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Abstract

Regressions with multiplicative interaction terms are widely used in the social
sciences to test whether the relationship between an outcome and an inde-
pendent variable changes depending on a moderator. Despite much advice
on how to use interaction models, two important problems are currently over-
looked in empirical practice. First, multiplicative interaction models are based
on the crucial assumption that the interaction effect is linear, which fails un-
less the effect of the independent variable changes at a constant rate with the
moderator. Second, reliably estimating the marginal effect of the independent
variable at a given value of the moderator requires sufficient common support.
Replicating nearly 50 interaction effects recently published in five top political
science journals, we find that these core assumptions fail in a majority of cases,
suggesting that a large portion of published findings based on multiplicative
interaction models are artifacts of misspecification or are at best highly model
dependent. We propose straightforward diagnostic tests to assess the validity
of these assumptions and offer simple flexible modeling strategies for estimating
potentially nonlinear interaction effects.
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1 Introduction

Linear regression models with multiplicative interaction terms of the form
Y=p+aD+nX+5(D-X)+e

are a workhorse model in the social sciences to examine whether the relationship
between an outcome Y and a key independent variable D varies with levels of a
moderator X. The motivation behind such models is that many hypotheses stipulate
that the effect of the independent variable of interest varies depending on the context
as captured by the moderator X. For example, we might expect that the effect of D
on Y grows with higher levels of X. Such conditional hypotheses are ubiquitous in
the social sciences.

A large body of literature advises scholars how to test such conditional hypotheses
using multiplicative interaction models. Perhaps most prominently, the pioneering
article by Brambor, Clark and Golder (2006) provides a simple checklist of dos and
don’ts. They recommend that scholars should (1) include all constitutive terms (D
and X) alongside the interaction term (D - X) in the model, (2) not interpret the
coefficients on the constitutive terms (« and 1) as unconditional marginal effects, and
(3) compute substantively meaningful marginal effects and standard errors, ideally
with a plot that shows how the conditional marginal effect of D on Y changes across
levels of the moderator X.

The recommendations given in Brambor, Clark and Golder (2006) have been
extremely widely cited! and are nowadays often considered the best practice. As
our survey of five top political science journals from 2006-2015 suggests, most articles
with interaction terms now follow these guidelines and routinely report interaction

effects with the marginal effects plots recommended in Brambor, Clark and Golder

n fact, as of January 2006 Brambor, Clark and Golder (2006) has been cited over 3,000 times
according to Google Scholar, which makes it one of the most cited political science articles of the
last two decades. Braumoeller (2004) has been cited over 600 times.



(2006). In addition, scholars today rarley leave out constitutive terms or misinterpret
the coefficients on the constitutive terms as unconditional marginal effects. Clearly,
empirical practice improved dramatically with the publication of Brambor, Clark and
Golder (2006) and related advice.?

Despite these important advances, we contend that important limitations remain
in the current best practice of using multiplicative interaction models. In particular,
we emphasize two important problems that are currently overlooked and not detected
by scholars using the existing guidelines.

First, while multiplicative interaction models allow the effect of the key indepen-
dent variable D to vary across levels of the moderator X, they maintain the important
assumption that the interaction effect is linear and follows the functional form given
by 2 = a + BX. This linear interaction effect (LIE) assumption states that the
effect of D on Y can only linearly change with X at a constant rate given by . In
other words, the LIE assumption implies that the heterogeneity in effects is such that
as X increases by one unit, the effect of D on Y changes by  and this change in
the effect is constant across the whole range of X. Perhaps not surprisingly, this LIE
assumption often fails in empirical settings because many interaction effects are not
linear and often not even monotonic. In fact, replicating nearly 50 interaction effects
published in the top five political science journals in the 2006-2015 period, we find
that the effect of D on Y changes monotonically across levels of X in only 37 percent
of cases and it changes linearly only in 17 percent of cases. This suggests that a large
share of published work using multiplicative interaction models draws erroneous con-
clusions that rest on a modeling artifact that goes undetected even when applying
the current best practice guidelines.

Second, another important problem that is currently often overlooked in empirical

2Brambor, Clark and Golder (2006) surveyed the top three political science journals between 1998-
2002 and found that only 10% of articles that used multiplicative interaction models had followed
their simple checklist. Similarly, Braumoeller (2004) showed that prominent articles in international
relations routinely misinterpreted lower order terms.



practice is the issue of lack of common support. Scholars using multiplicative inter-
action models routinely report the conditional marginal effect of D on Y across a
wide range of X values by plugging the X values into the conditional marginal effects
formula g—g = a + BX. However, often little attention is paid as to whether there is
sufficient common support in the data to reliably compute the conditional marginal
effects. In particular, when computing the effect of D at a specific value of the mod-
erator X, there should be (1) a sufficient number of observations whose X values are
close to X, and (2) those observations should also exhibit sufficient variation on D.
If either of these two conditions fails, the conditional marginal effect estimates are
based on extrapolation or interpolation of the functional form to an area where there
is no or only very sparse data and therefore the effect estimates are fragile and highly
model dependent (King and Zeng 2006). In our replications we find that this type of
extrapolation is very common in empirical practice. Many articles report conditional
marginal effect estimates for values of the moderator where there are no or very few
observations. Similarly, some articles report conditional marginal effect estimates for
values of the moderator where there is no variation in the key independent variable
of interest. Overall, our replications suggest that scholars are not sufficiently aware
of the lack of common support problem and draw conclusions based on highly model
dependent estimates.

Our goal is not to point fingers at anyone but to improve empirical practice. To
this end we develop a set of simple diagnostic tests that help researchers to detect
these currently overlooked and important problems. In addition, we offer simple
semi-parametric modeling strategies that allow researchers to estimate conditional
marginal effects while relaxing the LIE assumption. Our diagnostics and estimation
strategies are easy to implement using standard software packages. Finally, we pro-
pose a revised checklist that augments the existing guidelines for best practice. We

also make available the code and data that implements our methods and replicates



the figures in R and STATA..

The rest of the article proceeds as follows. In the next section we discuss the
problems with the multiplicative interaction model. In the third section we introduce
our diagnostic tools and estimation strategies. In the fourth section we apply them to
the replication data. The last section provides our revised guidelines for best practice

and conclude.

2 Multiplicative Interaction Models

We start with the classical linear multiplicative interaction model that is often as-
sumed in empirical work and is given by the following regression equation:

Y=p+nX+aD+ DX + Zy+e. (1)
In this model Y is the outcome variable, D is the key independent variable of interest
or “treatment”, X is the moderator, DX is the interaction term between D and X,
Z is a vector of control variables, and p and € represent the constant and error terms,
respectively.

