Universidade de São Paulo Faculdade de Filosofia, Letras e Ciências Humanas

Departamento de Ciência Política

FLS-6183 Métodos Quantitativos de Pesquisa II

2º semestre / 2017

Lorena G. Barberia

Lista 1

Data de entrega: 31/8/2017

PART 1. Review of Types of Variables, Descriptive Statistics, Hypothesis Testing and the Normal Distribution

1. For the cases below, please fill in the table with the descriptive statistics and graphs that would be most appropriate for each situation.

Variables:	Measures of Central Tendency and Dispersion	Types of Graphs
Continuous	Mean Standard Deviation	Histogram, density plot, boxplot
Nominal	Mode Range of values Frequencies and Percentages	Discrete histogram
Ordinal	Mode Range of Values Frequencies and Percentages	Discrete histogram

2. Classify the following variables as nominal, ordinal or continuous.

Variable	Answer
GDP Growth (%)	Continuous
Presidential Approval (Yes or No)	Nominal
Presidential Approval (%)	Continuous
Age	Ordinal
Religion (Catholic, Protestant, etc.)	Nominal
Race (White, Black, etc.)	Nominal
Percent of Asian population in a certain country	Continuous

3. For the following types of cases, which are the types of statistical tests that are most appropriate?

Variables:	Null Hypothesis	Statistical test:
Continuous (y)	Но: у=0	Univariate Mean test
Two nominal variables: x1 and x2 (E.g. Do men and women differ in their political party preferences (Republican or Democrat in a specific city?).	Ho: Men and women do not differ in their political preferences HA: Men and women do differ in their political preferences.	Pearson chi-square
One continuous and one nominal variable (E.g. Does the percentage of Democrats differ in two cities?)	Ho: z1 –z2=0	Difference of Means Test (t-distribution) with equal or unequal variances
Two continuous variables (y and v).(E.g. Are increases in x associated with increases in y?)	$H_o: \frac{\Delta y}{\Delta x} > 0$	Correlation Regression F-test

4. Normal distribution and Student's T-distribution. Please respond whether each sentence below is true or false. Justify your response if false.

Sentence:	True or False?
a) In a normal distribution, the mean and the median are equal (μ), but	F. They are all the
they differ from the mode.	same.
b) If the distribution is normal, at least 99% of the observations must be in the range [μ -3 σ , μ +3 σ]. When we have 2 σ , 95%. For only one σ ,	Т.
68%.	
c) If a distribution is skewed, it's not a normal distribution.	Т.
d)The student's t-distribution tends to a normal as the number of	F. Tends as n
observations decreases	increases.

PART 2. Correlation and Linear Regression

4. Please review the Lab 2 do-file. What is the null and alternative hypothesis being tested in the correlation test between x and y? In the specific case, what can we conclude?

É testada a relação entre duas variáveis contínuas, sem um pressuposto de causalidade.

Teste de correlação com variável categórica não é adequado pois temos pouca variação em uma das variáveis e por consequência o erro tende a ser mais alto.

5. What is the interpretation of the coefficient and the constant term in the following regression model y = a + bx.

Coeficiente diz que com o aumento de uma unidade de x, y aumenta b.

O termo constante a é o valor de y quando x é 0 (x está ausente) ou b é 0 (x não tem efeito sobre y).

6. Under what situations would we prefer a hypothesis of correlation between two variables as opposed to a regression model?

Quando não se quer testar causalidade, apenas a correlação entre as duas variáveis.