza mecanizada)
 - 0,6 a 0,9 m/s (limpeza manual)
 - NBR 12209:2011: menor que 1,2 m/s em todos os casos
 - Maior do que 0,4 m/s no canal a montante (aproximação, v₀)

Dimensionamento do canal:

- Definição do espaçamento (a) e da espessura (t) da grade
- Cálculo da eficiência da grade
- Adota-se uma velocidade de passagem na grade
- Cálculo da área útil da grade
- Com a altura da lâmina de água, cálculo da largura do canal
- Verificações de v e v_o para diferentes vazões

Eficiência da grade:

$$E = \left(\frac{a}{a+t}\right)$$

(porcentagem da área da grade correspondente às aberturas)

• Área do canal:

$$S = \frac{A_u}{E}$$

S = área da secção transversal do canal até o nível d'água

A_u= área útil da secção transversal

a = espaçamento entre as barras

t = espessura das barras

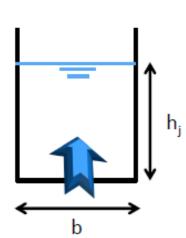
Exemplo:

<u>Dados</u>:

 $Q_{max} = 200 L/s$

Grade: a = 15 mm; t = 5 mm

Conhecida lâmina a jusante da grade: 55 cm


Adotar v (passagem) = 0,8 m/s

$$E = \frac{a}{a+t} = \frac{15}{15+5} = 0,75$$

$$v = \frac{Q_{\text{max}}}{A_{\text{u}}} \Longrightarrow 0.8 = \frac{0.200}{A_{\text{u}}} \Longrightarrow A_{\text{u}} = 0.25 \text{ m}^2$$

$$S = \frac{A_u}{E} = \frac{0.25}{0.75} = 0.33 \text{ m}^2$$

$$S = b \cdot h_j \Rightarrow b = \frac{0.33}{0.55} = 0.60 \text{ m}$$

- Perda de carga na grade
 - Pode ser calculada de maneira simplificada por: (existem outras formas)

$$\Delta H = 1,43. \left(\frac{v^2 - v_0^2}{2.g} \right) \qquad \begin{array}{c} \text{v = velocidade de passagem (m/s)} \\ \text{v}_0 = \text{velocidade de aproximação (m/s)} \end{array} \right)$$

- NBR 12209:2011: perda de carga mínima a ser considerada:
 - 0,15 m para limpeza manual
 - 0,10 m para grades mecanizadas
 - Para grades de limpeza manual: máximo de 50% de obstrução

- Exemplo
 - A partir do exemplo anterior:

$$v_0 = \frac{Q_{max}}{S} = \frac{0,200}{0.33} = 0,61 \text{ m/s}$$

Grade limpa:

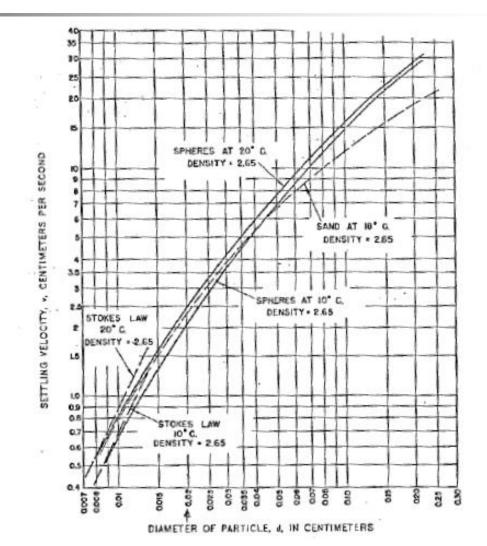
$$\Delta H = 1,43 \cdot \left(\frac{v^2 - v_0^2}{2.g}\right) = 1,43 \cdot \left(\frac{0,8^2 - 0,61^2}{2 \cdot 9,81}\right) = 0,02 \text{ m}$$

Grade 50% obstruída: dobro da velocidade de passagem

$$\Delta H = 1,43 \cdot \left(\frac{v^2 - v_0^2}{2.g}\right) = 1,43 \cdot \left(\frac{(2 \cdot 0,8)^2 - 0,61^2}{2 \cdot 9,81}\right) = 0,16 \text{ m}$$