We focus on the case where the treatment variable D is either binary or continuous
and the moderator X is continuous.* Moreover, in the following discussion we focus
on the interaction effect components of the model (D, X, and DX). When covariates
Z are included in the model, we maintain the typical assumption of the standard
multiplicative interaction that the model is correctly specified with respect to these
covariates.

The coefficients of Model (1) are consistently estimated under the usual linear
regression assumptions which imply that the functional form is correctly specified

and that Ele|D, X, Z] = 0. In the multiplicative interaction model this implies the

3ADD LINK HERE

4When D and X are both binary or discrete with few unique values one can employ a fully saturated
model that dummies out the treatment and the moderator and includes all interaction terms to
obtain the treatment effect at each level of X.



linear interaction effects (LIE) assumption which says that the marginal effect of the

treatment D on the outcome Y is

oY
MED:a—D:()é+,BX, (2)

which is a linear function of the moderator X. This LIE assumption implies that the
effect of D on Y can only linearly change with X, so if X increases by one unit, the
effect of D on Y changes by 5 and this change in the effect is constant across the
whole range of X. This is a strong assumption, because we often have little reason to
believe that the heterogeneity in the effect of D on Y takes exactly such a linear form.
Instead, it might well be that the effect of D on Y is non-linear or non-monotonic.
For example, the effect might be small for low values of X, large at medium values
of X, and then small again for high values of X.
The LIE assumption in Equation (2) means that the relative effect of treatment
D = d; versus D = ds can be expressed by the difference between two linear functions
in X:
Effldi,ds) =Y (D =d1| X, Z) = Y(D = do| X, Z)
=(u+ ad; +nX + pd1 X) — (u+ ads + nX + fd X) (3)
=a(di — ds) + B(d1 — d2) X.
This decomposition makes clear that under the LIE assumption, the effect of D on Y
is the difference between two linear functions, p+ad; + (n+ £d;) X and p+ ads+ (n+
Bdy) X, and therefore the LIE assumption will only hold if both functions are linear
for all modeled contrasts of d; versus dy.” In other words, linear interaction models
are highly susceptible to misspecification bias because the LIE assumption will fail
if one or both functions are misspecified due to non-linearities, non-monotonicities,

a skewed distribution of X resulting in outliers or bad influence points, etc. As our

®Note that in the special case of a binary treatment variable (say, d; = 1 and dy = 0), the marginal

effect of D on Y is: MEp = Eff(1,0) = Y(D = 1|X,Z2) - Y(D = 0|X,Z) = o + X, which
is consistent with Equation (2). The term vZ is left out given the usual assumption that the
specification is correct in both equations with respect to the control variables Z.



empirical survey shows below, in practice this LIE assumption often fails because at
least one of the two functions is not linear.®

The decomposition in Equation (3) points to another important aspect of linear
interaction models which is the issue of common support. Since the conditional effect
of D on Y is the difference between two linear functions, it is important that the
two functions share a common support of X. In other words, to reliably compute the
conditional effect of D on Y at a given value of the moderator X = x, there should
be (1) a sufficient number of data points in the neighborhood of X = z, and (2)
those data points need to exhibit sufficient variation on D. Otherwise, estimation of
the marginal effect will essentially rely on interpolation or extrapolation of at least
one of the functions to an area where there is no or only very few observations. It is
well known that such interpolation or extrapolation purely based on the functional
form results in fragile and highly model dependent estimates. Slight changes in the
assumed functional form can lead to widely different answers (King and Zeng 2006).
In our empirical survey below we show that such interpolation or extrapolation is
common in empirical work using multiplicative interaction models.

In sum, there are two important problems with multiplicative interaction models.
The LIE assumption states that if the interaction effect is truly linear, but if it fails,
the conditional marginal effect estimates are inconsistent and biased. The common
support condition suggests that we need sufficient data on X and D to reliably esti-
mate the conditional marginal effect because otherwise the estimates will be highly
model dependent. Both problems are currently overlooked because they are not de-
tected by scholars following the current best practice guidelines. In the next section
we develop simple diagnostic tools and estimation strategies that allow scholars to

diagnose these problems and estimate conditional marginal effects while relaxing the

6 Although the linear regression framework is flexible enough to incorporate higher order terms of X
and their interaction with D this is rarely done in practice. In fact, not a single study incorporated
higher order terms in our replication sample of nearly 50 recently published interaction effects (see
below).



LIE assumption.

3 Diagnostics

Before introducing the diagnostic tools, we provide two simulated samples for illus-
tration (one with a continuous treatment and one with a binary treatment). The two
samples, each of 200 observations, are generated with the following process:
Y, =5—-4X, - 9D, + 3D, X, + ¢, 1=1,2,---,200.

Y; is the outcome for unit ¢, the moderator is given by X; big (3,1), and the
error term is given by ¢; N (0,4). In the first sample, the treatment indicator is
D; R Bernoulli(0.5), while in the second one it is D; B (3,1). The marginal
effect of D on Y therefore is MEp = —9 4+ 3X. The two samples share the same
sets of X; and ¢;. For simplicity, we do not include any control variables in both
specifications.

We now present a simple visual diagnostic to help researchers to diagnose potential
problems with the LIE assumption and the lack of common support.

The diagnostic that we recommend is a scatterplot of raw data. This diagnostic
is simple to implement and powerful in the sense that it readily reveals the main
problems associated with the LIE assumption and lack of common support.

If the treatment D is binary, we recommend simply plotting the outcome variable
Y against the moderator X separately for the sample of treatment group observations
(D = 1) and the sample of control group observations (D = 0). In each sample we
recommend superimposing a linear regression line as well as a LOESS lines in each
group (Cleveland and Devlin 1988).” The upper panel of Figure 1 presents an example

of such a plot for the simulated data with the binary treatment.

The first important issue to check is whether the relationship between Y and X is

"In addition, the same plots can be constructed after residualizing with respect to the covariates Z.



FIGURE 1. RAw PLOTS: SIMULATED SAMPLES
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reasonably linear in both groups. For this we can simply check if the linear regression
lines (blue) and the LOESS lines (red) diverge considerably across the range of X
values. In this case, the two lines are very close to each other in both groups indicating
that both conditional expectation functions are well approximated with a linear fit
as required by the LIE assumption. We also see that the slope of Y on X of the
treatment group is apparently larger (less negative) than that of the control group
(n+ B > 1), suggesting a possible positive interaction effect of D and X on Y.

