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Elements of Stability Theory
Lagrangian formulation (recalling)

d(or)_or _ov

dt\ 69, ] 0q, 0q,

=N_,r=12,..,n

System of second-order differential equations (holonomic constraints)

q=h(q,q.t) ¢, =h, (0,0, Uy Gy Gpoens O 1)

Example: SDOF linear oscillator

; - R(t) [k C
U=y(t)—o’u—2Eou  Wwith t)=—7 = |— =

/(1) ° 7(1) m ' “T\m’ > 2Me
Example: MDOF linear system

U=M"[R(t)-KU-CU]




Elements of Stability Theory

Hamiltonian formulation (recalling)

. oT
Generalized momenta: p,=_—

oq,
Hamiltonian: H = qu p,—T+V
=1

System of first-order differential equations (holonomic constraints)

oH

qr _apr
oH
pr = 0




Elements of Stability Theory

Hamiltonian formulation (recalling)

Example: SDOF linear oscillator

oT
p="_=mq 1
oq q=ap
p° kg )
H=pg-T+V = c
PA= Y =t p=R(t)—kq—ap

N=R(t)-cq= R(t)—c%




Elements of Stability Theory

Lagrangian formulation:
from second- to first-order system of differential equations through change of variables

0 =N, (G Gpovves Gy Gy B Gy )

yr = qr yr = yr+n
=

Yren = s Vern =D (Vs Yares Yonot)

y=g(y.t)

Example: SDOF linear oscillator

Y1=4 :> Yi=Y,

Y, =¢ ¥, =7(t)— o'y, — 2wy,




Elements of Stability Theory

Phase space

Autonomous systems Non-autonomous systems

y=9(y) y=g(y.t)

n-dimensional space : :
P (n+1)-dimensional space

Y12 ¥ XX Y Y, XY, X..xYy xt

Yo

\ N
ARE

-
/ N




Elements of Stability Theory

Phase space properties for SDOF autonomous systems
Singular phase points (equilibrium points) Y = g(y) =0

Regular phase points Yy = g(y) #0

dy , ,
Phase trajectory tangent Yz ZZ(yl yZ) 92 (%1 Y2)

dy, 1(y1, .) Y,
Tangent at singular phase points is indeterminate _9%(Y,) _0
dy1 91(3’11 2) 0

Tangent at regular phase points with 0 (Y1 Y,)=Y,=0andg,(y,,y,)#0
Is orthogonal to the Y, axis

Through a regular phase point passes just one phase trajectory
(Theorem of Cauchy-Lipschitz)




Elements of Stability Theory

Non-perturbed solution: =Y, (t) r=>12,.,2n

Perturbed solution: =Y, (t)+ sy, (t), r=12,.

Y, =0, (V7 +6Y0, Y3 + Y1000 You + Yo t) = V7

5Y, = f,(6Y1,Y5,-, 0 Yon,t)
3y = £ (dy,t)

Perturbation equations:

&y = A(t)dy + N(dy,t) with A(t)_a:/ and N(8y,t) =f(dy,t)— A(t)dy

Note: the non-perturbed solution corresponds to the
trivial solution ¢y = () of the perturbation equations




Elements of Stability Theory

Example: SDOF linear oscillator

0y, =0Y,
oy, = —a)25y1—2.§a)5y2

5y = £ (dy) or 5y = Ady




Elements of Stability Theory

Stability concept (Leipholz)

A non-perturbed solution y°(t) is stable if the distance 3y (t)
to the perturbed solutions remains within prescribed bounds for all times and
arbitrarily defined perturbations

_ Equilibrium y° = const.
Non-perturbed solution
Motion y°(t)

Kinematical (initial conditions): §y(0) = 0
“Type” of perturbation _ _
Topological (perturbation of parameters or

perturbation of mathematical model)




Elements of Stability Theory

Stability concept (Leipholz)

L_ocal
Perturbation “size” Hﬁy(O)H <o

Global
Global S Global | Global Global |

Local | Local S Local S Local |




Elements of Stability Theory

Stability concept (Leipholz)