Remoção de areia

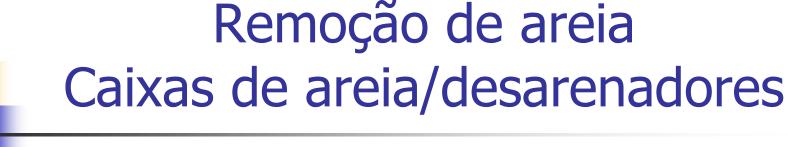
Remoção de areia Caixas de areia/desarenadores


Função:

- Evitar o transporte deste material para as unidades subsequentes
 - Proteção a bombas e equipamentos
 - Proteção contra assoreamento de unidades
- Devem ser dimensionadas de forma a reter somente areia, e não sólidos orgânicos sedimentáveis

Lei de Stokes

- Areia removida
 - Diâmetro efetivo:
 - · 0,2 a 0,4 mm
 - Massa específica:
 - 2650 kg/m³
 - Velocidade de sedimentação:
 - 2,0 cm/s

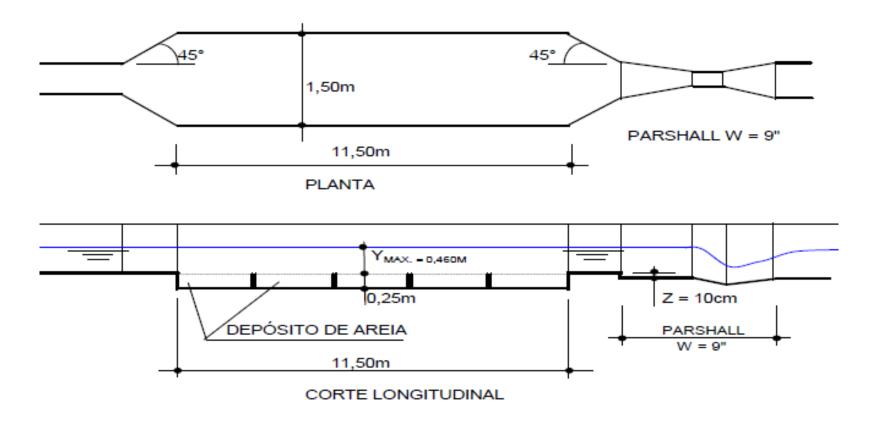


Remoção de areia Caixas de areia/desarenadores

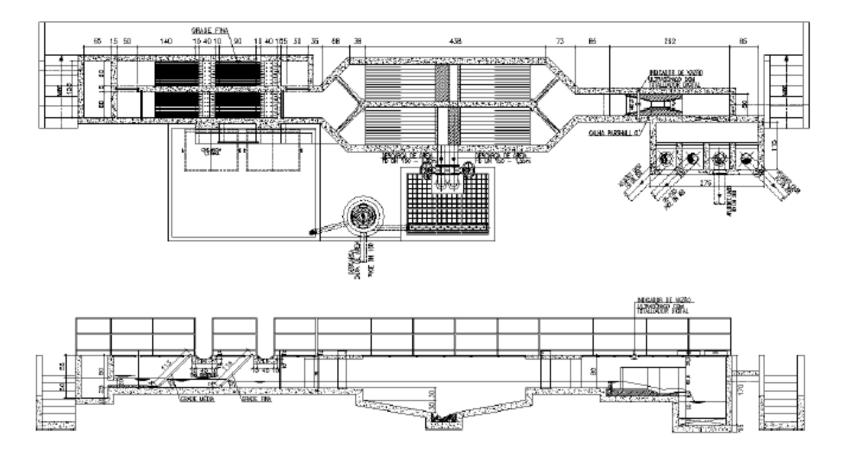
Características:

- Retenção de areia com características, quali e quantitativamente, indesejáveis ao corpo receptor;
- Armazenamento do material retido durante o período entre limpezas;
- Remoção e transferência do material retido e armazenado para dispositivos de transporte para destino final.

Tipos:


- De acordo com a forma: prismática (seção retangular ou quadrada) ou cilíndrica (seção circular);
- De acordo com a separação sólido-líquido: gravidade (natural e acelerada) e centrifugação (centrífuga ou vortex);
- De acordo com a remoção: manual, ciclone separador e mecanizada (raspador, bombas centrífugas, parafuso, air lift, caçambas transportadoras, etc.);
- De acordo com o fundo: plano (prismática com poço), inclinada (prismática aerada) e cônico (vortex).

