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Network Design and Transportation
Planning: Models and Algorithms*

T. L. MAGNANTIt

Massachusetts Institute of Technology, Cambridge, Massachusetts

R. T. WONG

Purdue University, West Lafayette, Indiana

Numerous transportation applications as diverse as capital in-
vestment decision-making, vehicle fleet planning, and traffic light
signal setting all involve some form of (discrete choice) network
design. In this paper, we review some of the uses and limitations
of integer programming-based approaches to network design, and
describe several discrete and continuous choice models and algo-
rithms. Our objectives are threefold—to provide a unifying view
for synthesizing many network design models, to propose a unify-
ing framework for deriving many network design algorithms, and
to summarize computational experience in solving design prob-
lems. We also show that many of the most celebrated combinato-
rial problems that arise in transportation planning are speciali-
zations and variations of a generic design model. Consequently,
the network design concepts described in this paper have great
potential application in a wide range of problem settings.

1. INTRODUCTION
As broadly construed, network design is a topic that captures many
of the most salient features of transportation planning. Indeed, network
design issues pervade the full hierarchy of stratrgic, tactical, and opera-
tional decision-making situations that arise ir. transportation. At the
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1983.
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highest, most aggregate level of decision-making, network design choices
do much to determine the effectiveness of strategic, long-term transpor-
tation planning. One hardly needs to reflect on the importance of stra-
tegic capital investment decisions involving highways, airports, fleet
acquisitions, and mass transit, among others, and the role of these
decisions in defining the infrastructure of transportation system net-
works and, hence, the resources that will be available for transportation
planning in general. Tactical, intermediate term network design decisions
are essential as well, though for planning for the effective use, rather
than the acquisition, of these resources. Setting one-way street assign-
ments in urban street networks or determining the best location for a
company’s warehouses would be examples of such tactical decisions. And,
finally, network design decisions arise in certain operational, short-term
planning problems, such as the setting of street light signals or the
scheduling of repairs on urban streets.

Because many of these design decisions involve choices from a discrete
set of alternatives, the design problems can often be cast in the form of
integer or mixed integer programming models. The essence of these
models can be stated quite simply. We are to choose those arcs (e.g.,
roadways or railbeds) to include in, or add to, a transportation network
accounting for the effects that the design decision will have on the
operating characteristics of the transportation system. This type of model
is capable, at least in principle, of considering the system-wide interac-
tions between design decisions and of modeling how design decisions
affect the operations of a transportation network. In particular, the
models can consider trade-offs between various design alternatives, strik-
ing a balance between increased design expenditures and resulting im-
provements in the system’s operation (e.g., decreases in operating costs).

In this paper, we will consider both modeling and algorithmic devel-
opment for these integer programming-based network design models.
Our objectives are threefold—to present a unified view of modeling of
network design problems, to propose a unifying framework for describing
many network design algorithms, and to summarize computational ex-
perience in solving design problems.

First, we describe a general discrete choice model of network design,
reviewing some of the features captured by the model and some of its
specializations. As part of this discussion, we show how this general
model is intimately related to many of the most renowned discrete choice
problems encountered in transportation planning, including the minimal
spanning tree problem, shortest path problem, traveling salesman and
vehicle routing problems, and the traffic equilibrium problem. Next, we
describe some of the integer programming algorithms and heuristic

i,
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methods that have been developed for solving various versions of the
design problem. In particular, we show that many of the approximation,
or bounding, schemes that have been devised for solving this type of
discrete optimization problem can be viewed in a unified way. We also
describe several criteria for evaluating the effectiveness of heuristic
algorithms as well as the application of these performance criteria to
network design heuristics. Third, we summarize algorithmic experience
in applying these optimization-based and heuristic algorithms to the
network design problem. In the last section we also discuss several models
and algorithmic approaches for related convex and concave cost problems
in which design decisions are not limited to a discrete set of choices.
Before undertaking these objectives, we might pause briefly to com-
ment on the potential uses and the limitations of these discrete choice
models, and to contrast how discrete choice design problems in transpor-

tation compare with similar types of models that arise in other contexts
such as communication planning.

Scope and Limitations

Although discrete choice integer programming models are generally
ideal for addressing the type of combinatorial complexities and interac-
tion effects that arise in network planning, they are generally not well-
suited for dealing with the risk and uncertainties that are inherent in
many strategic decision-making situations. In these instances, other
planning tools, such as simulation, decision analysis, or multiattribute
utility theory, are attractive alternatives to integer programming analysis.
This is particularly true when evaluating the merits of any single network
investment project such as the introduction of a new subway line, or the
choice of size and location of a new airport. In these instances, social,
political, and regional development effects are likely to predominate.
Often, the effects of these new capital investments on the transportation
system as a whole can be viewed adequately from such an aggregate point
of view that there is no need for detailed network analysis. These factors
help to explain the limited use of integer programming type models for
transportation investment decision-making and suggest that other types
of analyses might be more appropriate. For example, KEENEY AND
RAIFFA® have described the use of multiattribute utility theory in
analyzing a potential new location for the Mexico City airport. BEESLEY!®!
has described the use of cost-benefit and social benefit analysis to study
the possibility of constructing an underground railroad in London. WiL-
SON AND HUDSON!"'® have described the use of simulation analysis for

planning in the Canadian National Railroad. These examples are meant
merely to be illustrative. MANHEIM®! gives a much more thorough guide
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to the literature, particularly concerning economic and social impact
analysis.

On the other hand, integer programming-type models are likely to be
much more attractive for situations in which a variety of different
investment decisions are being considered simultaneously, so that project
selection becomes a major issue. For example, when introducing a new
transportation infrastructure in a developing country, the range of pos-
sible alternatives for designing a highway system might be so enormous
that a case-by-case analysis of each alternative becomes prohibitive. In
these instances, using aggregate point estimates for demand and for
design and routing costs might suffice for decision-making and an integer
programming model becomes attractive, especially if augmented by ex-
tensive sensitivity analyses and probationary what-if type of analyses
aimed at addressing underlying risks and uncertainties. Or, integer
programming could be used to generate potential investment strategies
that could then be tested by a simulation analysis. Similarly, simulation
could be used to screen several potential projects and integer program-
ming would subsequently be used to evaluate both the trade-offs between
the most attractive of these projects and the projects’ effects upon
network performance. This use of integer programming models as a
screening and evaluation tool seems, as yet, to be far from fully exploited
in the context of transportation planning.

Moreover, network design decisions often arise in ways that do not
involve capital investment decision-making at all. In fact, some of the
most attractive uses of network design models at a tactical and strategic
planning level are in supporting decisions concerning the type of trans-
portation services to be provided, rather than the physical construction
of the transportation facilities. In this setting, we view the underlying
transportation network not as a physical system, but rather as a schedule
map. Providing airline service between New York and London, for
example, or providing service on a particular bus route would be viewed
as adding an arc (e.g., the New York-London arc) to the service network.
When introduced, this service arc then becomes available for passenger
flow. In this sense, we are “constructing” a network. Decisions concerning
the location and sizing of warehouses, which often are rental decisions,
give rise to node choice design models with similar characteristics.
Because these service decisions are more readily reversible, the risks and
uncertainties in this context are often considerably less than those in
capital investment decision-making. Also, service decisions typically have

network-wide impact. As a consequence, transportation planners are
much more apt to adopt discrete choice network design models when
designing service networks. Therefore, we encourage the reader to broadly
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interpret any reference to network design or construction decisions in
our discussion as including service choice decisions as well.

Transportation Planning vs. Other Application Areas

Most of the transportation models and algorithms that we consider in
this paper apply equally well to communication system planning, water
resource planning, distribution planning, and other application domains.
Even though the problem settings might be very different, the underlying
mathematical models are often much the same. Nevertheless, some of
the differences do affect the use of the models.

1. Time Scale. In general, transportation and water resource design
decisions have long-term effects. In contrast, communication system
designs and distribution system designs frequently are more readily
altered. For this reason, uncertainties, rather than combinatorial effects,
are often more predominate in transportation and water resource appli-
cations and, consequently, integer programming models are often more
attractive in other settings. Again, designing transportation service net-
works would be a notable exception.

2. Supply-Demand Effects. Typically, constructing new highways or a
new subway line has a pronounced effect upon land usage and, as a result,
on demand patterns for transportation services. In addition, transporta-
tion design decisions are often instrumental in regional planning efforts.
Boyce and other authors in the volume that he has edited (Boycg!"),
MACKINNON,™ and STEENBRINK'''*!"Y discuss these issues and their
impact on transportation planning. In general, these effects imply that
social and political considerations are likely to have a pronounced impact
on many transportation network design issues. In contrast, these supply
and demand effects are likely to be less pronounced in communication
and distribution systems. Consequently, integer programming models are
likely to capture more of the essence of the underlying issues in these
other problem settings.

3. Queuing and Congestion Effects. Buffers, queues, and queuing delays
are prevalent at the nodes of a communication system. The users of
transportation networks, though, spend relatively more time on the links
of the system (rail freight is a notable exception). Consequently, com-
munication systems are more likely to require nonlinear models to
represent congestion effects adequately. The same type of congestion
effects applies in certain transportation models as well, particularly link
delays in public sector urban planning models.

4. User vs. System Optimization. In most multiuser communication
systems, the system retains control over route choice, node operating
protocol, and other operating decisions. Some transportation systems,

Copyright © 2001 All Rights Reserved
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particularly freight or distribution systems, might be similar. On the
other hand, in most passenger service systems (e.g., urban street net-
works, airline systems), the users exercise considerable control over their
own routing. In these instances, design models must include user behav-
ioral models, the well-known traffic equilibrium model being a noted
prototype.

5. Operating Characteristics. Many transportation systems are subject
to substantial variability in demand, particularly due to morning and
evening peak periods. Communication, distribution, and water resource
systems face the same phenomenon, though typically they either expe-
rience less variations in demand during large periods of the day, or have
greater flexibility for controlling and smoothing demand (e.g., off-peak
pricing, system optimal routing, back ordering, and so forth). For this
reason, any design of a transportation system will usually provide sub-
stantial excess capacity during most of the system’s operations.

These comparisons highlight the fact that problem domains might
emphasize different aspects of a network’s design and operating charac-
teristics and that various network design models might require different
types of data. Even so, the basic models and algorithms that we discuss
in subsequent sections apply to all of these application contexts.