The second important issue to look out for is whether there is sufficient common



support in the data. For this we can simply compare the distribution of X in both
groups and examine the range of X values for which there is a sufficient number of
data points in both groups. In our example, we see that we see that both groups
share a common support of X for the range between about 1.5 to 5 as we would
expect given the simulation parameters.®

If the moderator is continuous, then visualizing the conditional relationship of
Y and D across levels of X is more complicated, but in our experience a simple
binning approach is sufficient to detect most problems in typical political science data.
Accordingly, we recommend that researchers split the sample into three roughly equal
sized groups based on the moderator X: low X (first tercile), medium X (second
tercile), and high X (third tercile). For each of the three groups we then plot Y
against D while adding again both the linear fit and the LOESS fit.

The lower panel of Figure 1 presents such a plot for the second simulated data with
the continuous treatment. As before, this plot reveals that the conditional expectation
function of Y given D is well approximated by a linear model in all three samples
of observations with low, medium, or high values on the moderator X. Comparing
across the three panels of the plot, we also see that there is again sufficient common
support for X values ranging between 1.5 to 5. There is also clear evidence of an
interaction as the slope of the line which captures the relationship between D on Y

is negative at low levels of X, flat at medium levels of X, and positive at high levels

of X9

8In addition, researchers can plot the estimated density of X in both groups in a single plot to
further judge the range of common support.

9In this case of a continuous treatment and continuous moderator it is often also useful to visualize
interactions using a three-dimensional surface plot generated by a generalized additive model (GAM,
Hastie and Tibshirani 1986). See Appendix for more information on this strategy.



4 Estimation Strategies

In this section we develop two simple estimation strategies to estimate the conditional
marginal effect of D on Y across values of the moderator X. These approaches have
the advantage that they relax the LIE assumption and flexibly allow for heterogeneity
in how the conditional marginal effect changes across values of X. In addition, they
offer protection against model dependency coming from excessive extrapolation or

interpolation to areas where the data is very sparse.

4.1 Binning Estimator

The first estimation approach is a simple binning estimator. There are three steps
to implement the estimator. First, we discretize the moderator variable X into three
bins (respectively corresponding to the three terciles) as before and create a dummy
variable for each bin. More formally, we define three dummy variables that indicate
the interval X falls into:

1 X< 51/3 1 Xe [61/3,52/3) 1 X> 52/3
G, = ’ 2 = ’ 3 )

0 otherwise 0 otherwise 0 otherwise

in which d;/3 and dy/3 are respectively the first and second terciles of X. We can
choose other numbers in the support of X to create the bins but the advantage of
using terciles is that we obtain estimates of the effect at typical low, medium, and high
values of X. While three bins tend to work well in practice for typical political science
data, the researcher can create more than three bins in order to get a finer resolution
of the effect heterogeneity. Increasing the number of bins requires a sufficiently large
number of observations.

Second, we pick up a point within each bin, z1, x5, and x3, where we want to
estimate the conditional marginal effect of D on Y. Typically, we choose x1, x9, and

x3 to be the median of X in each bin, but researchers are free to choose other numbers

10



within the bins (for example, the means).

Third, we estimate a model that includes interactions between the bin dummies
G and the treatment indicator D, the bin dummies and the moderator X minus the
points we pick (xy, x9, and z3), as well as the triple interactions. The last two terms
are to capture the changing effect of D on Y within each bin defined by G. Formally,

we estimate the following model:

3
Y:Z{NJJF%'D@'JFUJ'(X—%)+ﬁj(X—$j)D}Gj+Z”Y+€ (4)
j=1
in which p;, o, n;, and 5; (j = 1,2,3) are unknown coefficients.

The binning estimator has several key advantages over the standard multiplicative
interaction model given in Model (1). First, the binning estimator is much more
flexible than the standard multiplicative interaction model. Essentially, the binning
estimator jointly fits the interaction components of the standard model to each bin
separately.'’ Since (X — z;) equals zero at each evaluation point z;, the conditional
marginal effect of D on Y at the chosen points within each bin, x;, =, and x3, is
simply given by ai, as, and ag, respectively. The model does not impose the LIE
assumption. Instead, the conditional marginal effects can vary freely across the three
bins and therefore can take on any non-linear or non-monotonic pattern that might
describe the heterogeneity in the effect of D on Y across low, medium, or high levels
of X.

Second, since the bins are constructed based on the support of X, the binning
ensures that the conditional marginal effects are estimated at typical values of the

moderator and do not rely on excessive extrapolation or interpolation.!!

ONote that given the usual assumption that the model is correctly specified with respect to the
covariates Z, we do not let v vary for each bin. If more flexibility is required the researcher can
also include the interactions between the bin indicators and the covariates Z to let v vary by bin.

1Clearly, one could construct cases where the distribution of X within a bin is highly bimodal
and therefore the bin median might involve interpolation, but this is not very common in typical
political science studies. In fact, in our nearly 50 replications of recently published interaction
effects in five top journals we found not a single case where this potential problem occurs (see
below).

11



Third, the binning estimator is easy to implement using any regression software
and the standard errors for the conditional marginal effects are directly estimated by
the regression so there is no need to compute linear combinations of coefficients to
compute the conditional marginal effects.

Fourth, the binning estimator actually provides a generalization that nests the
standard multiplicative interaction model as a special case. It can therefore serve
as a formal test on the validity of global LIE assumption imposed by the standard
model. In particular, if the standard multiplicative interaction Model (1) is the true

model, we have the following relationships:
p= gy =y J=12.3;
= j=1.23
a= a;— B, =123
B= B j=1,2,3.
The marginal effect of D at X = z; (j = 1,2,3), therefore, is:
ME(z;) = aj = a + fjz; = a + Bz;.

In the appendix we formally show that when Model (1) is correct we have

~

G; — (@ +fz;) B0,  j=1,23,
in which @& and § are estimated from Model (1) and &; (j = 1,2, 3) are estimated using
Model (4). So in the special case when the standard multiplicative interaction model
is correct and the global LIE assumption holds, then—as the sample size grows—the
marginal effect estimates from the binning estimator converge in probability on the
unbiased marginal effect estimates from the standard multiplicative interaction model
given by ME(X) = a + 5X.

To illustrate the results from the binning estimator we apply it to both simulated
datasets that cover the case of a binary and continuous treatment, respectively. The

results are shown in Figure 2. To clarify the correspondence between the binning

12



estimator and the standard multiplicative interaction model we superimpose the three
estimates of the conditional marginal effects of D on Y, &y, ¢ and @3, and their 95%
confidence intervals from the binning estimator in their appropriate places (i.e., at
X = z; in bin j) on the original marginal effects plot generated from the standard
multiplicative interaction model as recommended by Brambor, Clark and Golder
(2006).