- Dispositivos manuais ou mecânicos
- 30 a 40 L de areia removida/1000 m³ de esgoto tratado
- Destino: aterro sanitário ou lavagem da areia
- Tipos de caixas de areia
 - Tipo canal com velocidade constante controlada por calha Parshall
 - Seção quadrada em planta, com remoção mecanizada da areia
 - Caixa de areia aerada


• Tipo canal com velocidade constante e calha Parshall

Tipo canal com velocidade constante e calha Parshall

Tipo canal com velocidade constante e calha Parshall

Calhas Parshall

 Medição de vazão e controle da velocidade do canal da caixa de areia

Calhas Parshall

$$Q = K \cdot h^n \qquad \begin{array}{c} Q \, (m^3/s) \\ h \, (m) \end{array}$$

Largura Nominal	n	K	Capacidade (L/s)	
			Mín.	Máx.
3"	1,547	0,176	0,85	53,8
6"	1,580	0,381	1,52	110,4
9"	1,530	0,535	2,55	251,9
1'	1,522	0,690	3,11	455,6
1 1/2'	1,538	1,054	4,25	696,2
2'	1,550	1,426	11,89	936,7

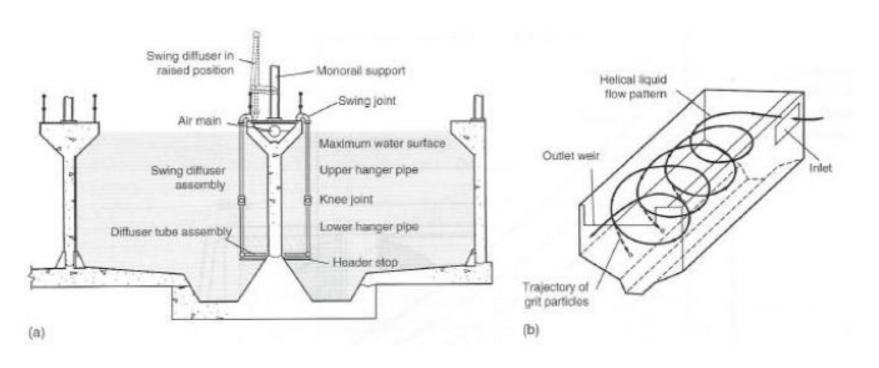
Caixa de areia/desarenadores

Caixas de areia quadradas

ETE Piçarrão (Campinas)

Caixa de areia/desarenadores

Caixas de areia quadradas


DESARENADOR MECANIZADO

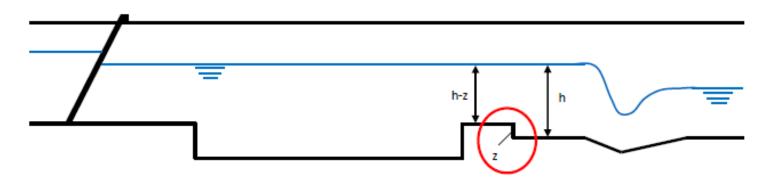
SISTEMA DE TRANSPORTE AFLUENTE 4,27m EFLUENTE 4,27m SISTEMA DE TRANSPORTE E LAVAGEM DE AREIA PLANTA DEFLETOR DE FLUXO

CORTE A-A

Caixa de areia/desarenadores

Caixas de areia aeradas

Fonte: Metcalf & Eddy (2014)


• Velocidade $(v_h) \cong 0.30 \text{ m/s}$

Inferior a 0,15 m/s: sedimentação de matéria orgânica

Superior a 0,4 m/s: arraste de areia sedimentada

Velocidade mantida constante: Calha Parshall a jusante

 Rebaixo "z": localizado a montante da calha Parshall e a jusante da caixa de areia, é calculado de tal maneira que mantenha a velocidade constante no canal com a variação de vazões

$$z = \frac{Q_{\text{max}} \times h_{\text{min}} - Q_{\text{min}} \times h_{\text{max}}}{Q_{\text{max}} - Q_{\text{min}}}$$