2. NETWORK DESIGN MODELS

IN THIS SECTION, we describe a general version and several specializations
of a generic discrete choice network design model. The general formula-
tion not only models a variety of network design issues, but also serves
as an umbrella for integrating a number of related transportation models.
Indeed, many of the most well-known and intensively studied problems
encountered in transportation planning can be viewed as specializations
and variations of this generic design model. This observation not only
suggests that algorithmic strategies for solving special cases of the model,
or even the general model itself, might be derived from available methods
for other special cases, but also highlights prospects for synthesizing and
unifying methods for solving a variety of related problems. Later in this
paper we comment further on these possibilities.

A General Model

The basic ingredients of the model are a set N of nodes and a set A of
arcs that are available for designing a network (unless otherwise noted
we assume that arcs are directed). The selection of those arcs to be
included in the network depends upon the interplay between the design
and operating decisions, particularly trade-offs inherent in situations
involving both fixed design costs and variable operating costs.

i,
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The model permits multiple commodities. These might represent dis-
tinct physical goods, or the same physical good, but with different points
of origin and destination (for example, a passenger traveling from Boston
to New York is a commodity distinct from a passenger traveling from
Atlanta to Chicago). We let « denote the set of commodities and for each
k € k, let R, denote the required amount of flow of commodity % to be
shipped from its point of origin, denoted O(k), to its point of destination,
denoted D(k).

The model contains two types of variables, one modeling discrete
choice design decisions and the other modeling continuous flow decisions.
Let y, be a binary variable that indicates whether (y,, = 1) or not (y,, =
0) arc (i, j) is chosen as part of the network’s design. Let f* denote the
flow of commodity k on arc (i, j). Then if y = (y,) and f = (f%) are
vectors of design and flow variables, the model becomes

minimize ¢(f, ¥) (2.1)
subject to:
R, if 1=0(k)
Sienfi—Sienft=Y-Re if i=D(k) all ke€x  (22)

0 otherwise
fo=Yw fF<K,y, all (,j)EA (2.3)
(f,y)€S (2.4)
k=0, y,=0 or 1 all (1,j)) €A, k€« (2.5)

When the arcs in A are undirected, the problem is modeled in much the
same way; simply restrict the indices to { < j, remove the non-negativity
condition imposed upon the flow variable, and impose the additional
contraints —f,, < K,;y,,.

When the objective function ¢{f, y) in this formulation is linear,

¢’(f7 y) = ZkEx Z(u)EA Cf}fllj + E(l,J)EA thyzj: (26)

the model becomes a linear mixed integer program. In this case, the per
unit arc routing costs ¢/, for commodity & and the fixed arc design costs
F,, must be defined commensurably. Most frequently, assuming that
demand and flows would remain (approximately) unchanged over the
lifetime of the network’s design, we would choose the flow costs as net
present values of the per unit routing costs evaluated over the network’s
lifetime.

Copyright © 2001 All Rights Reserved
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Nonlinear versions of the objective function could be used to model
congestion effects or to model diseconomies other than fixed costs. For
example, the well-known Bureau of Public Roads formula t;,f;, {1 + «;, (f;,/
K,))?] or the well-known queuing delay formula ¢, f;/( K, — f;), with
parameters t,;, «,; and §;,, would model flow delays (or costs) on each arc
(i, j) due to congestion. Or, any concave function ¢(f) would model
diseconomies of scale in the network’s flow.

Constraints (2.2) imposed upon each commodity k in the formulation
(2.1)-(2.5) are the usual network flow conservation equations. The “forc-
ing” or “bundle” constraints (2.3) state that the total flow f; of all
commodities on arc (i, j) cannot exceed the capacity K;; of the arc if it is
chosen as part of the network design, i.e., y,, = 1, and must be zero if arc
(z, j) is not chosen as part of the design, i.e., y,, = 0. The set S includes
any side constraints imposed either singly or jointly on the flow and
design variables. These constraints might, for example, model topological
restrictions imposed upon the configuration of the network, including
precedence relations (e.g., choose arc (i, j) only if arc (r, s) is chosen, i.e.,
Yrs < %,,) or multiple choice relations (choose at most [at least, exactly]
two of some set {(i, j), (p, q), (r, s)} of arcs, i.e., ¥, + Yo + ¥rs < 2) or the
side constraints might model limitations imposed upon resources shared
by several arcs, an especially important version being a budget constraint:

2 upea €,y < B. (2.7)

The coefficient e;, in this expression is the cost incurred if arc (i, j) is
chosen (constructed) in the network design. The constraint itself, which
is often used in lieu of imposing design costs in the objective function,
states that the total expenditure for designing the network is limited by
a budget B.

Additional side constraints of the form y,, = 1 would specify arcs (i, j)
that are necessarily included in the network’s design. When prior speci-
fications of this type have been made, the formulation (2.1)-(2.5) is often
referred to as a network improvement model.

Modeling Variations

Like most integer programming problems, the network design problem
can be modeled in a variety of ways. As we note in the next section, some
of these alternatives might be preferred for algorithmic purposes. In
particular, for unconstrained network design problems in which the
capacity K,, for any arc exceeds any possible flow on this arc, the forcing
constraints (2.3) are equivalent to the more disaggregated constraints

*<K,y, forall (i,j) €A, kE«.

Both versions of these constraints force each f¥ for k € « to be zero if

Eopyright©2001 AliRights-Reserved
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¥,; = 0 and become redundant if y,, = 1. Surprisingly, the seemingly less
efficient disaggregate formulation, which contains far more constraints,
leads to more efficient algorithms. The reasons for this are twofold. First,
many techniques for solving integer programs like the network design
problem first solve the linear programming relaxation of the model (i.e.,
replace y,, = 0 or 1 with 0 < y,, < 1). Because the linear programming
version of the disaggregate formulation is more tightly constrained than
is the linear programming version of the aggregate formulation, the
disaggregate linear program provides a sharper lower bound on the value
of the integer programming formulation. That is, it better approximates
the integer program. Second, because the disaggregate linear program-
ming formulation has more constraints, it has a richer collection of linear
programming dual variables. The enhanced set of dual variables provides
more flexibility in algorithmic development. Indeed, these two advantages
of the disaggregate formulation are intimately related. MAGNANTI AND
WoNG!™ discuss this issue in some detail.

We might note that our assumption of a single design level K,; for each
arc is not restrictive. Introducing parallel arcs permits us to model
multiple capacity levels.

For other alternative formulations of the network design problem, see
MALEK-ZAVAREE AND AGGARWAL,'® PETERSON!'Y and RARDIN AND
CHor.!'%

Special Cases

The importance of the network design problem (2.1)-(2.5) stems not
only from its practical significance as a design tool, but also from the
impressive range of problems that it models. Indeed, as Table I demon-
strates, many of the most noted problems that arise in network optimi-
zation are either special versions or close relatives of the network design
problem.

All but the last of the examples in this table assume that the objective
function is linear as in (2.6) and that all flow costs ¢? and design costs
F;, are non-negative. Several of the examples assume that the design
problem is uncapacitated; that is, K, > ¥ 4e, Rx. This assumption applies
frequently in practice when designing systems that will operate far
enough below capacity so that congestion effects become negligible. In
this instance, the ijth bundie constraint (2.3) becomes redundant when-
ever vy, = 1. Without side constraints, this unconstrained, linear cost
version of the problem is often referred to as the fixed charge design
problem. With the budget side constraint (2.7) and no fixed costs in the
objective function, this basic uncapacitated problem is often called the
budget design problem.

Copyright © 2001 All Rights Reserved
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When the network is capacitated, the flow problem in the variable f
becomes a multicommodity flow problem for any choice of the design
variables. In particular, if the problem contains no side constraints and
no fixed costs, so that choosing y, , = 1 for all (i, j) € A is optimal, the
design problem itself reduces the often elusive multicommodity flow
problem.

The remaining examples show the intimate connection between the
network design problem and several other mainstays of transportation
network analysis—the shortest path problem, vehicle routing (and the
traveling salesman problem), facility location models, and traffic equilib-
rium—as well as the connection with several basic combinatorial opti-
mization problems that arise in communication, transportation, and
other applications.

Minimal Spanning Trees and Shortest Paths

Consider the fixed charge design problem (i.e., uncapacitated arcs,
linear costs, and no side constraints) defined on an undirected network.
Then if all routing costs cf, are zero and the demand pattern is complete
(i.e., there is a demand for travel between every pair of nodes), the
minimum cost solution must be a spanning tree (otherwise delete an arc
from any cycle, saving some fixed cost); therefore, the problem reduces
to a minimal spanning tree problem. On the other hand, if all fixed costs
F, are zero, it is always best to set each y, , = 1 and the resulting fixed
charge design problem reduces to a shortest path problem for each
commodity (the network could be directed, as well, for this case). Con-
sequently, whenever either routing costs or design costs are dominant
and the network is undirected and uncapacitated, the problem becomes
relatively easy to solve by extremely efficient algorithms. It is only when
both fixed and variable costs contribute in a substantive way that the
undirected problem becomes difficult to solve.

We might note that minor, apparently innocuous, modifications to the
design could make it far more formidable to solve. For example, the
completeness assumption on demands is essential for reducing the un-
capacitated design problem to a minimal spanning tree problem. If the
demand pattern is complete on a subset of nodes and there are no routing
costs, then the optimal solution will be the minimum cost spanning
subtree containing this subset of nodes together with other nodes that
might, but need not, be chosen. That is, the problem becomes the
computationally elusive Steiner tree problem (BEASLEY,””’ CLAUS AND
MacuLAN," HakiMi,®2 Wong!'21),

As another example, suppose that we consider a directed, rather than
undirected, fixed charge design problem with no routing costs. If the

Copyright © 2001 All Rights Reserved
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demand is complete, the problem does not appear to reduce to any easily
identifiable, or solvable, special case. And yet, if the problem contains a
single source node, the optimal solution will be a minimum cost spanning
tree directed out of the source node (also called an optimal branching
problem). Although more difficult than a minimal spanning tree problem
on an undirected network or a shortest path problem, this minimal
directed tree problem can be solved efficiently as well (EDMONDs!?%),

The lessons from these observations are worth noting. Assumptions
concerning directed vs. undirected arcs, compiete demand vs. incomplete
demand, and single vs. multiple sources can profoundly affect our ability
to solve network design problems.

Traveling Salesman and Vehicle Routing Problems

Consider a fixed charge design problem with a complete demand
pattern, with a large fixed cost F,, = F defined on every arc (i, j) of 4,
and with given values of the flow costs cf; = ¢;;, the same for all commodity
types. Since the demand pattern is complete, any feasible design must
contain at least one arc directed into each node, i.e., at least | N | arcs.
But for fixed routing costs if the fixed cost F is sufficiently large, the
optimal solution will, if at all possible, use exactly | N | arcs. That is, the
optimal solution will be a Hamiltonian tour of the nodes. Moreover, if
the demand between every pair of nodes is the same, each arc on the tour
will contain the same flow, independent of the chosen tour. But then,
since | N|-F is a constant, the cost minimizing solution will be a
minimum cost Hamiltonian tour with respect to the routine costs ¢;,.
That is, the network design problem becomes equivalent to solving a
traveling salesman problem on the network (N, A) with costs c;,.