In the case of the binary treatment, we also display at the bottom of the figure a
stacked histogram that shows the distribution of the moderator X. In this histogram
the total height of the staked bars refers to the distribution of the moderator in
the pooled sample and the red and white shaded bars refer to the distribution of the
moderator in the treatment and control group, respectively. Adding such a histogram
makes it easy to judge the degree to which there is common support in the data. In
the case of a continuous treatment, the histogram at the bottom simply shows the
distribution of X in the entire sample.

Recall that in our simulated data the standard multiplicative interaction model
is the correct model and the LIE assumption holds. Hence, as Figure 2 shows, the
conditional effect estimates from the binning estimator and the standard standard
multiplicative interaction model are extremely similar in both datasets. Even with
a small sample size (i.e., N = 200), the three estimates from the binning estimator,
labeled L, M, and H, sit almost right on the estimated linear marginal-effect line
from the true standard multiplicative interaction model. When the estimates from
the binning estimator are instead far off the line or when they are out of order,
(for example, first increasing then decreasing), however, we have a critical piece of
evidence that the LIE assumption does not hold. We also see from the histogram that
the three estimates from the binning estimator are computed at typical low, medium,
and high values of X with sufficient common support which is what we expect given

the binning based on terciles.
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FIGURE 2. CONDITIONAL MARGINAL EFFECTS FROM BINNING ESTIMATOR:
SIMULATED SAMPLES

Marginal effect of D on Y
Marginal effect of D on Y
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Finally, to go further we can conduct three two-sided t-tests to test the following
three hypotheses: (1) as = a1; (2) a3 = ag; and (3) a; = as. Ideally, we want reject
these hypothesis when |3| > 0. In practice, we may lack statistical power with some
of the tests, but we should at least be able to reject a; # a3 if the marginal effect
is linear in X and |5] > 0. In our simulated data, the estimate from the bin with
“High” X is significantly different from that from the bin with “Low” X (p < 0.000

in both cases), which provides a clear sign of increasing treatment effects of D on Y.

4.2 Kernel Estimator

The second estimation strategy is a kernel smoothing estimator of the marginal effect,
which is an application of semi-parametric smooth varying-coefficient models (Li and
Racine 2010). This approach is more complicated than the simple binning estimator,
but provides a generalization that allows researchers to flexibly estimate the functional
form of the marginal effect of D on Y across the values of X by estimating a series

of local effects with a kernel reweighting scheme. Formally, the kernel smoothing
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method is based on the following semi-parametric model:

Y = f(X)+9(X)D +~v(X)Z + ¢, (5)
in which f(.), g(.), and 7(.) are smooth functions of X, and g(.) captures the marginal
effect of D on Y. It is easy to see that this kernel regression nests the standard
interaction model given in Model (1) is a special case when f(X) = pu+nX, g(X) =
a+ X and y(X) = v,. However, in the kernel regression the conditional effect of D
on Y does not have to fall on a linear line as required by the LIE assumption, but
can vary freely across the range of X. In addition, if covariates Z are included in
the model, the coefficients of those covariates are also allowed to vary freely across
the range of X resulting in a very flexible estimator that also helps to guard against
misspecification bias with respect to the covariates.'?

We use a kernel based method to estimate Model (5). Specially, for each given
2o in the support of X, f(zo), §(zo), and 4(zo) are estimated by minimizing the

following weighted least squares objective function:

(/l(xO)u &(x0)7 ﬁ(x())v B(xO)v ’?((L’(ﬁ) - argmjn L(ﬂ? 077 77» B? ﬁ)
By, B,

szj{[n — i — aD; — ii(Xi — 29) — BDy(Xi — ap) —aZirK (%)}
in WhichZK (.) is a Gaussian kernel and h is a smooth parameter that is automatically
selected via least-squares cross-validation, and f(z) = ji(zo), §(xo) = d(xo). The
two terms (X —x¢) and SD(X — ) are included to capture the influence of the first
partial derivative of Y with respect to X at each evaluation point of X, a common
practice that would reduce bias of the kernel estimator on the boundary of the support
of X (e.g., Fan, Heckman and Wand 1995). As a result, we obtain three smooth
functions f (.), g(.), and A(.), in which g(.) represents the estimated marginal effect of

D on'Y with respect to X.!* Note that this estimation procedure can be implemented

12T the model includes fixed effects as covariates those can be partialled out prior to the estimation
of the kernel.
I3For theoretical properties of the kernel smoothing estimator, see Li and Racine (2010).
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in R using the npscoef function in the np package. Standard errors and confidence
intervals can be computed using a bootstrap.

Figure 3 shows the results of the kernel estimator applied to the two simulated
samples. As in Figure 2, the x-axis is the moderator X and the y-axis is the estimated
effect of D on Y. The confidence intervals are generated using 1,000 iterations of a
non-parametric bootstrap where we resample the data with replacement. We again
add our (staked) histograms at the bottom to judge the common support based on
the distribution of the moderator.

We see that the results are very similar to the binning estimator as both plots
suggest a strong linear interaction where the conditional marginal effect of D on Y
grows linearly with X. The marginal estimates from the kernel estimator are very

close to those from the true multiplicative interaction model (red dashed line).

FIGURE 3. KERNEL SMOOTHED ESTIMATES: SIMULATED SAMPLES
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Also note that on the boundaries where there is limited common support on X,
the local estimates are imprecisely estimated as expected given that there is little
data to estimate the marginal effects at these points. The fact that the confidence

intervals get very wide at those points is desirable because it makes clear the lack of
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common support.

5 Data

We now apply our diagnostic and estimation strategies to published papers that used
classical linear interaction models. In order to assess the practical validity of the
assumptions of the multiplicative interaction model, we canvassed studies published
in five top political science journals, The American Political Science Review (APSR),
The American Journal of Political Science (AJPS), The Journal of Politics (JOP),
International Organization (10) and Comparative Political Studies (CPS). Sampling
occurred in two stages. First, for all five journals, we used Google Scholar to identify
every study which cited Brambor, Clark and Golder (2006), roughly 170 articles.
Within these studies, we subset to cases which: used plain OLS; had a substantive
claim tied to an interaction model; and interacted at least one continuous variable.
We excluded methods and review articles, as well as triple interactions.

Second, we conducted additional searches to identify all studies published in the
APSR and AJPS which included the terms “regression” and “interaction” published
since Brambor, Clark and Golder (2006), roughly 550 articles. In order to identify
studies within this second sample which featured interaction models prominently, we
subset to articles which included a marginal effect plot of the sort recommended by
Brambor, Clark and Golder (2006) and then applied the same sampling filters as
above. In the end, these two sampling strategies produced 39 studies that met our
sampling criteria.

