

Dinamica Non Lineare di Strutture e Sistemi Meccanici

Prof. Carlos Eduardo Nigro Mazzilli

Universidade de São Paulo

Lezione 3

Lagrangian formulation (recalling)

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_r} \right) - \frac{\partial T}{\partial q_r} + \frac{\partial V}{\partial q_r} = N_r, r = 1, 2, ..., n$$

System of second-order differential equations (holonomic constraints)

$$\ddot{\mathbf{q}} = \mathbf{h}(\mathbf{q}, \dot{\mathbf{q}}, t) \qquad \ddot{q}_r = h_r(q_1, q_2, ..., q_n, \dot{q}_1, \dot{q}_2, ..., \dot{q}_n, t)$$

Example: SDOF linear oscillator

$$\ddot{u} = \gamma(t) - \omega^2 u - 2\xi\omega\dot{u}$$
 with $\gamma(t) = \frac{R(t)}{m}$, $\omega = \sqrt{\frac{k}{m}}$, $\xi = \frac{c}{2m\omega}$

Example: MDOF linear system

$$\ddot{\mathbf{U}} = \mathbf{M}^{-1} \left[\mathbf{R}(t) - \mathbf{K}\mathbf{U} - \mathbf{C}\dot{\mathbf{U}} \right]$$

Hamiltonian formulation (recalling)

Generalized momenta:
$$p_r = \frac{\partial T}{\partial \dot{q}_r}$$

Generalized momenta:
$$p_r = \frac{\partial T}{\partial \dot{q}_r}$$
 Hamiltonian:
$$H = \sum_{r=1}^n \dot{q}_r p_r - T + V$$

System of first-order differential equations (holonomic constraints)

$$\dot{q}_r = \frac{\partial H}{\partial p_r}$$

$$\dot{p}_r = N_r - \frac{\partial H}{\partial q_r}$$

Hamiltonian formulation (recalling)

Example: SDOF linear oscillator

$$p = \frac{\partial T}{\partial \dot{q}} = m\dot{q}$$

$$\dot{q} = \frac{1}{m}p$$

$$\dot{q} = \frac{1}{m}p$$

$$\dot{p} = R(t) - kq - \frac{c}{m}p$$

$$N = R(t) - c\dot{q} = R(t) - c\frac{p}{m}$$

Lagrangian formulation:

from second- to first-order system of differential equations through change of variables

$$\ddot{q}_r = h_r \left(q_1, q_2, \dots, q_n, \dot{q}_1, \dot{q}_2, \dots, \dot{q}_n, t \right)$$

$$y_r = q_r$$

$$y_{r+n} = \dot{q}_r$$

$$\dot{\mathbf{y}}_{r+n} = h_r \left(y_1, y_2, \dots, y_{2n}, t \right)$$

$$\dot{\mathbf{y}} = \mathbf{g}(\mathbf{y}, t)$$

Example: SDOF linear oscillator

$$y_1 = q$$

$$y_2 = \dot{q}$$

$$\dot{y}_1 = y_2$$

$$\dot{y}_2 = \gamma(t) - \omega^2 y_1 - 2\xi \omega y_2$$

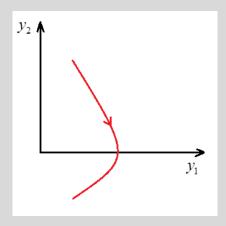
Phase space

Autonomous systems

$$\dot{\mathbf{y}} = \mathbf{g}(\mathbf{y})$$

n-dimensional space

$$y_1 \times y_2 \times ... \times y_n$$

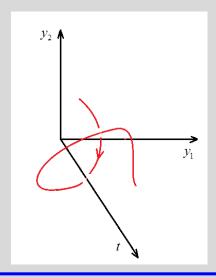


Non-autonomous systems

$$\dot{\mathbf{y}} = \mathbf{g}(\mathbf{y}, t)$$

(n+1)-dimensional space

$$y_1 \times y_2 \times ... \times y_n \times t$$



Phase space properties for SDOF autonomous systems

Singular phase points (equilibrium points) $\dot{y} = g(y) = 0$

Regular phase points $\dot{\mathbf{y}} = \mathbf{g}(\mathbf{y}) \neq 0$

Phase trajectory tangent

$$\frac{dy_2}{dy_1} = \frac{g_2(y_1, y_2)}{g_1(y_1, y_2)} = \frac{g_2(y_1, y_2)}{y_2}$$