Next, consider a problem with a single source, node s, and with a fixed
capacity, K;; = K, on all arcs. In addition, suppose that we impose the
following assignment constraints on the design variables:

Yienyy =1 forall i€ N\{s}
Yieny; =1 forall j&€ N\|s}

as well as the constraint

ZJEN ys; = NV-

Then the linear cost network design problem becomes a vehicle routing
problem for a homogeneous fleet of NV vehicles, each domiciled at the
source node s and each having capacity K. In this instance, we could
interpret the design variable y;, as specifying whether (y;; = 1) or not (y;;
= 0) any vehicle travels from node i to node j. The added assignment
constraints state that exactly one vehicle enters and leaves each node.
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The forcing constraint (2.3) states that the flow on arc (i, j) cannot
exceed any vehicle’s capacity and, furthermore, that this flow must be
zero if no vehicle travels on arc (i, j), i.e., y,, = 0.

This formulation can be traced to GARVIN et al.*¥) GAVISH AND
GRrAVES!*" have subsequently developed a more aggregate version of the
formulation in terms of the flow variables f,,. To obtain their formulation,
we can add constraints (2.2) over k € x and substitute f;, = Y e, f in
the resulting constraints. Note that if NV = 1 and the problem is
uncapacitated, the problem again reduces to the traveling salesman
problem.

Facility Location Problems

In many facility location problems, the design decisions concern the
location and sizing of facilities (e.g., warehouses, plants, hospitals) at
nodes of a distribution or transportation network. To convert these
problems into the form of a network design model, we can use a familiar
node “splitting” device—replace any node j that is a candidate for a
facility by two nodes, a “receiving” node j * and a “sending” node j ”. Also,
replace any arc (i, j) with an arc (i, j ), any arc (j, k) with an arc (j”, k),
and add arc (j’, j”) to the network. Associate the costs of (7, j) with (i,
J ") and the costs of (j, k) with (j”, k), and identify the fixed and variable
throughput costs and the capacity of a potential facility at node j with
arc (j’, j”). Then the design variable y,-,- associated with arc (j’, j”)
indicates whether or not we decide to locate a facility at node j.

At times an even simpler transformation is possible. For example,
whenever only one arc is directed into (out of) a node that is a potential
location for a facility, we need not rely on node splitting. We merely
associate the node design variable with the arc directed into (out of) that
node. As an illustration, consider a warehouse location problem in which
warehouses, which can be placed at several potential locations, are to
supply several customers. The objective is to minimize the sum of the
fixed charges for opening various warehouses and the routing costs for
supplying customers from the warehouses that are opened. To convert
this problem to a network design model like (2.1)-(2.5), we add a special
node to the warehouse location network. This node will be the source of
all flow required by the customers. We also add a set of special arcs from
the special node to the potential warehouse sites (see Figure 1). The
special arc directed into any warehouse site has a construction cost equal
to the fixed charge associated with opening the warehouse and has no
routing cost. The remaining arcs in the network have no construction
cost, but have routing costs equal to the transportation costs from the
warehouses to the customers. Solving the resulting network design prob-
lem solves the warehouse location problem.
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"speCIAL" POTENTIAL
NODE WAREHOUSE CUSTOMERS
LOCATIONS

Fig. 1. Plant location as an arc design problem.

Several variants of this transformation are possible. For example, to
model warehouse capacities, we add capacities to the special arcs. To
model the so-called K-median problem in which we are to choose at most
K of the warehouse locations, we add a budget constraint with e, = 1 for
all the special arcs, e, = 0 otherwise, and select B = K as the budget
limitation.

These transformations invite comparison between the vast literature
devoted to facility location problems and the network design literature.
The recent survey of network location problems by TANSEL et al.l'13]
might serve as a starting point for making such comparisons.

Network Design and Traffic Equilibrium

In order to add traffic equilibrium conditions to the design model, we
assume that the network is uncapacitated and that the set S is given
implicitly as those flow vectors f that are solutions to the system

c(f,y) +wt—wr=0 forall i,j,k (2.8)
[k (f, ») + wk~— wfs =0 forall ij,k (2.9)
whe =0 forall k

for some choice of the variables w,”. In these expressions, c® (f, y) denotes
the cost for commodity k, as a function of the full vectors f and y of the
network flow and design variables, of traversing arc (i, j). To see the
connection between these conditions and the more standard formulation
of network equilibrium, suppose that P; is any path connecting the origin
O(k) and destination D (k) of commodity k. Adding the inequalities (2.8)
for arcs (i, j) in P;, and noting that the terms involving the w,* telescope,
gives
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E(t,])EPk cl’fl(fa y) - w’;)(k) = O (210)

Moreover, if f¥, > 0 for every arc (i, j) on Py, then from (2.9) each of
the inequalities in (2.8) for (i, j) € P, becomes an equality as does the
derived expression (2.10) as well. Consequently, we can interpret wh

as the length of the shortest path connecting O(k) to D(k) and the
conditions (2.10) with

Toner, ¢y (f,y) = whe if f5>0 for all (t,)) €E P,

becomes WARDROP’S!"'" user equilibrium law. That is, the lengths
Yuner, ¢5(f, y) of all paths carrying positive flow between any origin-
destination pair are equal, and do not exceed the length of any path
Joining this origin-destination pair.

Consequently, adding the conditions (2.8) and (2.9) imbues the network
design model with normative planning capabilities even when flow move-
ments are governed by a user equilibrium behavioral principle.

Several modifications of this modeling approach are possible; for
example, minor modifications to (2.8) and (2.9) will model situations
involving capacitated design decisions.

Needless to say, modeling a normative equilibrium model in this way
need not necessarily lead to efficient solution methods. Designing useful
methods undoubtedly requires theory indicating how the solution to the
equilibrium conditions responds to changes in the design decisions. Most
iterative algorithms for solving the problem would rely upon such sensi-
tivity analysis information to choose directions for improving the prob-
lem’s objective function. Although HALL®® describes initial efforts for
addressing this sensitivity analysis issue, until recently the problem has
remained essentially unsolved. Some new discoveries (DAFERMOS AND

NAGURNEY""), however, are beginning to provide new insight about
these problems.

3. OPTIMIZATION BASED METHODS

THE FOLLOWING two sections focus on a class of uncapacitated discrete
choice network design problems. These models determine whether arcs
(e.g., roadways, service arcs) should be added to the network or not. After
briefly reviewing the formulation of these problems, this section discusses
methods for obtaining optimal solutions to these models. Section 4
describes heuristic techniques for obtaining approximate solutions.

One of the major purposes of this section is to present a unified
framework for viewing a number of optimization-based techniques. In
particular, we show that many of these methods, even though not
originally stated in this way, can be interpreted as relying on certain
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types of Benders cuts. We also describe another Benders cut that is
apparently new.

Recall from Section 2 that Ry, for k € , denotes the flow requirement
between nodes O(k) and D(k) of a given network, that c¢f denotes the per
unit routing cost on an arc (i, j) for “commodity k” goods, and that Fj,
denotes the fixed cost of constructing arc (i, j). Therefore, our uncapa-
citated discrete choice network design model becomes:

Minimize Y% Sepea chfy + Zonea Fiyy

subject to:
| Re if i=0(k
S -3 fh= ‘—Rk if i=D(k)allk€E« (3.1)
0 otherwise
fi<K,y, forall (,j)EAkEX (32)
Z(IJ)EA eyly = B (33)
k=20 forall GLJ)EA REK (3.4)
y,=0or1l for all (i, J)) €A (3.5)

Since we are assuming that the problem is uncapacitated, K, > Yre.
R.. Note that we have included both fixed costs in the objective function
and a budget constraint (3.3) in this formulation. The term e, in the
budget constraint is a cost function, which need not equal F;, related to
the building of arc (i, j).

For notational ease, unless otherwise specified, we assume through-
out the next two sections that the demand is complete and that the
demand R, between every pair of nodes equals 1. Most of the methodology
discussed easily generalizes to situations involving arbitrary demand

patterns.

Optimization Methods for Special Cases

Efficient algorithms are available for solving several special cases of
the network design problem. Of course, there are very fast procedures for
solving the shortest path and minimal spanning tree versions of the
problem. HU®” has proposed a O(n°) algorithm based on maximum flow
computations for solving the uncapacitated budget design problem (i.e.,
every F, = 0) when every feasible design is a spanning tree and all routing
costs are unity (i.e.,, B=|N|—1lande,= ¢k =1 for all i, j and k). KARIV
AND HAKIMI'® have devised an efficient dynamic programming approach
for the K-median location problem restricted to tree networks. As noted
in Section 2, the K-median problem is a special case of the budget design

model.

i,
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More general and complex network design problems seem to require
mathematical programming algorithms for obtaining exact solutions.
Benders decomposition and branch and bound have been the two most
effective of the optimization-based techniques. The algorithmic strategy
used by both of these methods is similar—develop and exploit lower
bounds on the objective function of the problem. For this reason we
devote most of the remainder of this section to various techniques used

to generate lower bounds for Benders decomposition and branch and
bound.

Benders Decomposition

BENDERS!" decomposition is an algorithm for mixed integer program-
ming that has been applied successfully to a variety of network design
applications. FLORIAN et al.®" have used the algorithm to schedule the
movement of railway engines; RICHARDSON!"% has applied the algorithm
to the design of airline routes; MAGNANTI et al.”® have used the algorithm
for fixed charge network design; and GEOFFRION AND GRAVES!*" have
had great success applying the procedure to industrial distribution system
network design. HOANG!*®'has used an extended version of the algorithm,
known as generalized Benders decomposition, to solve a class of nonlinear
discrete network design models.

When applied to network design problems, Benders decomposition
proceeds iteratively by choosing a tentative network configuration (i.e.,
setting values for the integer variables y; ), solving for the optimal routing
on this network, and using the solution to the routing problem to redefine
the network configuration. Figure 2 illustrates this last step for an
uncapacitated fixed cost design problem in which one unit of a good is
to be sent from node 1 to node 6 (we let c, denote the routing cost for
this single good). In this instance, the routing problem reduces to a
shortest path computation between nodes 1 and 6.