- Exemplo: cálculo do rebaixo "z"
 - Escolha da calha Parshall:

$$\frac{\text{Dados}}{\text{Q}_{\text{min}}} = 50 \text{ L/s}$$

$$\text{Q}_{\text{med}} = 100 \text{ L/s}$$

 $Q_{max} = 180 L/s$

$$Q_{\text{min}}$$
 = 50 L/s Q_{max} = 180 L/s Da tabela: LN = 9" \implies $n=1,\!530$; $K=0,\!535$

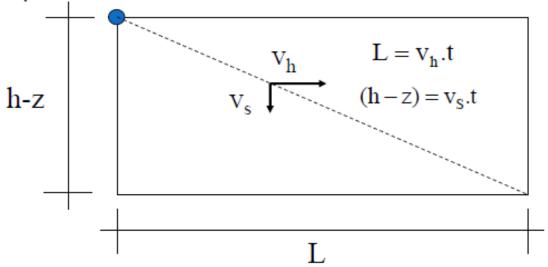
Equação da calha Parshall: $Q = 0.535 \cdot h^{1.530}$

Para
$$Q_{\text{max}}$$
: $0.18 = 0.535 \cdot h_{\text{max}}^{1.530} \Rightarrow h_{\text{max}} = 0.49 \text{ m}$

Para
$$Q_{min}$$
: $0.05 = 0.535 \cdot h_{max}^{-1.530} \Rightarrow h_{min} = 0.21 \text{ m}$

$$z = \frac{Q_{\text{max}} \times h_{\text{min}} - Q_{\text{min}} \times h_{\text{max}}}{Q_{\text{max}} - Q_{\text{min}}} = \frac{0.18 \cdot 0.21 - 0.05 \cdot 0.49}{0.18 - 0.05} = 0.10 \text{ m}$$

- Largura e comprimento calculados para Q_{max}
- Largura da caixa de areia:
 - Com (h-z) e fixando-se v_h em 0,3 m/s:


$$Q_{\text{max}} = v_h \cdot b \cdot (h - z) \Rightarrow b = \frac{Q_{\text{max}}}{(h - z) \cdot v_h}$$

No exemplo anterior:

$$b = \frac{Q_{\text{max}}}{(h-z) \cdot v_h} = \frac{0.18}{(0.49-0.10) \cdot 0.3} = 1.54 \text{ m}$$

$$\text{Verificação para Q}_{\text{min}} \colon \quad v_{\text{h}} = \frac{Q_{\text{min}}}{A_{\text{min}}} = \frac{Q_{\text{min}}}{b \cdot (h_{\text{min}} - z)} = \frac{0,05}{1,54 \cdot (0,21 - 0,10)} = 0,30 \text{ m/s}$$

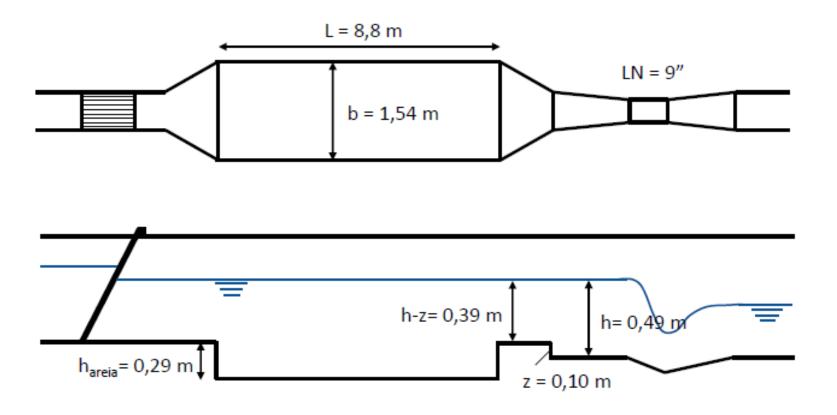
Comprimento da caixa de areia:

$$v_{s} = \frac{v_{h}.(h-z)}{L} \begin{cases} v_{s} = 0.02 \text{ m/s} \\ v_{h} = 0.3 \text{ m/s} \end{cases} \Rightarrow L = 15 \cdot (h-z) \text{ (multiplica-se pelo coeficiente de segurança de 1,5)} \\ \Rightarrow L = 22.5 \cdot (h-z) \end{cases}$$