Tangent at singular phase points is indeterminate

$$\frac{dy_2}{dy_1} = \frac{g_2(y_1, y_2)}{g_1(y_1, y_2)} = \frac{0}{0}$$

Tangent at regular phase points with $g_1(y_1, y_2) = y_2 = 0$ and $g_2(y_1, y_2) \neq 0$ is orthogonal to the y_1 axis

Through a regular phase point passes just one phase trajectory (Theorem of Cauchy-Lipschitz)

Non-perturbed solution:
$$y_r = y_r^0(t), r = 1, 2, ..., 2n$$

Perturbed solution:
$$y_r = y_r^0(t) + \delta y_r(t), \quad r = 1, 2, ..., 2n$$

$$\delta \dot{y}_r = g_r \left(y_1^0 + \delta y_1, y_2^0 + \delta y_2, ..., y_{2n}^0 + \delta y_{2n}, t \right) - \dot{y}_r^0$$

 $\delta \dot{y}_r = f_r \left(\delta y_1, \delta y_2, ..., \delta y_{2n}, t \right)$ Porturbation equations:

 $\delta \dot{\mathbf{y}} = \mathbf{f} \left(\delta \mathbf{y}, t \right)$

Perturbation equations:

$$\delta \dot{\mathbf{y}} = \mathbf{A}(t)\delta \mathbf{y} + \mathbf{N}(\delta \mathbf{y}, t)$$
 with $\mathbf{A}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{y}}\Big|_{0}$ and $\mathbf{N}(\delta \mathbf{y}, t) = \mathbf{f}(\delta \mathbf{y}, t) - \mathbf{A}(t)\delta \mathbf{y}$

Note: the non-perturbed solution corresponds to the trivial solution $\delta y = 0$ of the perturbation equations

Example: SDOF linear oscillator

$$\delta \dot{y}_{1} = \delta y_{2}$$

$$\delta \dot{y}_{2} = -\omega^{2} \delta y_{1} - 2\xi \omega \delta y_{2}$$
or
$$\delta \dot{y} = \mathbf{f} \left(\delta \mathbf{y} \right)$$
with
$$\mathbf{A} = \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \Big|_{\mathbf{0}} = \begin{bmatrix} 0 & 1 \\ -\omega^{2} & -2\xi \omega \end{bmatrix}$$

Stability concept (Leipholz)

A non-perturbed solution $y^{0}(t)$ is stable if the distance $\delta y(t)$ to the perturbed solutions remains within prescribed bounds for all times and arbitrarily defined perturbations

Non-perturbed solution

Equilibrium
$$y^0 = const.$$

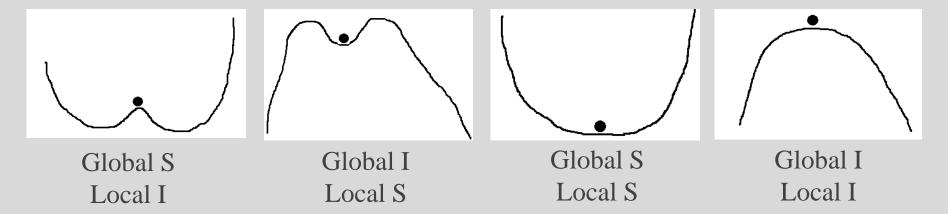
Motion $y^0(t)$

"Type" of perturbation

Kinematical (initial conditions): $\delta y(0) \neq 0$

Topological (perturbation of parameters or perturbation of mathematical model)

Stability concept (Leipholz)



Stability concept (Leipholz)

"Character" of perturbation

Deterministic

Stochastic

Example: <u>definition</u> of stability in the quadratic mean:

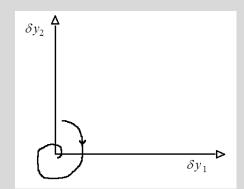
$$\lim_{\tau \to \infty} E_{\tau} \| \delta \mathbf{y}(t) \|^{2} < \varepsilon \qquad \sigma_{\delta \mathbf{y}}^{2} = \int_{-\infty}^{\infty} S_{\delta \mathbf{y}}(\omega) d\omega < \varepsilon$$