772=20 'rr3=50

40

Fig. 2. A step of Benders decomposition,
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The solid arcs in the figure are members of the current network
configuration; the dashed arcs are candidates for inclusion in the optimal
design. With respect to the routing costs shown next to each arc, the
node numbers w, are optimal dual variables for the linear programming
routing problem. The dual variables indicate that introducing arc (2, 3)
into the current design reduces the routing cost from node 1 to node 3
from w3 = 50 to wy + co3 = 20 + 10 for a savings of 50 — 30 = 20 units.
Similarly, introducing arc (4, 5) reduces the routing cost from node 4 to
node 6 by w5 — (w4 + c45) = 90 — (70 + 10) = 10 units. Since either of
these arcs might, but need not, become part of the shortest route path
from node 1 to node 6 in the optimal network design, the optimal routing
cost R is constrained by

R = 100 — 20y53 — 10y4s. (3.6)

That is, at best, we could reduce the routing cost which is 100 units by
the full savings of introducing arc (2, 3), i.e., setting y,; = 1 and the full
savings of introducing arc (4, 5), i.e., setting y4 = 1. Another reason that
expressions like this merely provide inequalities in the routing costs is
that we might not be able to accrue the total savings for introducing each
arc separately because of interactions and overcounting (since two arcs
might lie on the same shortest path). For any network configuration, the
total fixed charge design cost equals ¥ ,ea Fiy,. Therefore, for the
example in Figure 2, the following expression gives a lower bound on the
minimum cost v of any design for this problem:

v = 100 — 20y23 ~ 10yes + Snea Fuyy- 3.7)

Constraints like (3.7), which are known as Benders cuts, are by-products
of the optimal routing calculation for any tentative network configura-
tion. Benders algorithm computes the new configuration at each step by
minimizing the total network cost v subject to the Benders cuts (3.7)
generated by every previous configuration. This minimization, called the
Benders master problem, is a mixed integer program in the integer
variables y, and the single continuous variable v. Since every conceivable
constraint like (3.7) gives a valid lower bound expression for the optimal
solution value v, the optimal value v* of the master problem is also a
lower bound, i.e., v = v*. Also, every solution y = y to the master problem
determines a network and the combined fixed and optimal routing cost
on this network is an upper bound on the optimal value v to the original
problem. These two bounds permit early termination of the algorithm
with an assessment of the degree of suboptimality.

When applied to more complicated design problems such as budget
design problems, facility location problems, and even to general mixed
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integer programs, Benders decomposition operates in much the same way
and has similar interpretations.

For a given model representation, it is possible to accelerate Benders
decomposition by generating improved or “pareto-optimal” cuts at each
iteration. Referring to Figure 2 will help illustrate this point. Note that
the shortest path distance from node 3 to node 6 using all arcs that are
candidates for inclusion in the optimal network design is 60 units. Since
the distance to node 2 in the current design, as specified by the solid
arcs, is 20 units and the current shortest path cost is 100 units, introduc-
ing arc (2, 3) whose routing cost is 10 units can save no more than 100
— (60 + 20 + 10) = 10 units, and not the 20 units computed earlier.
Consequently, a valid Benders cut is

v =100 — 10y2’3 - 10y45 + Z(w)eA F,,y,,. (38)

Note that this cut is stronger than (3.7) in the sense that it provides a
tighter lower bound on v; the right-hand side of (3.8) is as large as that
of (3.7) for all 0-1 values of the decision variables Yy, and exceeds the
right-hand side of (3.7) whenever y,; = 1. This cut is also pareto-optimal,
Le., there is no other valid lower bound expression that is as good for all
0-1 values and better for at least one set of 0-1 values for the decision
variables y,.

The opportunity to generate pareto-optimal cuts, like (3.8), is made
possible because of degeneracy in the shortest path linear program, or
equivalently because of multiple optimal solutions to its dual. In this
example, 7, = 0, m, = 20, 73 = 40, m, = 70, 75 = 90, and 7 = 100 is an
alternate optimal dual solution to that shown in Figure 2 (i.e., it satisfies
¢,=cy+ m — m, = 0 for all arcs with an equality for arc 1-6). Computing
a Benders cut as before, but using these dual values, leads to the stronger
cut (3.8). Because network problems are renowned for their degeneracy,
considerations of this nature are attractive in a number of applications.

Magnanti and Wong!™ and Magnanti et al.l’® describe this pareto-
optimal cut methodology in greater detail. They show how to generate
pareto-optimal cuts for arbitrary mixed integer programs by solving a
linear program to choose from among optimal dual solutions. They also
discuss an implementation of Benders decomposition combined with a
preprocessing procedure that can eliminate integer variables. Computa-
tional experience on a variety of the largest uncapacitated undirected
fixed charge design problems ever solved was very promising. Benders
decomposition with preprocessing and pareto-optimal, or other improved
cuts, finds and verifies an optimal solution for 19 out of 24 test problems
with up to 30 nodes, 130 arcs with 40 arcs fixed open, and 58 commodities
(a corresponding mixed integer program contains 15,500 continuous
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variables and 90 integer variables). For all but one of these 24 test
problems the algorithm finds feasible solutions that are guaranteed to be
within at most 1.71% of optimality. The computations took from about
1 minute to about 1% hours on a VAX 780 computer. Benders decom-
position with preprocessing and the standard Benders cuts required from
1% to 50 times more computation time.

Branch and Bound

Several researchers have proposed branch and bound algorithms for
solving network design models (BOYCE et al,''! BOYCE AND SOBER-
ANES,'”2 DIONNE AND FLORIAN, HoANG,” LEBLANC,®® L oS AND LAR-
pINOIS"? ROTHENGATTER!'®! and ScoTT!'*"). To illustrate the nature of
this work, we describe several of the contributions from this list.

Boyce et al. have suggested an enumerative algorithm for budget design
problems with unit flow requirements between every pair of nodes. In
this instance, the optimal routing, given any network configuration, is
via shortest distance paths joining each origin-destination pair. Conse-
quently, the objective function cost, denoted F(y), is determined com-
pletely by the network configuration, i.e., by the choice of 0-1 values for
the components y, of the vector y. At any node P in a branch and bound
enumeration tree, certain arcs Ay are fixed as constructed ( y,;= 1) or not
(3, = 0). Let Ar be the remaining arcs whose construction status has not
yet been decided.

As a bounding mechanism for this algorithm, Boyce et al. have noted
that any solution y with the arcsin Ap fixed at these same values satisfies
the inequality

F(y) = F(y"). (3.9)

In this expression, y© denotes a solution with y, =1 for every arc (i,])
€ Ay. Thus F(y") is the best possible shortest route solution with the
given fixed values of arcs in Ar.

Hoang has proposed an improvement on the basic bounding procedure
of Boyce et al. At any node P in the branch and bound tree, he suggests
the following lower bound function:

F(y) = F(yP) + E(tJ)EEF ythu(yP) (310)

where 7, = 1 — y,. The quantity /,( yP) denotes the increment to the
shortest route cost from node i to node j when we delete (i, j) from the
network defined by y”.

Expression (3.10) has the following interpretation. If arc (i, j) is deleted
(set y, = 0 and y, = 1) from the network defined by y%, then the cost of
shipping the unit of demand between these nodes must increase by at

i,
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least 7,(y") in the solution ¥. The cost of sending the unit of demand
from i to j might increase by more because other arcs are being deleted
as well. Hence, the right-hand side of (3.10) is a lower bound on the
routing cost F(y) of solution y.

Note that for all feasible values of Y at the search node P, the lower
bound function (3.10) dominates the one given by (3.9) in the sense that
the bound given by (3.10) will be at least as large, and sometimes larger,
than the bound of (3.9).

'To compute lower bounds quickly, Hoang suggests relaxing the integer
requirement on y, and minimizing the right-hand side of (3.10) subject
to the budgetary constraint ¥, e,y, < Band 0 < yy=1,y,= 3, for arcs
(i, j) € Ap. A solution y* to this continuous knapsack problem has at
most one fractional component and, in light of (3.10), gives a lower bound
F(y) =2 F(y®) + Zuex, 751,(y7) that applies to every node below node
P in the branch and bound enumeration tree. Using this lower bound as
a fathoming mechanism and branching from node P on (i.e., next fixing)
the fractionally valued variable in the continuous knapsack solution,
Hoang implements his algorithm in the framework of a straightforward
branch and bound algorithm.

Dionne and Florian have noted several ways to improve this algorithm.
First, in computing I,(y”) it is not necessary to resolve from scratch for
shortest paths between all pairs of nodes. Specialized algorithms are
available for recomputing shortest path distances when one arc has been
deleted from a network. (Boyce et al. also advocated the use of these
specialized algorithms in the context of computing the shortest path

routing costs for adjacent nodes of the branch and bound tree.)

Second, they suggested branching on the variable Yus (&, J) & Ap with
highest incremental improvement per unit of budget, i.e., that arc (i, j)
maximizing I, (y*)/e,. These modifications lead to marked improvements
in the algorithm. A typical example with a 65% budget level, ie., B =
0.65 ¥.,)ca €, with 20 nodes, and with 30 arcs, requires 20 seconds to
solve on a CDC Cyber 75 computer with their algorithm, while Hoang'’s
algorithm, after 500 seconds, is not able to determine that the current
best solution is optimal. The authors note, however, that this branch and
bound approach is probably limited to medium-sized networks like this,
and that computation time seems to grow exponentially with a decrease
in budget level. For example, the algorithm requires 288 seconds to solve
the same problem with a 50% budget level.

BOFFEY AND HINXMAN™ have used a similar procedure for the budget
design problem.
Los and Lardinois!™ have adapted the Dionne and Florian lower bound

for the uncapacitated fixed charge design problem. They utilize the
inequality
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F(y) =z F(y") + Zupea, 35li(y") + Taipea Foyy

where the added term ¥;,,e4F, y, represents the fixed charge costs. Los!™"
has used another lower bound F(y) = F(y*) + max(Fusr, YoneasFudy)
where Fygris the cost of the minimum fixed cost spanning tree and y; is
the 0-1 incident vector defining the current design. The last term in the
inequality indicates that the total fixed charge cost of all nodes in the
enumeration tree below node P must be at least the cost (i) of all arcs at
P already fixed to value one (i.e., those arcs (i, j) in Ar with ¥, = 1) or
(ii) the fixed charge cost of a minimum spanning tree (since we are
assuming all pairs of nodes have unit demands).