After identifying these studies, we then sought out replication materials by email-
ing the authors and searching through the dataverses of the journals. (Again we
thank all authors who generously provided their replication data.) We excluded an

additional 18 studies due to a lack of replication materials or an inability to replicate
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published findings, leaving a total of 22 studies from which we replicated 46 interac-
tion effects. For studies that included multiple interaction effects, we focused on the
most important ones which we identified as either: (1) those for which the authors
generated a marginal effect plot of the sort Brambor, Clark and Golder (2006) rec-
ommends, or, (2) if no such plots were included, those which were most relied upon
for substantive claims. We excluded interaction effects where the marginal effect was
statistically insignificant across the entire range of the moderator and/or where the
authors did not claim to detect a marginal effect.*

While we cannot guarantee that we did not miss a relevant article, we are confident
that our literature review has identified a large portion of recent high-profile political
science studies employing this modeling strategy. The articles cover a broad range of
topics and are drawn from all empirical subfields of political science. Roughly 37%
percent of the interaction effects are from the APSR, 20% are from the AJPS, 22%
are from CPS, 15% are from 10, and 7% are from JOP, respectively.

There are at least three reasons why the conclusions from our sample might pro-
vide a lower bound for the estimated share of published studies where the assumptions
of the standard multiplicative interaction model do not hold. The first one is that we
only focus on top journals. Second, for three journals we focus exclusively on the stud-
ies that cite Brambor, Clark and Golder (2006) and therefore presumably took special
care to employ and interpret these models correctly. Third, we restrict our sample
to the subset of potentially more reliable studies where the authors made replication

data available and where we were able to successfully replicate the results.!®

4We cap the number of replicated interactions at 4 per study. In the rare cases with more than
four interaction plots we chose the four most important ones based on our reading of the article.

15In addition, given the problems arising from a lack of common support, demonstrated below, the
decision to exclude triple interactions from our sample—which, all else equal, are more susceptible
to the common support problem—Ilikely removed several problematic cases from our analysis.
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6 Results

Case 1: Linear Marginal Effects

We begin our discussion with a replication of Huddy, Mason and Aarge (2015), an
example of a study in which the assumptions of the multiplicative interaction model
appear to hold well. This study uses a survey experiment and a multiplicative inter-
action model to test the hypothesis that a threat of electoral loss has a larger effect
on anger if respondents are stronger partisan identifiers. The outcome is anger, the
treatment is the threat of electoral loss (binary yes/no), and the moderator is the
partisan identity of the respondent (scale 0/1). The key finding is that “Strongly
identified partisans feel angrier than weaker partisans when threatened with electoral
loss” (Huddy, Mason and Aarge 2015, pg. 1).

The upper panel in Figure 4 displays our diagnostic scatterplot applied to this
data. We see that the relationship between anger and partisan identity is well ap-
proximated by a linear fit in both groups with and without threat, as the linear and
LOESS lines are close to each other. This provides good support for the validity of
the LIE assumption in this example. There seems to be a linear interaction, with the
effect of threat on anger increasing with higher levels of partisan identity. In addition,
there is sufficient common support for the range of partisan identity between about
.25 to 1.

The middle panel in Figure 4 displays the conditional marginal effect estimates of
the binning estimator superimposed on the estimates from the multiplicative inter-
action model used by the authors. As expected given the scatterplot, the conditional
marginal effect estimates of the binning estimator for the threat effect at low, medium,
and high levels of partisan identity line up very closely with the linear interaction ef-
fects from the original model. The threat effect is almost twice as large at high

compared to low levels of partisan identity and the threat effect at medium levels
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falls about right in the middle of the low and high estimates. In addition, the staked
histogram at the bottom suggests that there is good sufficient common support with

both treated and control observations across a wide range of values of the moderator.

FIGURE 4. LINEAR INTERACTION EFFECT:
REPLICATION OF HUDDY, MASON AND AARQE (2015)
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The lower panel in Figure 4 presents the conditional marginal effect estimates
from the kernel estimator which again confirms the support for the LIE assumption.
The magnitude of the threat effect increases at an approximately constant rate with
higher partisan identity. The confidence bands start to get rather wide below values
of .25 for partisan identity which is consistent with the fact that there are very few

data-points with such low levels of partisan identity.

Case 2: Lack of Common Support

The next example illustrates how fitting an interaction model with a continuous
variable without additional diagnostic checks can mask the fact that the data lack
common support since the treatment is not varying across a wide range of values of
the moderator. Chapman (2009) examines the effect of authorizations granted by
the U.N. Security Council on public opinion on U.S. foreign policy, positing that this
effect is conditional on public perceptions of member states’ interests. The outcome
is the number of “rallies” (short term boosts in public opinion), the treatment is the
granting of a U.N. authorization (binary yes/no) and the moderator is the preference
distance between the U.S. and the Security Council (scale -1/0). In Figure 2 in the
study, the authors plot the marginal effect of U.N. authorization, and state, “[c]learly,
the effect of authorization on rallies decreases as similarity increases,” (p. 756).

The upper panel in Figure 5 shows our diagnostic scatterplot for this data and
the lower left panel in Figure 5 reproduces the original plot displayed in the study
but overlays the estimates from the binning estimator for low, medium, and high
values of the moderator. Again, in the latter plot the staked histogram at the bottom
shows the distribution of the moderator in the treatment and control group with and
without U.N. authorization, respectively.

As the plots show, there is a dramatic lack of common support. There are very

few observations with an U.N. authorization and those observations are all clustered
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in a narrow range of moderator values of around -.5. In fact, as can be seen in the
histogram at the bottom of the plot in the lower panel or the raw plot in the upper
panel of Figure 5, all the observations with an U.N. authorization fall into the lowest
tercile of the moderator and the estimated marginal effect in this lowest bin is close
to zero. In the medium and high bin, the effect of the U.N. authorizations cannot be
estimated using the binning estimator because there is zero variation on the treatment
variable for values of the moderator above about -.45.