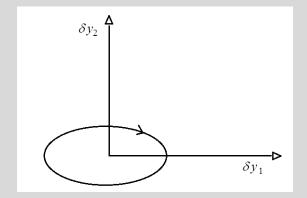
Stability x Confiability x Integrity

Stability concept (Leipholz)

Tendency of perturbed solution

Asymptotic
Non-asymptotic



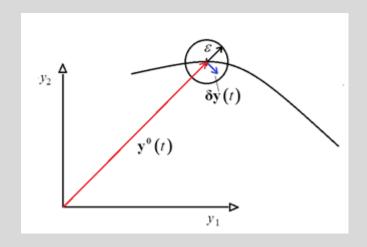


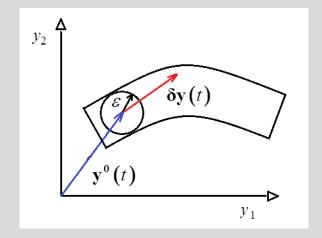
Stability concept (Leipholz)

Admissible region for perturbed solution

Kinetic

Geometric





Stability definitions

Liapunov

Stability of equilibrium of autonomous systems in the sense: kinematical, local, deterministic, non-asymptotic, kinetic

Poincaré

Stability of motion of autonomous systems in the sense: kinematical, local, deterministic, non-asymptotic, geometric

Particular case: orbital stability of periodic motions

Structural

Stability of equilibrium or motion in the sense: topological, local, deterministic, asymptotic

Particular cases: parametric stability; Mathieu stability

Liapunov stability

Given
$$\varepsilon > 0$$
, there exists $\delta(\varepsilon) > 0$, such that, if $\|\delta \mathbf{y}(0)\| < \delta(\varepsilon)$ then $\|\delta \mathbf{y}(t)\| < \varepsilon$ for $t > 0$

Liapunov's methods

First method (indirect)
Second method (direct)

Liapunov's first method

Perturbation equation for the analysis of the stability of equilibrium of the trivial solution $\delta y = 0$

$$\delta \dot{y} = f(\delta y) = A\delta y + N(\delta y)$$

with
$$\mathbf{A} = \frac{\partial \mathbf{f}}{\partial \mathbf{y}}\Big|_{0}$$
 and $\mathbf{N}(\delta \mathbf{y}) = \mathbf{f}(\delta \mathbf{y}) - \mathbf{A}\delta \mathbf{y}$

Consider the associated linearized problem

$$\delta \dot{y} = A \delta y$$

Solução geral

$$\delta \mathbf{y} = \delta \mathbf{y}_0 e^{\lambda t}$$

Liapunov's first method

$$(\mathbf{A} - \lambda \mathbf{I}) \delta \mathbf{y}_0 = \mathbf{0}$$

For non-trivial solutions it is required that

$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

It is the classic eigenvalue problem for matrix **A**

$$b_0 \lambda^{2n} + b_1 \lambda^{2n-1} + \dots + b_{2n-1} \lambda + b_{2n} = 0$$

In the general case, there exists 2n complex roots for the characteristic equation

$$\lambda_k = \alpha_k + i\beta_k, \quad \alpha_k \in \mathbb{R} \quad \beta_k \in \mathbb{R}$$

Liapunov's first method

Theorem 1 (Liapunov): If $R_k < 0 \quad \forall k = 1, 2...2n \Rightarrow \delta y = 0$ is L-stable

Theorem 2 (Liapunov): If $\exists R_k > 0 \implies \delta y = 0$ is L-unstable

Definition of L-critical case: there exists at least one eigenvalue with zero real part $R_k = 0$, yet none of them with positive real part.

Theorem 3 (Leipholz): In the critical case, if the multiplicity p_k of all the eigenvalues with null real part $(R_k = 0)$ is equal to the rank decrement d_k of the matrix $\mathbf{A} - \lambda_k \mathbf{I}$, then the solution $\delta \mathbf{y} = \mathbf{0}$ is L-stable for the linear system. If $p_k > d_k$, then the solution $\delta \mathbf{y} = \mathbf{0}$ is L-unstable for the linear system.