_ Deterministic
“Character” of perturbation
Stochastic

Example: definition of stability in the quadratic mean:

lim E. f‘)y(’[)H2 <& Gﬁzy = _I Sy (@)do< ¢

Stability x Confiability x Integrity




Elements of Stability Theory

Stability concept (Leipholz)

_ Asymptotic
Tendency of perturbed solution
Non-asymptotic

Sy, SV,




Elements of Stability Theory

Stability concept (Leipholz)

o _ _ Kinetic
Admissible region for perturbed solution _
Geometric
A
T )
LB _
oy (1) £ 3y (¢)
¥ (1)
v (r)
> >




Elements of Stability Theory

Stability definitions

Liapunov
Stability of equilibrium of autonomous systems in the sense:
kinematical, local, deterministic, non-asymptotic, kinetic

Poincare
Stability of motion of autonomous systems in the sense:
Kinematical, local, deterministic, non-asymptotic,geometric

Particular case: orbital stability of periodic motions
Structural
Stability of equilibrium or motion in the sense:
topological, local, deterministic, asymptotic

Particular cases: parametric stability; Mathieu stability




Elements of Stability Theory

Liapunov stability

Given ¢> 0 , there exists §(<)> 0, such that,
if [8y(0)|<d5(&)then [dy(t)|<&for t>0

Liapunov’s methods

First method (indirect)
Second method (direct)




Elements of Stability Theory

Liapunov’s first method

Perturbation equation for the analysis of the
stability of equilibrium of the trivial solution oy =0

oy = f(ﬁy) = Aoy + N(ﬁy)

with A=% and  N(dy)=f(3y)— Ady

0

Consider the associated linearized problem
oy = Ady

Solucéo geral
dy = dy "




Elements of Stability Theory

Liapunov’s first method
(A-Al1)dy,=0

For non-trivial solutions it is required that
A-All=0

It i sthe classic eigenvalue problem for matrix A

b A" +b A"+ +Db, A+b, =0

In the general case, there exists 2n complex roots for the characteristic equation

A=+, a€R [ elR




Elements of Stability Theory

Liapunov’s first method

Theorem 1 (Liapunov): If R, <0 Vk=12..2n= 8y =0 is L-stable

Theorem 2 (Liapunov): If 3R, >0 =8y =0 Iis L-unstable

Definition of L-critical case: there exists at least one eigenvalue with
zero real part R, =0, yet none of them with positive real part.

Theorem 3 (Leipholz): In the critical case, if the multiplicity p, of all the
eigenvalues with null real part (R, = 0)is equal to the rank decrement d,

of the matrix A— A4 1, then the solution 8y = 0 is L-stable for the linear system.
If p, >d,, then the solution 8y =0 is L-unstable for the linear system.




Elements of Stability Theory
Liapunov’s first method

Theorem 4 (Routh-Hurwitz): If all principal minors of the matrix
B (below) are positive, then the solution 8y =0 is L-stable.
The reciprocal is also true.

‘b, bb 0O 0 0 O 0
b, bb b b, 0 O 0
0

b.,.,=0 and

r>2n

r<0 —




Elements of Stability Theory

Liapunov’s first method

Theorem 5 (Liapunov): Except for the L-critical case, the conclusions drawn from
Theorems 1 and 2 for the linearized system oy = Aoy can be extended to the
non-linear system &y = Ay + N(3y)

Dynamical systems theory

Theorem 5° (Hartman-Grobman): If a singularity of the linear system

oy = Ady Is hyperbolic , then the linearized system is topologically equivalent
to the non-linear system §y = Ady + N(8y) In the singularity neighbourhood,
that is, between the phase space flows of the non-linear and the linear systems

there exists a diffeomorphism (transformation that is continuous with continuous
derivative)