Los and Lardinois used a combination of the two lower bounds given
above in a branch and bound procedure. They found that the method
was effective only for small to medium-sized problems, with computation
times growing exponentially in the problem size. For example, an 8-node
and 23-arc problem required 5.4 seconds on a CDC Cyber 74 computer
while a 12-node and 40-arc problem required 207 seconds.

As noted by Los,[™ the above inequality (3.9) could be interpreted as
a Benders cut (see (3.8)). Recall that at a node P in the branch and
bound tree, the algorithm definitely excludes the arcs in Af with y, = 1.
The only remaining decision concerns whether the arcs in Ay are to be
included in the network design (y, = 0 or 1). If at node P we apply
Benders decomposition to the network configuration with y, = 1 for all
arcs (i, j) € Ap, then the usual (not pareto-optimal) Benders cut would
be

v = F(y®).

So the procedure of Boyce et al. can be interpreted as using Benders
inequalities with an enumerative algorithm. This solution technique is
similar to one suggested by LEMKE AND SPIELBERG!™ for more general
classes of integer programming problems.

We can also derive (3.10) as a Benders cut in the same way except that
we select an alternate dual solution to the shortest path linear program.
In fact, there is a third cut that dominates these two cuts (3.9) and (3.10).
Figure 3 illustrates an example of these three cuts.

The example involves an uncapacitated budget design problem in
which one unit of good is to be sent from node 1 to node 2 and another
unit from node 1 to node 3. The routing problem reduces to a pair of
shortest path problems, one between nodes 1 and 2 and the other between
nodes 1 and 3. Assume that we are at node P of the search tree where
arcs (1, 2) and (2, 3) belong to Ay (i.e., are free arcs) and that y,; and yas
are set to one in the application of Benders decomposition. The remaining
arcs belong to Ar with ¥, = 1 so their values are permanently fixed at
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7%= 0,0,0 My 12,12,25 72:20,20,33

Fig. 3. A step of Benders decomposition with alternate dual solutions.

search node P. The optimal dual variables =, with £ = 2 or 3 correspond-
ing to the destination nodes of the two commodities, have three different
values corresponding to the three different Benders cuts. The first set of
dual variables yields the basic inequality, corresponding to (3.9), namely

v = 32.

The second set of dual variables indicates that deleting arc (1, 2) from
the network increases the routing cost between nodes 1 and 2 from =% +

12 = 12 to m,* = 25, for a net increase of 13 units. Thus the second type
of cut, corresponding to (3.10), is

U= 32+ 13(1 — yp0).

The third set of dual variables dictates the same penalty of 13 units for
the node 1 to node 2 problem. In addition, deleting arc (1, 2) increases
the routing cost beween nodes 1 and 3 from 7,° + 12 + 8 = 20 to m® =

33 for a network cost of 13 units. Combining these results gives the new
cut

vz 32+ (13 + 13)(1 — y0).

The third cut improves upon (3.10) in the following way. In (3.10) when
we deleted arc (i, j) from Ay we considered its effect on increasing the
routing cost of the demand for the origin-destination pair (;, J). Thus, in
the cut as a whole, we consider incremental increases in routing cost, but
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only for origin-destination pairs (i, j) corresponding to arcs in Ap. The
third cut sharpens the lower bound by considering incremental increases
in routing cost for all origin-destination pairs in «. In order to implement
this modification, we consider any partition of the origin-destination
pairs « into sets S,. Then for any (p, q) € S,, we define I5(y®) as the
increment to the shortest path between nodes p and ¢ when arc (i, j) is
deleted from the network defined by y*. With this notation, we can
define the third lower bound by the inequality

v = F(y") + Zuneds Vi Zpoes, IF(y7). (3.11)

Note that if we require that (i, j) € S;, the lower bound is never worse
than, and usually dominates, the bounds given in (3.9) and (3.10). As an
illustration, the third cut for the last numerical example corresponds to
the choice of S;; = {(1, 2), (1, 3)} and Sy3 = ¢.

We might note that if the network configuration contains a relatively
small number of arcs (say, twice as many arcs as nodes as in a grid
network) as is the case for most well-defined transportation networks,
then several origin-destination shortest paths are likely to pass through
most arcs. Consequently, the new cut in (3.11) is likely to improve
significantly upon the cut (3.10).

A number of other Benders cuts can also be generated from the
alternate optimal solutions to the shortest path linear programs.

GALLO®" has independently derived the new cut (3.11) from a combi-
natorial argument. His computational results with one version of the
new cut are very promising. For test problems with 14 nodes and 22 arcs
the bounds provided by (3.11) are significantly stronger than the ones
provided by (3.10) or another type of cut (3.12) that we define next.

Suppose that the following constraint is valid at some node P in a
branch and bound tree:

Z(t,J)E/Tp Yy = IA_F| - Q.

Such a constraint could arise from connectivity requirements or by noting
the maximum number of the arcs from Ay that could be deleted while
still fully utilizing the given budget. Using the last inequality, GALLO?®
derived the lower bound relation

vz F(y") + (1/Q) Zupear Twae JoI2(YP). (3.12)

For small values of @, (3.12) is a very effective lower bound. For example,
if @ = 1 for the problem in Figure 3, (3.12) becomes

=32+ 26(1 — 1) + 13(1 — o)

i,
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which is a better lower bound (given the constraint y;; + y»3 = 1) than
the ones provided by the Benders cuts.

Note that for each (i, j) the second summation in (3.12) is taken over
all origin-destination pairs, rather than over the set S, of a partition of
the origin-destinations. Consequently, the summation might be double-
counting the increment in costs for any origin-destination pair (p, q);
that is, it double-counts the effect on (p, q) of deleting (i, j) and of
deleting (i’, j’) when they both lie on the shortest path joining (p, ¢).
The factor 1/Q compensates for this double counting.

Lagrangian and Linear Programming Methods

Other methods could also be useful in deriving lower bounds for
network design problems. Lagrangian relaxation and dual ascent proce-
dures have been very successful in providing bounds for the special cases
of facility location problems (CORNUEJOLS et al.,'® NARULA et al.,l®?
ERLENKOTTER,”® GALvAO*!! and MIRCHANDANI et al.®”) and Steiner
tree problems on a graph (BEASLEY"® and WONG!?")), For more general
design models, these methods are less easily applied due to the large
number of formulation constraints. However, in preliminary work RAR-
DIN AND CHOI''" have found that a dual ascent procedure gives strong
bounds for a fixed charge design model with a single source and multiple
destinations. For a 157 node and 500 arc problem, they obtained a solution
known to be within 2%% of optimality in about 300 seconds of CDC
Cyber 76 computer time. MAGNANTI AND WONG!™ have very promising
computational results with a dual ascent method for fixed charge design
models with complete demand patterns. The dual ascent information
provides good lower bounds and helps derive near-optimal design solu-
tions. For problems with 10 nodes and 45 arcs they have found solutions
known to be within about 1% of optimality in about 0.5 seconds of IBM
3033 computer time.

Note that Lagrangian relaxation and dual ascent bounds are closely
related to Benders cuts since they can all be derived from the common
framework of mathematical programming duality theory (MAGNANTI™").
Thus it is possible to extend our Benders cut interpretation to derive the
bounds given by Lagrangian relaxation and other dual based procedures
(see also GUIGNARD!?),

Special implementations of the simplex method have been successful
in giving strong LP relaxation bounds for location problems
(SCHRAGE!®>'*®)_ Future improvements in linear programming technol-
ogy (e.g., Topp!"*) could make the method feasible for more general
design models.

The effectiveness of both Lagrangian and linear programming-based
methods depends crucially on the size of the gap between the LP relax-
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ation value and the integer programming model value. The empirical
results given in the references cited earlier indicate that the gap is usually
quite small. Some recent theoretical results support this conclusion. For
example, in a variety of specially structured location problems (KOLEN®!
and OUDJIT et al.?®)) there is no gap between the standard LP relaxation
and the integer formulation values. For another class of location models,
Cornuejols et al."® show that the worst-case value of the LP relaxation
gap of certain formulations is bounded.

Finally, the addition of facet generating constraints can strengthen the
LP relaxation of standard network design formulations. A notable ex-
ample of this technique is the work of GROTSCHEL AND PADBERG!®*!
for the traveling salesman problem (see also PADBERG AND HonNG® and
CROWDER AND PADBERG'®). JOHNSON et al.®® show how to derive
certain facets of the fixed charge network design problem. PADBERG et
al®7 discuss facets for some models of capacitated fixed charge network
flow problems. Conceivably, further studies of such facets might prove
to be as useful for network design problems as they have been for the
traveling salesman problem.

Summary

This section has reviewed a number of bounding procedures for ob-
taining optimal solutions to network design problems. Table II summa-
rizes the computational results for the various proposed algorithms. We
have also seen that the interpretation of lower bounds as Benders cuts
unifies much of the previous bounding work and has also yielded a new
lower bound. Gallo’s work has indicated how stronger bounds can be
synthesized with information not available to the Benders cuts. We are
confident that future research will provide improved bounds and thus
enlarge the scope of network design problems that can be solved opti-

mally.

4. COMPUTATIONAL COMPLEXITY AND HEURISTICS FOR NETWORK
DESIGN PROBLEMS

AS INDICATED in the previous section, past research gives extensive
empirical evidence suggesting that large scale (50-100 nodes) network
design problems are extremely difficult to solve. There is also theoretical
evidence supporting this observation, since the general network design
problem is NP-hard. This result suggests that there is little likelihood of
devising an efficient (polynomial time) algorithm for solving the general
network design problem (see KARP'®!)).

Several authors have studied the complexity of specific design prob-
Jems. JOHNSON et al.®® have shown that the uncapacitated budget design
problem is NP-hard. WONG!*” has shown that, when the budget design

i,
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problem is restricted to unit demands between pairs of nodes, the problem
of finding a solution whose value is less than n'~ times the optimal
solution value (where n is the number of nodes and e is any positive
constant) is also NP-hard. This result indicates that even finding a near
optimal solution for the budget design problem efficiently is also very
difficult.

PLESNIK!'® gives results showing that finding near optimal solutions
for a budget design problem with a minimax objective is also NP-hard.

As shown in Section 2, the uncapacitated fixed charge design problem
contains a number of NP-hard problems (e.g., the plant location problem
and the Steiner tree problem on a graph (GAREY AND JOHNSON*?) as
special cases. Thus the fixed charge problem is also NP-hard.

Since both theoretical and empirical results confirm the computational
difficulty of the general network design problem, researchers and prac-
titioners have often used heuristic algorithms as alternative solution
methods.

An important issue in using heuristic approximation techniques is
solution accuracy. The usual heuristic performance measure computes
the relative percentage of error where

Relative error = (vx(P) — v,(P))/v,(P).