Liapunov's first method

Theorem 4 (Routh-Hurwitz): If all principal minors of the matrix **B** (below) are positive, then the solution $\delta y = 0$ is L-stable. The reciprocal is also true.

$$b_{r>2n} = 0$$
 and $b_{r<0} = 0$

Liapunov's first method

Theorem 5 (Liapunov): Except for the L-critical case, the conclusions drawn from Theorems 1 and 2 for the linearized system $\delta \dot{y} = A \delta y$ can be extended to the non-linear system $\delta \dot{y} = A \delta y + N(\delta y)$

Dynamical systems theory

Theorem 5' (Hartman-Grobman): If a singularity of the linear system $\delta \dot{y} = A \delta y$ is hyperbolic, then the linearized system is topologically equivalent to the non-linear system $\delta \dot{y} = A \delta y + N(\delta y)$ in the singularity neighbourhood, that is, between the phase space flows of the non-linear and the linear systems there exists a diffeomorphism (transformation that is continuous with continuous derivative)

Example: stability analysis for the solution $\delta y = 0$ of a SDOF oscillator

$$\delta \dot{y}_1 = \delta y_2$$

$$\delta \dot{y}_2 = -\omega^2 \delta y_1 - 2\xi \omega \delta y_2$$

$$2\xi\omega \to b \qquad \omega^2 \to c$$
$$b \in \mathbb{R} \qquad c \in \mathbb{R}$$

characteristic equation
$$\lambda^2$$

$$\delta \dot{\mathbf{y}} = \mathbf{A} \delta \mathbf{y}$$

$$\mathbf{A} = \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \bigg|_{\mathbf{0}} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & -2\xi\omega \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -c & -b \end{bmatrix}$$

characteristic equation
$$\lambda^2 + b\lambda + c = 0$$
 \Rightarrow $\lambda = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$

Example: stability analysis for the solution $\delta y = 0$ of a SDOF oscillator

Let $\delta x = B \delta y$ such that $\delta \dot{y} = A \delta y \Rightarrow \delta \dot{x} = C \delta x$ with C being a Jordan canonical form Remark: B must be such that $BC = AB \Rightarrow C = B^{-1}AB$

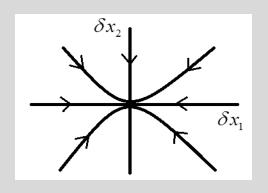
Case (a):
$$\lambda_1 \in \mathbb{R}, \lambda_2 \in \mathbb{R}, \lambda_1 \neq \lambda_2 \rightarrow \mathbf{C} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

Case (b):
$$\lambda_1 = \lambda_2 = \lambda \in \mathbb{R} \rightarrow \mathbf{C} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$
 ou $\mathbf{C} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$

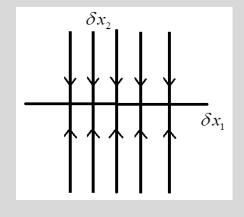
Case (c):
$$\lambda_1 = \lambda = \alpha + i\beta \in \mathbb{C}, \lambda_2 = \overline{\lambda} = \alpha - i\beta \in \mathbb{C} \rightarrow \mathbf{C} = \begin{bmatrix} \lambda & 0 \\ 0 & \overline{\lambda} \end{bmatrix}$$

$$b^2 - 4c < 0$$

Example: stability analysis for the solution $\delta y = 0$ of a SDOF oscillator



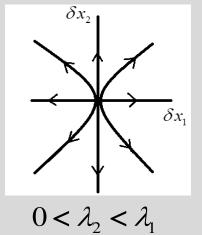
$$\lambda_2 < \lambda_1 < 0$$

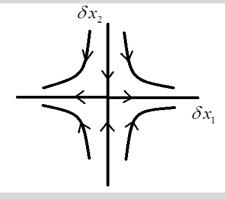


$$\lambda_2 < \lambda_1 = 0$$

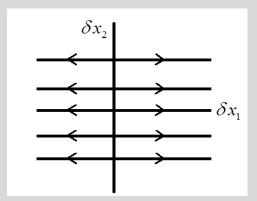
$$\delta x_{i} = \delta x_{i}^{0} e^{\lambda_{i} t}$$

$$\frac{\partial (\delta x_{2})}{\partial (\delta x_{1})} = \left(\frac{\lambda_{2}}{\lambda_{1}}\right) \left(\frac{\delta x_{2}^{0}}{\delta x_{1}^{0}}\right) e^{(\lambda_{2} - \lambda_{1})t}$$