Elements of Stability Theory

Example: stability analysis for the solution 6y =0 of a SDOF oscillator

5Y1=5y2

5y, =—0"6Yy, - 2,wdY,

25— b
beR

characteristic equation A2+bl+c=0 =) A= —

> —>C
celR

oy = Aody
_off [0 1
_ayo_ —0° —2fw

S

b+ b —4c

2

A




Elements of Stability Theory

Example: stability analysis for the solution 6y =0 of a SDOF oscillator

Let ox=Bdy suchthat oy =Ady = ox=Cox
with C being a Jordan canonical form
Remark: B must be such that BC=AB=C=B"AB

Case(@): A eR ALeR L#xA > C=[ﬂ1 O]
b*—4c>0 b4

Case (b): &:%:ﬂeR_) C=|:/l O:| ou C=|:/I 1:|
b°—4c=0 0 4

: _ . A 0
Case (¢) A =A=a+ifeClL=A=a—-ifeC— C=[ ]
b*—4c<0




Elements of Stability Theory

Example: stability analysis for the solution 6y =0 of a SDOF oscillator

5x, Case (a) ox,

OX = oxe™

-

ox,

A A A L

o~

A

o

Il

o
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Elements of Stability Theory

Example: stability analysis for the solution 6y =0 of a SDOF oscillator

Case (bl)
Ox =oxe" = 0(5%,) =(5X§)
o a(en) \ex
OX,
,) ; ox,
LH=4=0
Case (b2)
ox = (X +tox])e™  5x, = 5xge’
o(5x%,) _ 5X; N 1
0(5%) 540 ( 1) 0 OX ( 1)
/’Lz=ﬂ.1<0 5X1+t+1 OX, 5X§+t+/1




Elements of Stability Theory

Example: stability analysis for the solution 6y =0 of a SDOF oscillator
Case (C)

I 0 . 1+i 1—i
SX=[aBﬂ a—iﬂ}sx Change variables... 5V=[1_i 1+J5X
_ [1+i 1—1 , [1+i 1—i}|:a+i,8 0 }[1“ 1—T |:a —,B}
oV = . L |ox = . . . . | ov= oV
1-1 1+1 1-1 1+1 0 a+i1p|[1-1 1+1 L «
av, A it &v
Define vector ov =0V, +1dV, in Argand’s plane ... ™

dv=(a+iB)dv=>dv=2av,e e”

av

Sv, i‘tf Sv, A

T N
N

\
(A £
G

=S/

a>0




Elements of Stability Theory




Elements of Stability Theory

Conservative SDOF oscillator

U+g(u)=0=udu+g(u)du=0=uudt+g(u)du=0

u2 u
Integrating: 5 [9(n)dn = E = const.
¥ 0

mechanical energy

kineticenergy ~————~»——
potentialenergy

u “(%)
Define: G(u)= [ g(n)dn =u=+/2[E-GU)]| =T =2 du

2 ] Jae—cwi

)

- -V -
period of motion

E.G(u) y
() /
saddle
saddle-node 2
SN N
N centres




Elements of Stability Theory

Liapunov’s second method

8y =1f(dy) = Ady+N(dy)

where A = SI/ and N(By) = f(ﬁy) — Aoy

0

Theorem 6 (Liapunov): if there exists a function F (8y): E — R such that:

F>0 Voy
F=0c0y=0 then oy =0 is L-stable
oF oF

F=——6y=—"—1 <0
00Y, o5y, '




Elements of Stability Theory

Liapunov’s second method

Theorem 7 (Liapunov): if there exists a function | (5y) -E > R such that:
F>0 Voy

F=0&0y=0 then §y =0 is asymptotically stable
In Liapunov’s sense
F =6_F5yr =a_|:fr <0
00Y, 00Y,
Theorem 8 (Chetayev): if there exists a function F (ﬁy) ‘E > R such that:
F>0 Voy
F=0&6y=0 then Oy = 0 is L-unstable
F _a_ngr =a—Ffr >0

85y, aSYy.