Continuando o exemplo anterior: (usando Q_{max})

$$L = 22.5 \cdot (h_{max} - z) = 22.5 \cdot (0.49 - 0.10) = 8.8 \text{ m}$$

NBR12209:2011: taxa de escoamento superficial


$$q = \frac{Q}{A_s} = \frac{Q}{b.L} = 600 \text{ a } 1300 \text{ m}^3 / \text{m}^2.d$$
Área superficial (planta)

· Verificando no exemplo:

$$q = \frac{Q_{max}}{A_s} = \frac{Q_{max}}{b.L} = \frac{0.18 \cdot 86400}{1.54 \cdot 8.8} = 1148 \text{ m}^3 / \text{m}^2.d$$

- Profundidade do compartimento para armazenamento da areia
 - Função da quantidade de areia removida, considerando Q_{med}, e da periodicidade de limpeza da caixa de areia
 - 30 a 40 L de areia removida/1000 m³ de esgoto tratado
 - NBR12209:2011: mínimo de 0,20 m
- No exemplo
 - Adotando-se 30 L areia removida/1000 m³ de esgoto tratado
 - Em um dia: $0,100.86400 \cdot \frac{30}{1000} = 259,2 \text{ L areia}$
 - Considerando limpeza a cada 15 dias: 15.259,2 = 3888 L = 3,9 m³
 - Profundidade do compartimento: $h_{areia} = \frac{3.9}{b \cdot L} = \frac{3.9}{1.54 \cdot 8.8} = 0.29 \text{ m}$

Visão geral para Q_{max}

Roteiro: grade + caixa de areia + calha Parshall

- Sequência de passos no dimensionamento:
 - Escolha da calha Parshall;
 - Cálculo das lâminas líquidas a partir da equação da calha;
 - Cálculo do rebaixo "z" a montante da calha Parshall;
 - Determinação da largura e comprimento da caixa de areia com Q_{max};
 - Verificações de velocidades e taxas de escoamento superficial para a caixa de areia;
 - Determinação da profundidade do compartimento para depósito de areia e intervalo de limpeza;
 - Definição das características da grade;
 - Cálculo das dimensões do canal da grade e número de barras;
 - Verificação de velocidades;
 - Verificação de perdas de carga e determinação da lâmina líquida a montante da grade.

Remoção de gordura

Óleos e graxas

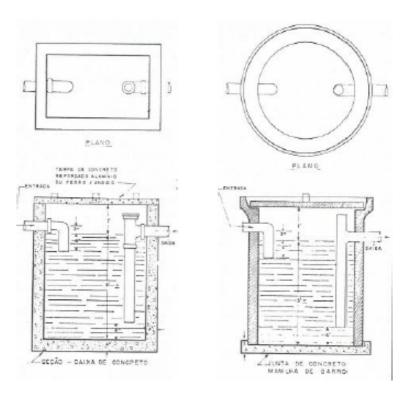
- Presença no esgoto
 - Resíduos de cozinha:
 - Manteigas, óleos vegetais, gorduras etc.
 - Cosméticos
 - Postos de serviço e garagens
 - Combustíveis, lubrificantes
 - Atividade industrial

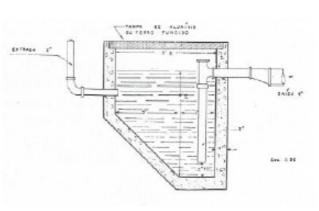
- Necessidade de remoção
 - Formação de escuma
 - Obstrução de coletores
 - Aderência em paredes e peças
 - Poluição do corpo receptor

Formas de remoção de gorduras

Caixas de gordura domiciliares

Caixas de gordura coletivas


Remoção de gordura em decantadores


Tanques aerados por ar comprimido

Flotação por Ar Dissolvido (FAD)

Caixa de gordura

- Vários modelos e vários fabricantes
- Retenção do líquido por tempo suficiente para separação da gordura
- Limpezas periódicas são necessárias

Fonte: Jordão & Pessôa (2014)

Caixa de gordura

Área da caixa de gordura:

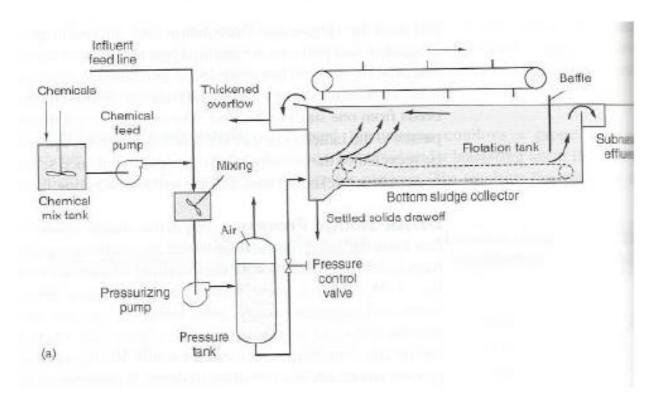
$$\text{\'area} (m^2) = \frac{vaz\~ao (\frac{m^3}{h})}{velocidade \textit{m\'anima de ascens\~ao} (\frac{m}{h})}$$

- Destinos da gordura: enterrada ou reaproveitada para a fabricação de sabões e detergentes;
- Gorduras de instalações prediais são mais impuras do que gorduras de instalações industriais (matadouros, curtumes, outras industrias alimentícias).

Tanques aerados com ar comprimido

- Aumentar a eficiência de remoção de óleo, por insuflação de ar no tanque de retenção;
- Dimensionamento: mesmas diretrizes da caixa de gordura (área superficial em função da velocidade ascensional);
- Entrada do ar: fundo do tanque (4,2 m³ ar/m³ afluente) por tubos perfurados ou difusores ao longo do tanque;

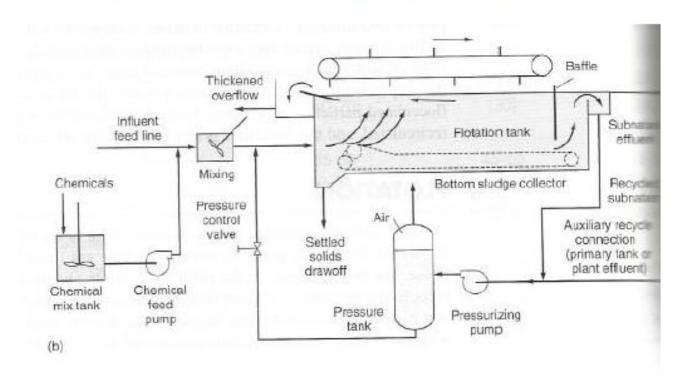
Tanques aerados com ar comprimido


- Aumentar a eficiência de remoção de óleo, por insuflação de ar no tanque de retenção;
- Dimensionamento: mesmas diretrizes da caixa de gordura (área superficial em função da velocidade ascensional);
- Entrada do ar: fundo do tanque (4,2 m³ ar/m³ afluente) por tubos perfurados ou difusores ao longo do tanque;
- Tanque: 3 seções paralelas (duas para câmara de tranquilização e uma de agitação).

Flotação por ar dissolvido (FAD)

- Pressurização de parcela ou do total da vazão de esgoto em tanque de pressurização
- Ao entrar no tanque de flotação, o ar é exposto à pressão atmosférica, arrastando o material em suspensão para a superfície
- O material flutuante é coletado por braço raspador
- Podem ser adicionados reagentes para melhor desempenho do processo: sais de ferro e alumínio, ou polímeros
- O processo pode ser utilizado para:
 - Para remoção de material flutuante;
 - Como substituição do decantador secundário;
 - Como etapa de tratamento físico-químico;
 - Como pós-tratamento de reator UASB;
 - Para adensamento de lodo em excesso.

Flotação por ar dissolvido (FAD)


Com toda a vazão pressurizada

Fonte: Metcalf & Eddy (2014)

Flotação por ar dissolvido (FAD)

Com recirculação e pressurização de parcela da vazão

Fonte: Metcalf & Eddy (2014)

Bibliografia

- JORDÃO, E.P.; PESSÔA, C.A. Tratamento de Esgotos Domésticos, 4ª ed. Rio de Janeiro: Segrac, 2005.
- PIVELI, R.P.; SOUZA, T.S.O. Tratamento preliminar. Aula 2 Disciplina Tratamento de Esgotamento Sanitário (PHA 3413). Departamento de Engenharia Hidráulica e Ambiental, Escola Politécnica, Universidade de São Paulo, 2017.

Bibliografia

VON SPERLING, M. Introdução à qualidade das águas e ao tratamento de esgotos, 3ª ed. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental; Universidade Federal de Minas Gerais, 2005.