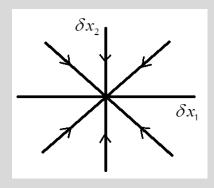


$$\lambda_2 < 0 < \lambda_1$$

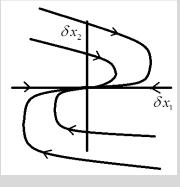


$$0 = \lambda_2 < \lambda_1$$

Example: stability analysis for the solution $\delta y = 0$ of a SDOF oscillator



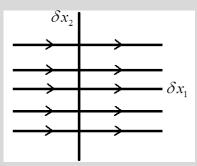
$$\lambda_2 = \lambda_1 < 0$$



$$\lambda_2 = \lambda_1 < 0$$

Case (b1)

$$\delta x_i = \delta x_i^0 e^{\lambda t} \Rightarrow \frac{\partial (\delta x_2)}{\partial (\delta x_1)} = \left(\frac{\delta x_2^0}{\delta x_1^0}\right)$$

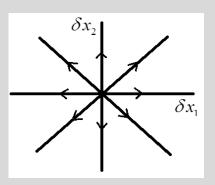


$$\lambda_2 = \lambda_1 = 0$$

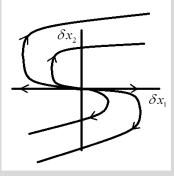
Case (b2)

$$\delta x_1 = \left(\delta x_1^0 + t \delta x_2^0\right) e^{\lambda t} \quad \delta x_2 = \delta x_2^0 e^{\lambda t}$$

$$\frac{\partial \left(\delta x_2\right)}{\partial \left(\delta x_1\right)} = \frac{\delta x_2^0}{\delta x_1^0 + \left(t + \frac{1}{\lambda}\right)} \delta x_2^0 = \frac{1}{\frac{\delta x_1^0}{\delta x_2^0} + \left(t + \frac{1}{\lambda}\right)}$$



$$0 < \lambda_2 = \lambda_1$$



$$0 < \lambda_2 = \lambda_1$$

Example: stability analysis for the solution $\delta y = 0$ of a SDOF oscillator

$$\delta \dot{\mathbf{x}} = \begin{bmatrix} \alpha + i\beta & 0 \\ 0 & \alpha - i\beta \end{bmatrix} \delta \mathbf{x}$$

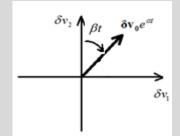
Case (c)
Change variables...

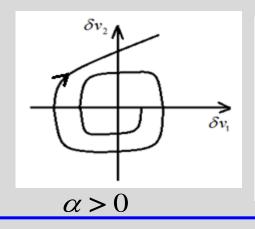
$$\delta \mathbf{v} = \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix} \delta \mathbf{x}$$

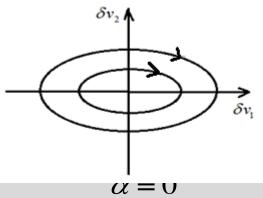
$$\delta \dot{\mathbf{v}} = \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix} \delta \dot{\mathbf{x}} = \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix} \begin{bmatrix} \alpha+i\beta & 0 \\ 0 & \alpha+i\beta \end{bmatrix} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix}^{-1} \delta \mathbf{v} = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \delta \mathbf{v}$$

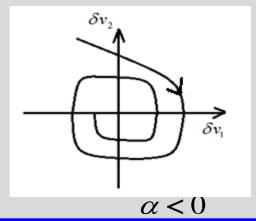
Define vector $\delta \mathbf{v} = \delta v_1 + i \delta v_2$ in Argand's plane ...

$$\delta \dot{\mathbf{v}} = (\alpha + i\beta) \delta \mathbf{v} \Longrightarrow \delta \mathbf{v} = \delta \mathbf{v}_0 e^{\alpha t} e^{i\beta t}$$