The common practice of simply fitting the standard multiplicative interaction
model and computing the conditional marginal effects from this model will not alert
the researcher to this problem. Here the effect estimates from the standard multiplica-
tive interaction model for values of the moderator above -.45 or below -.55 are purely
based on extrapolation based on the functional form and therefore highly model de-
pendent and fragile. The data here simply cannot reliably answer the question as to
how the effect of U.N. authorizations varies across the preference distance between
the U.S. and the Security Council because there the very few cases with and with-
out authorizations are all concentrated in the narrow range of the moderator around
.45, while for other moderator values there is no variation whatsoever in the treat-
ment. This becomes yet again clear in the marginal effect estimates from the kernel
estimator displayed in the lower right panel of Figure 5. Once we move outside the
narrow range where there is variation on the treatment, the confidence intervals from
the marginal effect estimates blow up indicating that the effect cannot be reliably
estimated given the lack of common support. This shows the desired behavior of the

kernel estimator in alerting researchers to the problem of lack of common support.
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FIGURE 5. LACK OF COMMON SUPPORT: CHAPMAN (2009)
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Case 3: Severe Interpolation

Similar to the lack of common support issue, the next published example illustrates
how sparsity of data in various regions of the moderator (as opposed to no variation at

all in the treatment) can lead to severe misspecifications. Malesky, Schuler and Tran
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(2012) examine whether legislative transparency interventions that have been found
to have positive effects on legislator performance in democratic contexts produce the
same benefits when exported to countries with authoritarian regimes. To this end the
researchers randomly selected a subgroup of Vietnamese legislators for a transparency
intervention which consisted of an online newspaper publishing a profile about each
legislator that featured transcripts and scorecards to document that legislator’s per-
formance in terms of asking questions, critical questions in particular, in parliament.
The authors argue that the response of delegates to this transparency intervention
is conditional on the level of internet penetration in their district. To test this they
regress the outcome, measured as the change in the number of questions asked by the
legislator, on the treatment, a binary dummy for whether legislators were exposed
to the transparency intervention or not, the moderator, measured as the number of
internet subscribers per 100 citizens in the district, and the interaction between the
two.

The upper panel in Figure 6 reprints the marginal effect plots presented by the
authors in Figure 1 of their APSR article which is based on plotting the conditional
marginal effects from the standard multiplicative interaction model that they fit to
the data. They write: “[tJhe graphs show clearly that at low levels of Internet pen-
etration, the treatment has no impact on delegate behavior, but at high levels of
Internet penetration, the treatment effect is large and significant” (p. 17). Based
on this negative effect at higher levels of internet penetration the authors conclude
that, “delegates subjected to high treatment intensity demonstrate robust evidence
of curtailed participation [...]. These results make us cautious about the export of
transparency without electoral sanctioning” (Malesky, Schuler and Tran 2012, pg. 1).

How trustworthy is this result which carries significant policy implications? Given
that the treatment was randomized, the results might be taken to be highly credible.

The lower left panel in Figure 6 displays the marginal effect estimates from our
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replication of the original model and the binning estimator. Our replication plots
shows two critical concerns. First, the effect of the transparency intervention appears
non-monotonic and non-linear in the moderator. In fact, the point estimates grow
smaller between typical low and typical medium levels of internet penetration, but
then larger between typical medium and typical high levels of internet penetration.
This suggests that the LIE assumption does not hold and when relaxed by the binning
estimator there is no compelling evidence of a negative interaction effect. In fact, in
direct contrast to the central claim by the authors that the treatment had a large
negative effect at high levels of internet penetration, the effect of the transparency
intervention is, if anything, positive and largest at the highest tercile of internet
penetration indicating that transparency, if anything, made legislators from typical
high penetration districts more likely to ask questions, (although the estimate is not
significantly different from zero).

Second, as illustrated by the staked histogram and the placement of the binned
estimates (which lie at the median of internet penetration in each bin), there are very
few observations which exhibit higher levels of internet penetration than about 2.5,
which is the point above which the effect of the transparency intervention starts to
become significant according to the original model. In fact, for the range between
2.5 and 9, where the original model suggests a negative effect, there is very little
data and the results are based on severe interpolation of the incorrect functional form
to an area far outside the bulk of the data. In this case, the estimates also appear
biased given that the functional form is clearly not linear for the bulk of the data.'¢
The linear downward trend is entirely driven by the severe outliers with unusually
high levels of internet penetration and once these outliers (which make up less than
5% of the data) are removed the trend utterly flattens, indicating no effect of the

intervention at any level of internet penetration (see the lower right panel in Figure

16In the appendix we show that the same problem applies to all the other four outcomes used by
Malesky, Schuler and Tran (2012) in their Figure 1.
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6 below).

FIGURE 6. SEVERE INTERPOLATION: MALESKY, SCHULER AND TRAN (2012)
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Case 4: Nonlinearity

Our next example underscores how fitting linear interaction models can mask nonlin-
earities in interaction effects and therefore result in severe misspecification bias. Clark
and Golder (2006) argue that the temporal proximity of presidential elections affects

the number of parties that compete in an election, but that this effect is conditional
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on the number of presidential candidates. After estimating a linear interaction model,
the authors plot the marginal effect in Figure 2 in their paper, which we replicated
in the left plot of Figure 7 and again superimposed the estimates from the binning
estimator where we use four bins to discretize the moderator.!” The authors interpret
the plot by writing that “[ijt should be clear that temporally proximate presidential
elections have a strong reductive effect on the number of parties when there are few
presidential candidates. As predicted, this reductive effect declines as the number of
candidates increases. Once the number of presidential candidates becomes sufficiently
large, presidential elections stop having a significant effect on the number of parties”
(Clark and Golder 2006, pg. 702).

But as the estimates from the binning estimator in this figure show, the story
is much more complicated. In the first bin which contains the 59% of observations
where the moderator takes on the value of zero, the treatment effect is essentially
zero much to the contrary of the claim of a strong negative effect when there is a low
effective number of candidates. Again contrary to the synopsis in Clark and Golder
(2006), the effect slightly declines in the second bin, and then rapidly drops to be
negative and significant at the third bin, only to increase again back to zero in the last
bin. Clearly, the LIE assumption does not hold and accordingly the linear interaction
model is misspecified. The linearly increasing marginal effect estimates in this case
are a modeling artifact. This is confirmed by the marginal effect estimates from the
kernel estimator which are shown in the right plot of in Figure 7. Consistent with
the binning estimates, the marginal effect appears highly nonlinear. Contrary to the
authors’ claims, the number of candidates in an election does not appear to condition

the effect of proximate elections in a consistent manner.

17T Among the 487 observations, 59% of them have 0 value for the moderator; we split the range of
the moderator into [0,2), [2,3), [3,4) and [4, 7] such that the binned estimates well represent the
entire range. Note that this plot is also used in Brambor, Clark and Golder (2006).
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FIGURE 7. NONLINEARITY: CLARK AND GOLDER (2006)

—

M1 M2 H

N
h

o
0

N
h

E

N - - S S

Marginal effect of presidential elections on effective no. of parties

T

Marginal effect of presidential elections on effective no. of parties
4 | d

- —————

2 ;1 6 0 2 j\ 6
Moderator: effective no. of pres. candidates Moderator: effective no. of pres. candidates

(a) Marginal Effects from Replicated Model (b) Marginal Effects from Kernel Estimator
(black line) and from Binning Estimator (red
dots)

Summary of Replications

The previous cases highlight extreme examples of some of the issues that can go undi-
agnosed if the standard linear interaction model is estimated and key assumptions go
unchecked. But how common are such problems in published work? How much should
we trust published estimates from multiplicative interaction models? To investigate
this question we replicated 46 interaction effects from our sample of published work
in the top five political science journals. To rank these cases, we constructed a simple
additive scoring system whereby cases were awarded single points for exhibiting (1)
no severe extrapolation, (2) monotonic marginal effects, and (3) linearity.