Elements of Stability Theory

Liapunov’s second method

A F(8y)

F (ﬁy) is called Liapunov’s function




Elements of Stability Theory

Attractor

Subset of the phase space to which a solution of the dynamical system tends when
t — oo for initial conditions in a non-localized subset of the phase space
(basin of attraction)

Fixed point (stable equilibrium point): asymptotically stable singularity

Limit cycle (periodic attractor): asymptotically stable orbit in the phase space
with one dominating frequency or more than one commensurate dominating
frequencies

Limit torus: asymptotically stable manifold in the phase space, with more than
one non-commensurate dominating frequency

Strange attractor (chaos): coexistence of some of the previous attractors with non-
compact (fractal) basins of attraction




Elements of Stability Theory

Periodic attractor in autonomous dynamical system y = g (y)

Example: van der Pol equation

U—u+u+(u2+u2)u=0
-

Trivial solution U (t) = 0 is unstable &

N
B

Periodic attractor U (t) =sInt isstable

u

LY
-




Elements of Stability Theory

Dynamical Systems

Hirsch & Smale: Differential Equations, Dynamical Systems
and Linear Algebra
Guckenheimer & Holmes: Nonlinear Oscillations, Dynamical Systems
And Bifurcation of Vector Fields




Elements of Stability Theory

Orbital stability of autonomous SDOF oscillators

 First Poincaré-Bendixson’s Theorem:
If a phase trajectory C remains within a finite region without approaching
a singularity, then C is a limit cycle or it tends to one.

« Second Poincaré-Bendixson’s Theorem:
Given a region D of the phase space, bounded by two curves C’ and C”,
without a singularity in D, C* ¢ C”, If all phase trajectories enter (exit)

In D through the boundaries C’ ¢ C”, then there exists at least a stable (unstable)
In D.




Elements of Stability Theory

Poincaré’s section (map)

 Let y=f(y) be aflow of an autonomous system in R*" and
> :f(y)-N 0 asection with normal N . Consider the mapping
Yo = P(Y,) defined by the intersection of the flow y =f(y) with X.
P(Y,) is termed a “Poincaré’s section” of the flow y = (y) through

« If the system is non-autonomous, defined by the flow y = f(y,t), an
associated autonomous one y = f(y) defined in R*™ can be proposed

with the addition of y, , =1, so that the Poincaré’s sections can be defined
orthogonally to the axis Y,,,, =t at t=t,+IT, 1=12,...




Elements of Stability Theory

Poincaré’s section (map)

Analyse the complex eigenvalues 4, = Re;+ilm,
of linearized mapping DP(y, ) to test stability.

Im A
Stability for |4;<1 7\
/
2

Instability for |4;|>1




Elements of Stability Theory

Example of Poincaré’s section (map)

U+(—1+u2+u2)u+u=0

s [ e
v =0f 7T 1) T (v y2)y,

In polar co-ordinates

y,=rsiné
= r =0 corresponds to an unstable focus
y, =rcosé
t =—r(r’—1)cos’ 6
forrz0=-< . ) _
0 =1+(r?-1)sinfcosd

It is readily seen that r=1and &=t are a limit cycle




Elements of Stability Theory

Example of Poincaré’s section (map)

Poincaré’s section: §=46,

Lh=l+g, >r =1+g for0=0,+2r] J=12,.

Mapping: ;=& =—(1+ g.)[(l+ £ )2 —1}0032 0,

J J

£; = (25 +35J 1rE )Coszé’0

Linearizing: &, = (2005 Oy )&, = &; = g,
Mapping in R*: P(rJ) 1+(r,- _1)e—4ﬂcos290
DP = dP(rJ) _ e—47700329o

dr.

J

asymptotic stability for 4, ;t% or%ﬂ, since |1 <1

stability for 6, :g or%ﬂ, since &, =0= ¢, = ¢,




Elements of Stability Theory

Periodic attractor in non-autonomous dynamical system Yy = g(y,t)

Example: forced Duffing’s equation

U+ 2600+ a5u + sau’ = ekcos(aw, + eo)t  with 0<e<<1
There exist periodic attractors
u(t)=acos| (@, +&c)t+y |+0(&)

o

Estudo recai em estabilidade de singularidades...