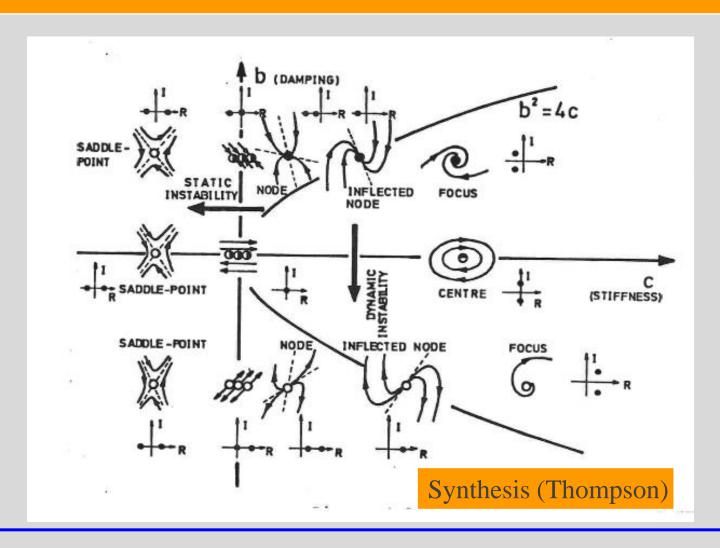








Example: stability analysis for the solution $\delta y = 0$ of a SDOF oscillator



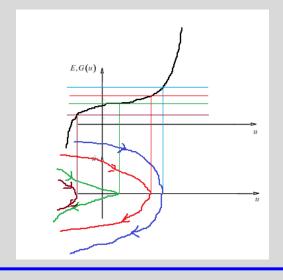
Conservative SDOF oscillator

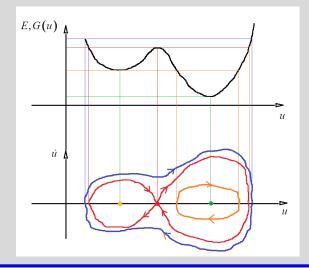
$$\ddot{u} + g(u) = 0 \Rightarrow \ddot{u} du + g(u) du = 0 \Rightarrow \ddot{u} \dot{u} dt + g(u) du = 0$$

Integrating:
$$\frac{\dot{u}^2}{2} + \int_{0}^{u} g(\eta) d\eta = \underbrace{E}_{\text{mechanical energy}} = const.$$

Define:
$$G(u) = \int_{0}^{u} g(\eta) d\eta \implies \dot{u} = \pm \sqrt{2[E - G(u)]} \implies T = 2 \int_{u(0)}^{u(T/2)} \frac{du}{\sqrt{2[E - G(u)]}}$$

saddle-node





saddle & centres

Liapunov's second method

$$\delta \dot{y} = f(\delta y) = A\delta y + N(\delta y)$$
where $A = \frac{\partial f}{\partial y} \Big|_{0}$ and $N(\delta y) = f(\delta y) - A\delta y$

Theorem 6 (Liapunov): if there exists a function $F(\delta y): E \to \mathbb{R}$ such that:

$$F \ge 0 \quad \forall \delta \mathbf{y}$$

$$F = 0 \Leftrightarrow \delta \mathbf{y} = \mathbf{0} \qquad \text{then } \delta \mathbf{y} = \mathbf{0} \text{ is L-stable}$$

$$\dot{F} = \frac{\partial F}{\partial \delta y_r} \delta \dot{y}_r = \frac{\partial F}{\partial \delta y_r} f_r \le 0$$

Liapunov's second method

Theorem 7 (Liapunov): if there exists a function $F(\delta y): E \to \mathbb{R}$ such that:

$$F \ge 0 \quad \forall \delta y$$

$$F = 0 \Leftrightarrow \delta y = 0$$

$$\dot{F} = \frac{\partial F}{\partial \delta y_r} \delta \dot{y}_r = \frac{\partial F}{\partial \delta y_r} f_r < 0$$

then $\delta y = 0$ is asymptotically stable in Liapunov's sense

Theorem 8 (Chetayev): if there exists a function $F(\delta y): E \to \mathbb{R}$ such that:

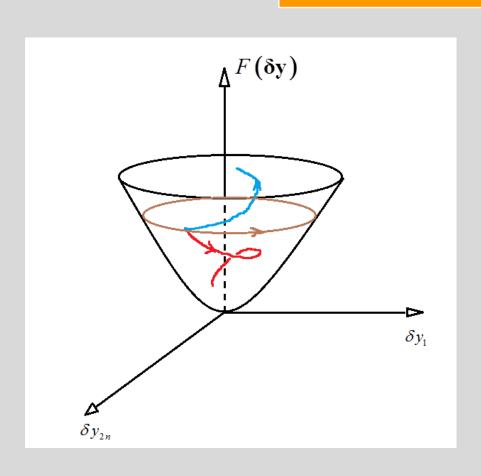
$$F \ge 0 \quad \forall \delta y$$

$$F = 0 \Leftrightarrow \delta y = 0$$

$$\dot{F} = \frac{\partial F}{\partial \delta v} \delta \dot{y}_r = \frac{\partial F}{\partial \delta v} f_r > 0$$

then
$$\delta y = 0$$
 is L-unstable

Liapunov's second method



 $F(\delta y)$ is called Liapunov's function

Attractor

Subset of the phase space to which a solution of the dynamical system tends when $t \rightarrow \infty$ for initial conditions in a non-localized subset of the phase space (basin of attraction)