We determined the first criterion by examining whether the L-Kurtosis of the
moderator (Hosking 1990) exceeds a threshold that indicates severe extrapolation.
The L-Kurtosis is a robust and efficient measure of the degree to which the shape of

the distribution is characterized by outliers'® and therefore captures to what extent

18The L-Kurtosis is based on linear combination of the order statistics and therefore less sensitive
to outliers and has better asymptotic properties than the classical kurtosis (Hosking 1990).
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the estimates reported in the marginal effect plots are based on extrapolation to mod-
erator values where there is little or no data.'” We determined the second criterion
of monotonic effects by checking whether the estimates from the binning estimator
changed monotonically across the three tercile bins of the moderating variable. Fi-
nally, if the estimates from the binning estimator fell close to the original marginal
effect line and if the kernel plot appeared more or less linear, we coded the case as
being a linear interaction. While there is admittedly some subjectivity in the appli-
cation of our scoring system, we feel it provides a useful framework for summarizing
the current state of the literature employing these models. We also display more
complete analyses of each case in the Online Appendix so that readers may examine
them in more detail and come to their own conclusions.

Table 1 provides a numerical summary of the results and Figure 8 displays the
marginal effects from the binning estimator superimposed on the original marginal
effect estimates from the replicated multiplicative interaction models used in the
original studies. In all, only 5 of the 46 cases (10.9%) received a perfect score of
three indicating that the reported marginal effects meet all three criteria of no severe
extrapolation, monotonicity, and linearity. This is an unnervingly low fraction given
the loose scoring system we imposed, which did not even demand that the binned
marginal effects be statistically distinguishable. Nine cases (19.6%) received a score
of 2, while 16 cases (34.8%) received a score of 1. Sixteen cases (34.9%) received a

score of zero, failing to meet a single one of the three criteria.?’

9For example, in the case of Malesky, Schuler and Tran (2012) the moderator has an L-Kurtosis
of .43 which indicates severe extrapolation. In fact, about 80% of the density of the moderator is
concentrated in a narrow interval that only makes up 11% of the range of the moderator over which
the marginal effects are plotted in the study. In contrast, in the case of Huddy, Mason and Aarge
(2015) the L-Kurtosis is .065 which is half way between a normal distribution (L-Kurtosis=.12)
and a uniform distribution (L-Kurtosis=0) and therefore indicates good support across the range
of the moderator. In fact, in this case 80% of the density is concentrated in about 53% of the
interval reported in the marginal effects plot. We code studies where the L-Kurtosis exceeds .16
as exhibiting severe extrapolation. This cut-point roughly corresponds to the L-Kurtosis of an
exponential or logistic distribution.

20For details on the scores for each case, see Table Al in the Appendix.
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Once we break out the results by journal, we find that the issues raised by our
review are not unique to any one subfield or journal in political science. Comparative
Political Studies (CPS) received the highest overall mean score, 1.4 on our 0-to-3
scale, while the APSR ranked a close second with a score of 1.2. The lowest score was
0.57 for IO. The mean scores here are computed using a small number of cases, and so
their precision could rightly be questioned. Still, given that our sample is restricted to
work published only in top political science journals, these results indicate that many
of the most substantively important findings in the discipline involving interaction
effects in recent years may be modeling artifacts, and highlight an urgent need for

improved practices when employing multiplicative interaction models.

TABLE 1. REPLICATION RESULTS BY JOURNAL
No severe Monotonic

Journal Cases extrapolation effects Linearity = Score
APSR 17 0.59 0.41 0.18 1.20
AJPS 9 0.22 0.44 0.22 0.89

JOP 3 0.67 0.00 0.33 1.00
CPS 10 0.80 0.50 0.10 1.40

10 7 0.29 0.14 0.14 0.57
Total 46 0.52 0.37 0.17 1.10

The table displays the mean for each criterion for each journal, as well as
the mean additive score for each journal. The unit of analysis is the

interaction, not the article.
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FIGURE 8. THE ASSUMPTIONS OF THE LINEAR INTERACTION MODEL RARELY
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Conclusion

Multiplicative interaction models are widely used in the social sciences to test condi-
tional hypotheses. While empirical practice has improved following the publication of
Brambor, Clark and Golder (2006) and related advice, this study demonstrates that
there remain important problems that are currently overlooked by scholars using the
existing best practice guidelines. In particular, the multiplicative interaction model
implies the key assumption that the interaction effects are linear, but our replications
of published work in five top political science journals suggests that this assumption
often does not hold in practice. In addition, as our replications also show, scholars
often compute marginal effects in areas where there is no or only very limited common
support, which results in fragile and model dependent estimates.

To improve empirical practice we develop a simple diagnostic that allows re-
searchers to detect problems with the linear interaction effects assumption and/or
lack of common support. In addition, we propose more flexible estimation strategies
based on a simple binning estimator and a kernel estimator that allow researchers
to estimate marginal effects without imposing the stringent linear interaction as-
sumption while safeguarding against extrapolation to areas without (or with limited)
common support. When applying these methods to our replications, we find that the
key findings often change substantially. Given that our sample of replications only
includes top journals, our findings here most likely understate the true extent of the
problem in published work. Overall, our replications suggest that a large portion
of findings in published work employing multiplicative interaction models are based
on modeling artifacts, or are at best highly model dependent, and suggest a need to
augment the current best practice guidelines.

We recommend that researchers engaged in testing conditional hypotheses should

engage in the following:
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1. Generate the diagnostic scatterplot of the raw data to check whether the con-
ditional relationships between the outcome, treatment, and moderator are well
approximated by a linear fit and check whether there is sufficient common sup-
port to compute the treatment effect across the values of the moderator. If
additional covariates are involved in the model, the same diagnostics plots can
be constructed after residualizing with respect to those covariates. If both the
treatment and the moderator are continuous, a GAM plot can be used to further

assists with these checks (see Appendix for details on GAM plots).