The term v,(P) is the best heuristic solution value produced for a
particular problem P; v, (P) is the optimal solution value for problem P.

Analysts have proposed other error measures (e.g., see ZEMEL!'”") for
assessing heuristic procedures; however, the above formula is easy to use
and understand and is a fairly accurate error measure for network design
problems, as contrasted with facility location problems, where a simple
transformation of the problem data, which preserves the choice of optimal
variables, can change the relative error value to any positive number (see
CORNUEJOLS et al.’®).

Normally, we are interested in assessing the relative error of a heuristic
when it is applied to a specific class Z of design problems. For example,
& could be the set of all uncapacitated budget design problems with unit
demands between all pairs of nodes.

Recent research has focused on four different techniques for evaluating
heuristic performance over a class of problems £

1. Worst case analysis:
Worst case error = maxpe {(Un(P) — v,(P))/v,(P)].
2. Average case analysis:

Average case performance = Prob[((v, — v,)/v,) =1 + €]

Copyrght©-2001 AlFRightsReserved
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where ¢ is some margin of error and the probability is computed by
assigning a probability distribution to the set of problems %

3. Empirical analysis: This technique empirically evaluates the heuris-
tic by assessing its relative error for a small set of test problems 7
c %

4. Statistical analysis: After repeatedly running the heuristic (with
randomly varying starting solutions) on a particular problem P, we
use the data to produce estimates 2,(P) for the optimal solution
value and the relative error percentage (3,(P) — 2,(P))/3,(P).

Worst case performance analysis is rather conservative as it reflects only
the worst possible situation for the heuristic. Such a situation could be
atypical and thus misleading. However, when the worst-case error is
small, we are guaranteed the heuristic will always produce near optimal
solutions.

An alternative technique measures the average cost or “typical” relative
error. When evaluated by this performance criteria, the heuristic receives
a poor evaluation only when the problems on which it performs badly
can occur relatively frequently. Unfortunately, average case analysis is
difficult to perform since assigning realistic probability distributions to
a class ¥’is usually difficult, if not impossible. Also because the method
frequently requires complex technical arguments, researchers have ana-
lyzed only very simple heuristics.

Empirical analysis is by far the most popular and most easily performed
heuristic evaluation method. It avoids the complicated technical argu-
ments that are frequently required for worst case and average case
analysis. However, for large network design problems it is difficult to
compute the optimal solution value or, equivalently, the relative error
for the heuristic. So the heuristic’s utility for large problems must be
measured by its performance on much smaller test problems. In addition,
the statistical inferences made from the empirical data are not very
rigorous and could be misleading.

The statistical analysis method assumes that the heuristic solutions
generated can be viewed as random samples from an extreme value
Wiebull distribution. This technique is attractive because it estimates
the relative error with only simple computational tests. However, as of
yet, although there are some plausible intuitive arguments to support the

Wiebull distribution assumption, there are no mathematical proofs to
justify its validity.

Experience with Heuristics

A number of studies have applied these evaluation methods to a variety
of proposed network design heuristics. The three most commonly used
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heuristics are the add, delete and interchange procedures. The add
heuristics start with some feasible design and add arcs, one at a time,
choosing at each stage the arc that gives the greatest decrease in cost, or
some surrogate measure of cost. The delete heuristics are similar, but
start with an initial design containing all candidate arcs, and delete arcs
one at a time. Starting with some initial design, the interchange heuristics
add and/or delete an arc at each step until no further improvement in
cost is possible.

Scott,*” Dionne and Florian,”* Boffey and Hinxman,”® BILLHEIMER
AND GRAY,®, Los and Lardinois”” have used combinations of the above
heuristics for solving uncapacitated (budget or fixed charge) design
problems. Empirical analysis indicated that the heuristics were very
accurate (relative error < 0.5%) for medium sized (10-29 nodes and 40-
60 arcs) problems. For larger problems of up to 15 nodes and 105 arcs,
the Wiebull statistical analysis estimates generated by the Los and
Lardinois procedure had relative errors of less than 0.2%. The heuristics
were fairly efficient, requiring from 7 to 10 seconds on a Cyber 74
computer.

Recently, Dionne and Florian®" have reported impressive computa-
tional experience with a new type of heuristic for budget design problems
which we assume, for convenience, has one unit of demand between every
two nodes in the network. They use their branch and bound algorithm
described in the last section with the following modification. In place of
the term I,(y?) in the lower bound expression (3.10), they use a term
I(y") which is the increment to shortest route costs between every pair
of nodes, not just i and j, when arc (i, j) is deleted from the network.
This algorithm is a heuristic because, as examples show, the new lower
bound need not be valid.

The authors have tested this algorithm on problems ranging from 7
nodes and 16 candidate arcs to 29 nodes and 54 candidate arcs. The
empirical analysis indicated the procedure had a very small (<0.03%)
relative error and required from 0.05 to 8.47 seconds on a CDC Cyber 74
computer.

Dionne and Florian have suggested another alternative procedure, a
modified add heuristic, for the budget design problem. Starting from a
minimal spanning tree with respect to the arc construction costs e, the
procedure iteratively adds the arc with the smallest construction cost
until it exhausts the construction budget B. Empirical analysis shows
that this heuristic is extremely fast, but less accurate than the heuristics
described previously. This result is to be expected since the procedure
constructs a network according to a naive criteria that does not even

evaluate the objective function.
It is interesting to note that network design researchers have used only
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empirical and statistical analysis to evaluate the class of add, delete and
interchange heuristics. In contrast, for the special case of facility location
problems, researchers have performed extensive worst case and proba-
bilistic analyses for these heuristics (see CORNUEJOLS et al %16 and
FISHERY).

As described above, the add, delete and interchange heuristics are fairly
effective for solving small to medium-sized discrete network design
problems. However, for large-scale problems (e.g., 100 nodes and 600
arcs) these heuristics could require excessive amounts of computer time.
These procedures rely on iteratively evaluating the design cost which is
equivalent to resolving shortest path problems. Even with the use of
specialized algorithms (e.g., MURCHLAND®Y), the computation times for
large networks could be unreasonable. Thus different types of approxi-
mate procedures might be necessary to solve very large network design
problems.

WONG!™* has analyzed a close variant of the modified add heuristic
when the problem class is restricted to Euclidean problems. The nodes
are points in the plane and arc routing and construction (e;) costs are
multiples of the arc length. Assuming the budget is sufficiently large,
B/, e, = (log n/n®), Wong has shown that, for any ¢ > 0, average case
performance = Prob[(v, — v,)/v, = (1 + ¢)] approaches one as n
approaches infinity. Thus, in an asymptotic sense the modified add
heuristic is very accurate. Empirical analysis confirms these analytic
results with problems up to 100 nodes and 4950 arcs having a relative
error of less than 3%. The procedure requires about 30 seconds on an
IBM 3033 computer to solve a 100-node problem. This result indicates
that the build heuristic can effectively exploit the geometric structure of
large budget design problems.

Wong has also given related empirical and analytic results on a more
restricted class of problems for a geometrically defined heuristic.

Several authors have also used asymptotic probabilistic analysis to
evaluate heuristics for facility location problems. Consider a Euclidean
version of the K-median problem (locate K facilities on a network to
minimize the total cost of servicing all N nodes or customers, each of
which is served from its closest facility). Let us assume that all nodes are
randomly distributed points over a unit square and that the cost of travel
between any two points is their Euclidean distance. Suppose that as N
increases the number of medians increases as a function K(N) of N.

FISHER AND HocHBAUM™! introduce an aggregation heuristic where
the unit square is decomposed into t2 < N subsquares. After combining
the nodes in each subsquare, they solve the aggregated K-median problem
and convert its solution into one for the original problem. They then
prove that if (K(N)/N) < (log N/N) and ¢ > 0, the average case
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performance given by Prob[((v. — v,)/v,) = (1 + ¢€)] of this heuristic
approaches one as N approaches infinity.

When (log N/N) < (K(N)/N) <1/log N and K(N) approaches infinity,
PAPADIMITRIOU™ derives a similar result for a “honeycomb” heuristic.
This procedure covers the unit square with K(IN) regular hexagons of
area 1/K(N). The heuristic solution consists of the best single median
facility for each hexagon of the honeycomb.

Assuming that the points are generated by a Poisson distribution with
mean N, Papadimitriou shows that when (K(N)/N) > (1/(log N)®) and
¢ > 0, a fast dynamic programming based heuristic has an asymptotic
average case performance of one.

HammovicHY shows that the hexagonal partitioning heuristic is opti-
mal whenever K(N)/N approaches zero as N approaches infinity. He
does this by showing that the solution of the problem converges to the
solution of the continuous analog of the problem where the demand is
continuous and uniform over the square. Moreover, he extends the
heuristic to solve situations with nonuniform distributions of customers.
In this case, the partitioning into service regions is locally hexagonal,
but the size of the hexagons varies with the density of the demand
distribution in such a way that the density (i.e., number/area) of medians
is asymptotically proportional to the (%4)th power of the density of
customers., When viewed in terms of the continuous analog, the Fisher
and Hochbaum heuristic can be interpreted as a finite element type
method for solving the underlying continuous problem.

When K(N)/N approaches a positive constant less than one, and the
customer distribution is uniform, the continuous approximation is no
longer valid. However, Haimovich®! and STEELE"'® show that the opti-
mal objective value is proportional to vN. This result is based upon a
subadditivity property of the optimal objective value and leads to the
asymptotic optimality of partitioning heuristics of the type devised by
KARP!®? for the traveling salesman problem.

Summary

This section has emphasized the design and analysis of efficient
network design heuristics (see Table III for a summary). Current proce-
dures appear quite adequate for solving medium-sized (50 nodes, 150
arcs) problems, but additional heuristic design is needed to handle larger
scale (100 nodes, 400 arcs) problems. Although researchers and practi-
tioners evaluate most approximate procedures by empirical analysis, the
mathematical analysis of performance accuracy has recently become
more widespread. The excellent average case results for network design
and facility location problems indicate that near-optimal solutions for
these models may be fairly easy to obtain. Computational results by
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PEARMAN,® which support this hypothesis, suggest that network design
problems are rich in good suboptimal solutions. Another advantage of
the analytic approach is that the proof techniques frequently contain
qualitative insight concerning the structure of optimal or near-optimal
solutions. NEWELL® and MacKinnon"" emphasize the utility of this
qualitative information (e.g., the value of honeycomb, square grid, and
other special network layouts; whether hiearchical or nonhierarchical
designs are superior) in the context of the transportation planning
process. MacKinnon argues that, due to the complexity of transportation
systems, structural information about network design could be even more
useful than the design of an efficient algorithm.