- Fixed point (stable equilibrium point): asymptotically stable singularity
- Limit cycle (periodic attractor): asymptotically stable orbit in the phase space with one dominating frequency or more than one commensurate dominating frequencies
- Limit torus: asymptotically stable manifold in the phase space, with more than one non-commensurate dominating frequency
- Strange attractor (chaos): coexistence of some of the previous attractors with non-compact (fractal) basins of attraction

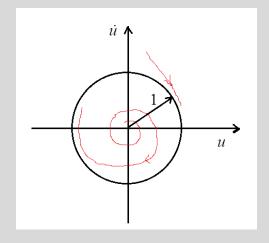
Periodic attractor in autonomous dynamical system $\dot{y} = g(y)$

Example: van der Pol equation

$$\ddot{u} - \dot{u} + u + \left(u^2 + \dot{u}^2\right)\dot{u} = 0$$

Trivial solution u(t) = 0 is unstable

Periodic attractor $u(t) = \sin t$ is stable



Dynamical Systems

Hirsch & Smale: Differential Equations, Dynamical Systems and Linear Algebra

Guckenheimer & Holmes: Nonlinear Oscillations, Dynamical Systems

And Bifurcation of Vector Fields

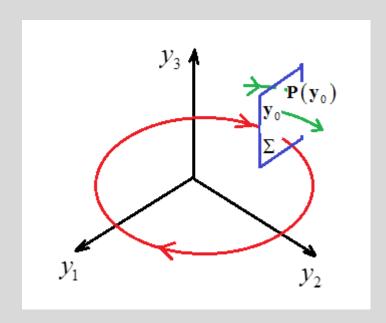
Orbital stability of autonomous SDOF oscillators

- First Poincaré-Bendixson's Theorem: If a phase trajectory C remains within a finite region without approaching a singularity, then C is a limit cycle or it tends to one.
- Second Poincaré-Bendixson's Theorem: Given a region D of the phase space, bounded by two curves C' and C", without a singularity in D, C' e C", if all phase trajectories enter (exit) in D through the boundaries C' e C", then there exists at least a stable (unstable) in D.

Poincaré's section (map)

- Let $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y})$ be a flow of an autonomous system in \mathbb{R}^{2n} and $\Sigma : \mathbf{f}(\mathbf{y}) \cdot \mathbf{N} \neq 0$ a section with normal \mathbf{N} . Consider the mapping $\mathbf{y}_0 \to \mathbf{P}(\mathbf{y}_0)$ defined by the intersection of the flow $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y})$ with Σ . $\mathbf{P}(\mathbf{y}_0)$ is termed a "Poincaré's section" of the flow $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y})$ through \mathbf{y}_0
 - If the system is non-autonomous, defined by the flow $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y}, t)$, an associated autonomous one $\dot{\mathbf{y}} = \mathbf{f}(\mathbf{y})$ defined in \mathbb{R}^{2n+1} can be proposed with the addition of $\dot{y}_{2n+1} = 1$, so that the Poincaré's sections can be defined orthogonally to the axis $y_{2n+1} = t$ at $t = t_0 + iT$, i = 1, 2, ...

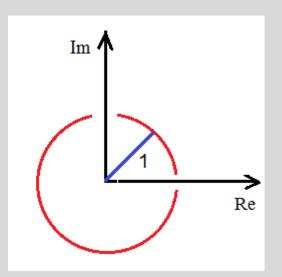
Poincaré's section (map)



Analyse the complex eigenvalues $\lambda_j = \text{Re}_j + i \, \text{Im}_j$ of linearized mapping $\mathbf{DP}(\mathbf{y}_0)$ to test stability.