2. Compute the conditional marginal effects using the binning estimator. In our
experience, three equal sized bins for each tercile with the evaluation points set
to the bin medians are sufficient to get a good sense of the effect heterogeneity.
More bins can be used if more precision is required and more data is available.
In addition, generating the marginal effects estimates using the kernel estimator
can be helpful to further evaluate the effect heterogeneity. In any case, close
attention should be paid to not compute marginal effects in areas where the
data is too sparse either because there are no observations for those values
of the moderator or there is no variation in the treatment. To aid with this
we highly recommend to always add a (staked) histogram at the bottom of
the marginal effect plot to show the distribution of the moderator and detect

problems with lack of common support.

3. The standard linear interaction model and marginal effects plots should only be
used if the estimates from the binning and or kernel estimator suggest that the
interaction is really linear, and marginal effects should only be computed for
areas with sufficient common support. If a standard linear interaction model
is used in this case, the researchers should follow the existing guidelines as

described in Brambor, Clark and Golder (2006).
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Following these revised guidelines would have solved the problems we discussed
in the set of published studies that we replicated. Accordingly, we are confident that
applying these guidelines will lead to a further improvement in empirical practice.
That said, it is important to emphasize that following these revised guidelines does
not guarantee that the model will be correctly specified. If other covariates are
included in the model, it is important for researchers to apply all the usual regression
diagnostics in addition to the checks we proposed here to make sure that the model is
not misspecified. Moreover, it is important to recognize that the checks cannot help
with other common problems such as endogeneity or omitted variables that often
plague inferences from regression models and can often only be solved through better

research designs.
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A.1 Proofs

Model (1) and Model (4) in the main text are re-stated as follows:

Y=p+nX+aD+BDX +~vZ +¢ (1)

Y = i{ﬂj + ;D +1;(X — ;) + 5;(X —2;,)D}G; +vZ + €. (4)
j=1
It is to be proved that, if Model (1) is correct :
a; — (a+ fBa;) B0, j=1,2,3,
in which & and  are estimated from Model (1) and a; are estimated from Model (4).

Proof: First, rewrite Model (4) as:

3
Y = {(u; —nz;) +mX + (g — Bjz;)D + B;DX}Gj +vZ + € (6)

J=1

and define a; = a; — Bz;. When Model (1) is correct, if we regress Y on G, XGj,
DG;, XDG, (j =1,2,3) and Z, we have:

d; Haand ;B B, j=1,2,3.
Since a; = @, — B,x;, we have: &; = a — fz;. Because
&5« and B 58
when Model (1) is correct, we have:
a; — (6 + ;) B0 j=1,23.

Q.E.D.
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A.2 Additional information on replication files

TABLE Al. REPLICATION RESULTS

Monotonic No severe
Study Journal effects extrapolation Linearity Score

—

Adams and Glasgow (2006) AJPS 0 1 2

Aklin and Urpelainen (2013) AJPS 1 0 0 1
Aklin and Urpelainen (2013) AJPS 1 0 0 1
Banks and Valentino (2012) AJPS 1 1 1 3
Banks and Valentino (2012) AJPS 0 0 0 0
Banks and Valentino (2012) AJPS 0 0 0 0
Bodea and Hicks (2015a) JOP 0 1 0 1
Bodea and Hicks (2015a) JOP 0 0 0 0
Bodea and Hicks (2015b) 10 0 0 0 0
Bodea and Hicks (2015b) 10 0 1 0 1
Bodea and Hicks (2015b) 10 0 0 0 0
Bodea and Hicks (2015b) 10 0 1 0 1
Carpenter and Moore (2014) APSR 1 0 0 1
Chapman (2009) 10 0 0 0 0

Clark and Golder (2006) CPS 1 1 0 2
Clark and Golder (2006) CPS 1 1 0 2
Clark and Golder (2006) CPS 1 1 0 2
Clark and Golder (2006) CPS 0 1 0 1
Clark and Leiter (2014) CPS 0 0 0 0
Hellwig and Samuels (2007) CPS 0 1 0 1
Hellwig and Samuels (2007) CPS 0 0 0 0
Hicken and Simmons (2008) AJPS 0 1 0 1
Huddy, Mason and Aarge (2015)  APSR 1 1 1 3
Huddy, Mason and Aarge (2015)  APSR 1 1 1 3
Kim and LeVeck (2013) APSR 1 1 0 2
Kim and LeVeck (2013) APSR 0 1 0 1
Kim and LeVeck (2013) APSR 1 1 0 2
Malesky, Schuler and Tran (2012) APSR 0 0 0 0
Malesky, Schuler and Tran (2012) APSR 0 0 0 0
Malesky, Schuler and Tran (2012) APSR 0 0 0 0
Malesky, Schuler and Tran (2012) APSR 0 0 0 0
Neblo et al. (2010) APSR 0 1 0 1

Pelc (2011) 10 1 0 1 2

Pelc (2011) 10 0 0 0 0

Petersen and Aarge (2013) APSR 0 1 0 1
Petersen and Aarge (2013) APSR 0 1 0 1
Somer-Topcu (2009) JOP 0 1 1 2
Tavits (2008) CPS 1 1 0 2

Truex (2014) APSR 1 1 1 3

Truex (2014) APSR 0 0 0 0

Truex (2014) APSR 0 1 0 1

Truex (2014) APSR 1 0 0 1

Vernby (2013) AJPS 0 0 0 0

Vernby (2013) AJPS 0 0 0 0
Williams (2011) CPS 0 1 0 1
Williams (2011) CPS 1 1 1 3




A.3 GAM Plot

In cases where both D and X are continuous, an alternative to the scatterplot is to
use a generalized additive model (GAM) to plot the surface that describes how the
average Y changes across D and X. While the statistical theory underlying GAMs
is a bit more involved (Hastie and Tibshirani 1986), the plots of the GAM surface
can be easily constructed using canned routines in R. Figure A1l shows such a GAM
plot for the simulated data from the second sample looking at the surface from four
distinctive directions. Lighter color on the surface represents a higher value of Y.

Figure A1 has several features. First, it is obvious that holding X constant, Y is
increasing in D and holding D constant, Y is increasing in X. Second, the slope of
Y on D is larger with higher X than with lower X. Third, the surface of Y over D
and X is fairly smooth, with a gentle curvature in the middle but absent of drastic
humps, wrinkles, or holes. In the Online Appendix, we will see that the GAM plots
of examples that likely violate the linearity assumption look quite differently from
Figure Al.

FIGURE A1l. GAM PLOT: SIMULATED SAMPLE
WITH CONTINUOUS TREATMENT

A-4



	0 Introduction
	Introduction
	Multiplicative Interaction Models
	Diagnostics
	Estimation Strategies
	Data
	Results
	Supplementary Information
	Proofs
	Additional information on replication files
	GAM Plot