5. NETWORK DESIGN PROBLEMS WITH NONLINEAR ROUTING COSTS

THIS SECTION discusses a more complex type of network design problem
where the arc routing costs can be nonlinear functions of arc flows. Such
models occur in urban and highway transportation systems where convex
arc routing costs reflect increasing user cost due to road or link conges-
tion. Concave routing costs represent economies of scale present in
freight transportation or multiplexed communication network applica-
tions.

Using the same notational conventions described in Sections 2 and 3,
we have the following general formulation:

minimize 2(1,1)EA clj(flj) yzj) + Z(L,J)EA Fu(yzj)

subject to:
R: i = 0(k)

Y ff—%.fi= -R, i=Dk al kex (6.1)

0 otherwise
£, =Sk fh (5.2)
fo = Kyyy (5.3)
Yenea ey, =B al (,j) €A kE« (5.4)
k>0 (5.5)
v, €Y. (5.6)

Notice that unlike the previous two sections, we permit the variables y,
to be continuous in this model depending on our choice of the feasible
set Y.

This section discusses several specializations of this model. We shall
use the following terminology to distinguish between these problem
variants:

i,
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Uncapacitated Design. If all the variables y, are 0-1 and every K, = Y,
Ry, the constraints (4.3) impose no (capacity) restrictions on flow when
yw=1

Convex Routing Cost. When all the variables are fixed with Yy =¥y, the
functions ¢, (f,, ,) are convex functions of the f,. As we noted earlier,
the convex routing cost function ¢,f,[1 + a,(f,/y,)*], where oy, B, and
t, are constants, is often used to model highway congestion costs.

Concave Routing Cost. Same as the above discussion except that the
routing costs are now concave.

Budget Design. The construction cost term Yonea Fy(y,) is eliminated.

Convex Routing Cost Problems

Hoang® and COTES AND LAUGHTON!" have applied an extension of
Benders decomposition, known as generalized Benders decomposition
(GEOFFRION"?), to the uncapacitated discrete budget design problem
with convex routing costs. The algorithmic strategy of this procedure is
very similar to applying Benders procedure to the uncapacitated budget
problem of Section 3. The algorithm starts with a tentative network
configuration, but instead of solving shortest path subproblems as in
Section 3, solves a convex (cost) multicommodity flow subproblem. There
are a number of efficient procedures for solving these multicommodity
flow problems (NGUYEN,*) CANTOR AND GERLA,"” LEBLANC et al.,’®
Assap,” DEMBO,”” FLORIAN,” KENNINGTON,'®' MAGNANTI AND
GOLDEN'™ among others). Then using the optimal dual variables of the
nonlinear programming subproblem, the algorithm synthesizes a linear
lower bound inequality of the form v = a, + Y, a,¥,- These dual variable
values can be interpreted as the marginal cost of increasing the flow
requirement between a pair of nodes when the current flow pattern is
the optimal solution to the multicommodity subproblem.

When applied to this problem, generalized Benders decomposition
would normally solve a mixed integer master problem consisting of the
budget constraints as well as all the generated cuts. Hoang dualizes the
problem and places all the Benders cuts, weighted by dual variables, in
the objective function. He then heuristically solves the resulting knapsack
problem to get a new tentative configuration and solves a relaxed version
of the knapsack problem to obtain a new lower bound for the network
design model. The procedure finds a solution known to be within 9% of
optimality for a problem with 155 nodes, 376 arcs and 25 projects (set of
arcs to be modified) in about 60 seconds of IBM 360/50 time. Cétés and
Laughton derive the same knapsack problem, but solve it only heuristi-
cally; therefore, they use the generalized Benders algorithm as a heuristic,
without using the algorithm’s lower bounding provision. Their compu-
tational results are also quite promising.
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Note that the Benders decomposition acceleration techniques of Mag-
nanti and Wong'™ could be easily generalized and applied to Hoang and
Cotés and Laughton’s procedure.

LEBLANC®! has solved a nonlinear-user optimal criteria budget design
problem using a similar type of bounding procedure. At node P in the
search tree, he bounds the optimal solution value by G( yP), the optimal
value of the corresponding system optimal routing problem for the net-
work configuration defined by y”. This routing calculation requires
solving a convex multicommodity flow problem. LeBlanc makes the
assumption that the routing cost in his problem does not increase when
an arc is added to the network configuration (the situation when routing
cost does increase after an arc is added is known as Braess’ paradox (see
MURCHLAND'® and KNODEL'®\. For recent discussions of this phenom-
enon, see FRANK'® or STEINBERG AND ZANGWILL!'?). When the routing
problem is a set of shortest path problems as for the budget design model,
this assumption is always valid. LeBlanc’s algorithm solved design prob-
lems containing 24 nodes, 76 arcs and 5 potential arcs to be added to the
network in 135 seconds on a CDC 6400 computer.

MORLOK AND LEBLANC® have used an add-interchange heuristic to
solve LeBlanc’s problem. The heuristic was able to compute an essentially
optimal solution to the same problem described above in 17.8 seconds on
a Cyber 70 computer.

It is possible to derive the system optimal routing problem bound in
LeBlanc’s model by applying generalized Benders decomposition with yP
as the tentative configuration. This interpretation reveals that LeBlanc’s
bound is analogous to the bound used by Boyce et al. to solve the
uncapacitated budget design problem as described in Section 3. Also, the
improved bounds, given in Section 3 by Hoang, Dionne and Florian, and
Gallo, and the pareto-optimal cut theory would apply in a generalized
form to LeBlanc’s model. Thus, improved bounds may be readily available
for this problem.

BARBIER,* STAIRS!'® and HAuBRICH?" discuss a problem similar to
LeBlanc’s except they replace the budget constraint by the construction
cost term Y. ea Fy () in the objective function. Barbier and Haubrich
utilized a drop type heuristic to solve models of the Paris rail network
and the Dutch rail network. Haubrich processed a network design prob-
lem with about 1250 nodes and about 8000 arcs in less than 2400 seconds
of IBM 360/75 computer time.

DANTZIG et al.,”” LEBLANC AND ABDULAAL®" and Los!™" have all
studied a budget problem with convex routing costs and continuous
capacity variables (see also DAFERMOS®”). Their solution procedures are
all based upon a decomposition scheme suggested by Steenbrink, %11
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which first associates a dual variable A with the budget constraint (5.4)
and by dualizing obtains:

minimize 2(:,])EA Clj(flj’ yu) + >\ z(l,j)EA euyu (57)
subject to (5.1), (5.2), (5.3), (5.5) and (5.6).

It is usually necessary to solve this relaxed problem with several different
values of A in order to obtain a solution to the original budget design
model. The following discussion concentrates on solving the relaxed
problem with a fixed value of A,

We can rewrite the relaxed problem as
minimizeseg Y., )ea [minimize, ey, ¢,(fy, ¥,) + Ae,y,]  (5.8)

where f = (f,) is a vector of arc flows and the set G contains all values of
f that satisfy the constraints (5.1), (5.2), and (5.5). The set Y(f,) contains

all values of the y, that satisfy (5.3) and (5.6) when f.1s held fixed.
Now define

Hlj(flj) = miny,,EY(fU) [ctj(fu’ yy) + Aeuyu]- (5.9)

The solution y} to this minimization problem can be interpreted as

the optimal capacity level for arc (i, j) given that the total arc flow is fo-
Rewriting (5.8) in terms of (5.9) yields:

minimizefeg E(i,})EA sz(fy)- (510)

Note that (5.10) is a multicommodity flow problem in which the con-
straints (5.1), (5.2), and (5.5) that describe G represent the conservation
of flow constraints and H,(f,) is the flow cost function for arc (i, 7).

This decomposition scheme has separated (5.7) into a master problem
(5.10) and a series of subproblems (5.9) with one subproblem for each
arc (i, j). The main drawback to its implementation resides in the
definition of the functions H, only implicitly as the optimal objective
value to the optimization problems (5.9). Also, the method becomes
particularly attractive only when the functions H, are convex so that we
can apply any of the efficient convex multicommodity flow algorithms
cited earlier. Dantzig et al., LeBlanc and Abdulaal, and Los have found
a wide range of useful models where the H, functions have a closed form
representation and are convex. They use the Kuhn-Tucker conditions
for (5.9) to obtain a relationship between 5, the optimal solution for
(56.9), and f,. Then substituting for ¥y in (5.8) gives a closed form
expression for H,,.

For example, Los considered the case where the constraints (5.3) are
omitted (i.e., the model contains no explicit capacity constraints), the
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constraints (5.6) only restrict the capacity variables y, to be non-negative,
and the routing cost function is given by

_ o if y, =0
i ) = |1 + gl ly)lf,  otherwise. TV

As mentioned previously, this cost function is often used to model
highway congestion costs. For this problem we determine the solution
y¥to (5.9) by setting y¥ =0 if f;= 0 and by setting the derivative of the
objective function in (5.9) to zero if f,> 0. Setting this derivative to zero
and solving for y} gives

yE = f,(g:8:8/ Ne,) VD, (5.12)

Substituting into (5.9) yields
H,(f,) = (@ll + 8818283/ Ney) EV & V] + >\€i;(glgzgz/)\eu)l/(gsﬂ))fu-

Since this expression is linear in the flow variables f;, the multicom-
modity flow master problem (5.10) reduces to a set of shortest path
problems. After obtaining the optimal values for the f, from (5.10), we
can use (5.12) to derive the optimal values for the y,. Thus, under the
model restrictions assumed by Los, Steenbrink’s decomposition scheme
can efficiently generate a complete solution to the relaxed problem (5.7).

Dantzig et al. and LeBlanc and Abdulaal describe other variants of
the budget design model where the functions H, are easily characterized
and are convex. They focus on applications with a nonlinear version
Sonea Gy(y,) < B of the budget constraint (5.5).

Dantzig et al. show that when each budget cost function G; is convex
and the routing cost function is specified as stated in (5.11), the functions
H, are easily described and are also convex. The resulting master prob-
lems (5.10) are also convex flow problems. These authors derive similar
results when the routing cost functions are piecewise linear and convex
for every value of the capacity variable y,. Computational results for this
model required about 300 seconds on an IBM 370/168 computer for a
network with 394 nodes, 1042 arcs, and 84 origin nodes. In contrast, a
linear programming approach (MORLOK et al.®) required over 2400
seconds on an IBM 370/168 computer to solve a design model with 24
nodes and 76 arcs.