Stability for $\left|\lambda_{j}\right| < 1$

Instability for $\left|\lambda_{j}\right| > 1$



Example of Poincaré's section (map)

$$\ddot{u} + \left(-1 + u^2 + \dot{u}^2\right)\dot{u} + u = 0$$

$$y_1 = u$$

$$y_2 = \dot{u}$$

$$\Rightarrow \dot{\mathbf{y}} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \mathbf{y} + \begin{bmatrix} 0 \\ -\left(y_1^2 + y_2^2\right)y_2 \end{bmatrix}$$

In polar co-ordinates

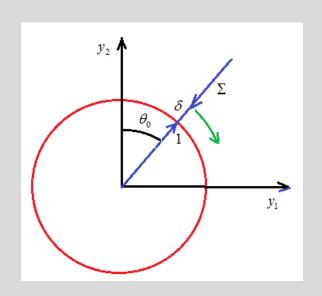
$$\begin{vmatrix} y_1 = r \sin \theta \\ y_2 = r \cos \theta \end{vmatrix} \Rightarrow r = 0 \text{ corresponds to an unstable focus}$$

for
$$r \neq 0 \Rightarrow$$

$$\begin{cases} \dot{r} = -r(r^2 - 1)\cos^2 \theta \\ \dot{\theta} = 1 + (r^2 - 1)\sin \theta \cos \theta \end{cases}$$

It is readily seen that r = 1 and $\theta = t$ are a limit cycle

Example of Poincaré's section (map)



Poincaré's section:
$$\theta = \theta_0$$

$$r_0 = 1 + \varepsilon_0 \rightarrow r_j = 1 + \varepsilon_j \text{ for } \theta = \theta_0 + 2\pi j \quad j = 1, 2, \dots$$

Mapping:
$$\dot{r}_j = \dot{\varepsilon}_j = -\left(1 + \varepsilon_j\right) \left[\left(1 + \varepsilon_j\right)^2 - 1\right] \cos^2 \theta_0$$

$$\dot{\varepsilon}_j = -\left(2\varepsilon_j + 3\varepsilon_j^2 + \varepsilon_j^3\right) \cos^2 \theta_0$$

Linearizing:
$$\dot{\varepsilon}_j = -(2\cos^2\theta_0)\varepsilon_j \Rightarrow \varepsilon_j = \varepsilon_0 e^{-4\pi j \cos^2\theta_0}$$

Mapping in
$$\mathbb{R}^1$$
: $r_j \to r_{j+1} = P(r_j) = 1 + (r_j - 1)e^{-4\pi\cos^2\theta_0}$

$$\mathbf{DP} = \frac{dP(r_j)}{dr_j} = e^{-4\pi\cos^2\theta_0}$$

asymptotic stability for
$$\theta_0 \neq \frac{\pi}{2}$$
 or $\frac{3\pi}{2}$, since $|\lambda| < 1$

stability for
$$\theta_0 = \frac{\pi}{2}$$
 or $\frac{3\pi}{2}$, since $\dot{\varepsilon}_j = 0 \Rightarrow \varepsilon_j = \varepsilon_0$

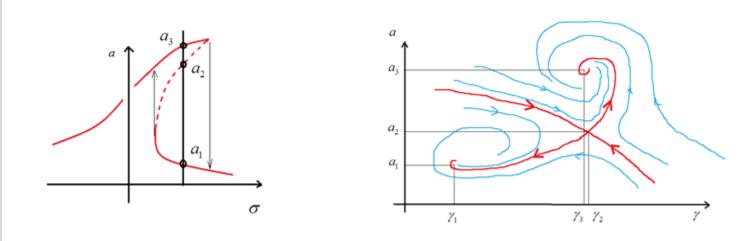
Periodic attractor in non-autonomous dynamical system $\dot{\mathbf{y}} = \mathbf{g}(\mathbf{y}, t)$

Example: forced Duffing's equation

$$\ddot{u} + 2\varepsilon\mu\dot{u} + \omega_0^2u + \varepsilon\alpha u^3 = \varepsilon k\cos(\omega_0 + \varepsilon\sigma)t \quad \text{with } 0 < \varepsilon << 1$$

There exist periodic attractors

$$u(t) = a\cos[(\omega_0 + \varepsilon\sigma)t + \gamma] + O(\varepsilon)$$



Estudo recai em estabilidade de singularidades...