Steenbrink!'* 1! solved a similar type of problem, but with nonlinear
construction costs 3.4 F,i(v,) present in the objective function instead
of the budget constraint. The functions H, are easily derived but are, in
general, nonconvex so the master problems (5.10) must be analyzed with
a heuristic technique such as an incremental loading traffic assignment
procedure (MARTIN AND MANHEIM®). Steenbrink applied this method

i,
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to a Dutch roadway design problem containing 2000 nodes and 6000 arcs.
The heuristic procedure required about 3000 seconds of IBM 360/65
computer time. Due to the size of the problem, it is not possible to
evaluate the quality of Steenbrink’s solution.

LeBlanc and Abdulaal discuss problems similar to the ones considered
by Dantzig et al. and specify instances where the budget cost functions
G, are nonconvex, but the functions H, are easily described and are
convex.

McCALLUM® considers a convex routing cost design model concerning
the location of circuits in a communication (telephone) network. Each
arc routing cost function in his model is piecewise linear and each
construction cost function is linear. The model permits only a few paths
as flow routes between every pair of nodes and has no budget constraint.
McCallum formulates this model as a linear program and uses a special-
ized implementation of the generalized upper bounding procedure to
solve it. His code has solved a problem with 563 arcs and 1857 required
flows in 173 seconds on an IBM 370/165 computer.

Note that McCallum’s model is a special case of the problem considered
by Dantzig et al. and LeBlanc and Abdulaal when their budget constraint
is dualized. Recall that the implementation of Steenbrink’s decomposi-
tion algorithm by Dantzig et al. significantly outperformed a linear
programming approach that Morlok et al. used for a problem similar to
McCallum’s. Therefore, Steenbrink’s decomposition is applicable to
McCallum’s model and should be quite effective in solving it.

All of the continuous capacity variable design problems discussed to
this point have assumed that flow patterns are governed by system
optimal routing. It is also possible to formulate and study analogous user-
optimized design problems.

ABDULAAL AND LEBLANC® reformulate the model as an unconstrained
optimization problem where the cost functions are implicitly defined as
the total cost of user optimized traffic assignment problems correspond-
ing to fixed values of the capacity variables. MARCOTTE® incorporates
the user-optimal routing conditions as constraints by modeling them as
variational inequalities. MARCOTTE"® analyzes heuristics for this prob-
lem by giving convergence results and worst-case error bounds.

Concave Cost Design Problems

A variety of important communication and freight distribution prob-
lems can be viewed as concave routing cost problems. For example,
YAGED!"* describes a communication network design model

minimize 2(1,])5/4 sz(yt}) (513)
subject to (5.1), (5.2), (5.5) and f, < v,
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whose component cost functions F, are concave, reflecting the economies
of scale in telephone circuit costs. Since the cost functions F, are non-
negative as well, f, = y,1n any optimal solution to this problem. There-
fore, we can eliminate the y, variables and reduce the problem to the

form

minimize 2(,,,)@\ F,',(fu) (5.14)
subject to (5.1), (5.2) and (5.5)

(This problem transformation could also be derived by applying Steen-
brink’s decomposition procedure to (5.13).)

The application of Steenbrink’s decomposition scheme demonstrates
that a number of other network design models are equivalent to the
concave cost multicommodity flow problem (5.14). For example, in the
fixed charge network design problem introduced in Section 2, if ¢; = ¢}
for all k, and the problem contains no side constraints on the design
variables y,, then we can substitute f, = S fE for y, in the objective
function to give the concave nondifferentiable function

R = {oh R B2

if f,=0.

Consequently, the Steenbrink decomposition master problem for this
class of models reduces to (5.14) and the fixed charge network design
problem and its various special cases, including the traveling salesman
problem and the Steiner tree problem on a graph, can all be viewed as
concave cost flow problems in the variables f,. These examples demon-
strate that the concave cost flow problem (5.14) is an important and
useful model for formulating network design problems. Since (5.14)
contains many NP-hard problems as special cases, the concave cost
problem is also NP-hard and, therefore, it is unlikely that there are
efficient general solution techniques for the problem. The remainder of
this section focuses on various proposed solution techniques for (5.14).

Incremental Improvement Algorithms via Linearization

Since the constraints of (5.14) are linear and its objective function is
concave and non-negative, it always has an optimal solution at a vertex
of the feasible region. One class of solution techniques exploits this
property by either (i) moving from one extreme point to another, or (ii)
constructing an extreme point solution. Unfortunately, these adjacent
vertex following routines can be suboptimal since (5.14) generally has
many local optima. Another class of solution strategies linearizes the
objective function and then solves the resulting linear program as a series
of shortest-path problems. The process is repeated a number of times
with the linearization modified according to the previous iteration’s
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shortest-path solutions. Under certain conditions, it is possible to prove
that these linearization schemes converge, but again, only to local optima.

The Frank-Wolfe algorithm and its variants is one type of linearization
procedure suitable for problems with differentiable cost functions. Start-
ing with a feasible solution vector f* = (f%), the algorithm forms a Taylor
first-order linearized approximation to the problem. That is, the objective
function coefficient of f, becomes dF,/df, evaluated at f*. If the objective
value for the solution f? to this linearized problem is negative, then flis
a direction of improvement for the objective function. The Frank-Wolfe
algorithm would then perform a one-dimensional line search to minimize
the objective function in the line segment joining f* and f2. In this case,
however, since all the component cost functions F;(f,) are concave and
f? is a direction of improvement, the line search always solves at f2 (see
Yaged"??)). The method next forms a new linearized problem using f2
and then repeats the entire process. The procedure terminates when the
point f!, about which we are linearizing, solves the linearized problem.
Since this procedure is the Frank-Wolfe algorithm applied to (5.14), a
standard convergence proof shows that it will always converge to a local
optimal solution.

Another type of linearization procedure uses an estimate of the average
arc flow cost instead of the marginal flow cost 0 F,/df,. If u, is an estimate
of the total flow on arc (i, j),

t, - fy where t;,=F, (u;)/u,

would approximate the cost function Fj,. This linearization can give more
accurate cost approximations than the marginal cost procedure when the
cost functions F, contain discontinuities (fixed charges) as in the case of
the fixed charge network design problem. Also, this scheme does not
require the functions F to be differentiable.

The above approximations lead to the linear program:

minimize ¥,ea &, f,
subject to (5.1), (5.2) and (5.5)

which can be solved efficiently as a series of shortest-path problems. If
the optimal value for f; is u,, then the linear approximation gives the
same flow cost as the concave cost function. Just as in the Frank-Wolfe
procedure, the solution to the linear program approximation supplies a
feasible solution to the concave cost flow problem (5.14) and defines a
new average cost linearization for repeating the procedure. The algorithm
terminates when two successive linear program solutions are identical.
It is interesting to note that the average cost linearization scheme is
equivalent to the capacity restraint procedure (Martin and Manheim!®)
that was widely used many years ago to solve convex cost multicommodity
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flow traffic assignment problems. One disadvantage of this approach for
both convex and concave cost problems is that its convergence properties
are not known. However, empirical evidence (Martin and Manheim,®”
and Yaged!'?>'%%) seems to indicate the procedure usually converges to a
suboptimal solution.

Yaged!'?? performed extensive computational tests with both the mar-
ginal cost and average cost linearization schemes. He also tested a third
approximation technique that used a linear combination of these two
linearizations. His tests, with problems, containing 100 nodes and 210
arcs and concave differentiable cost functions, indicated that all these
iterative schemes converged though he gave no computer times or itera-
tion counts. He found that, of the three approximation procedures, it
was the most effective to apply the average cost scheme until it termi-
nated and then improve its solution with the marginal cost scheme.

Adjacent Extreme Point Search Methods

One drawback to the linearization approaches is that they fail to fully
utilize the property that an optimal solution lies on an extreme point of
the feasible region. For example, the marginal cost scheme finds an
extreme point solution that is locally optimal relative to all points within
a neighborhood. However, neighboring extreme points could provide
improved solutions. Various authors including ZADEH,"**'**) DAENINCK
AND SMEERS,""” and GALLO AND SODINI*®* have proposed methods for
improving solutions by considering neighboring extreme points.

Zadeh!2* 125 introduced a series of heuristic techniques for improving
concave cost flow solutions by rerouting flow about cycles in the network.
He says that an arc (i, j) is in the solution f if the flow f, on it is strictly
positive. His methods involve adding and/or deleting arcs from the
solution to form and/or destroy cycles in the solution. He also considers
rerouting flows about cycles without any arc addition or deletion. For
example, consider Zadeh’s!!*!! 5-node cyclic network specified in Figure
4. Each arc (i, j) has a cost function F,(f,) = f;°. The demands r,
between pairs of nodes i and j are given by ris = rog =rzs =rys =ri; = 1.

Figure 4a gives a feasible problem solution (with cost 5) where the arc
labels indicate the arc flows. The marginal cost scheme indicates that no
further improvement is possible. However, by deleting arc (1, 2) from the
cycle in Figure 4a and rerouting the flow requirement ri;, we get the
solution in Figure 4b with cost of about 4.92.

Zadeh’s computational results indicate that his techniques are usually
able to improve upon marginal cost method solutions. The disadvantage
with his methods is that the number of possible network cycles grows
extremely rapidly with problem size. Therefore, these techniques could
require unacceptable amounts of computation time for large networks.

i,

Sepyright©2001 Alf RightsReseved ™



Downloaded from informs.org by [143.107.97.2] on 05 September 2017, at 08:57 . For personal use only, al rights reserved.

RIGHTS

i,

NETWORK DESIGN AND TRANSPORTATION PLANNING / 43

Fig. 4. Concave cost network example.

Other researchers have used more formal techniques for exploiting the
extreme point property of concave cost flow problems. Daeninck and
Smeers"'? and Gallo and Sodini®®* propose procedures that start from
an initial extreme point solution and repeatedly move to the best adjacent
vertex solution until no further objective function improvements are
possible.

We will say that a solution satisfies the tree property if for any node v
the set of arcs used by flows orginating at that node forms a tree (is cycle
free). A solution corresponds to an extreme point if and only if it satisfies
the tree property. Daeninck and Smeers and Gallo and Sodini show that
moving to an adjacent vertex corresponds to rerouting the flow for a
single-origin destination pair while maintaining the tree property. The
cost of the best reroute can be computed via a specially derived shortest-
path problem. So in order to evaluate all adjacent vertices and to find
the best one, the procedure must solve a shortest-path problem for each
origin-destination pair.

For the example given by Figure 4a, the flows originating at node 1
(r12 and ry;) use the arcs (1, 2) and (1, 5). Rerouting the flow between
nodes 1 and 2 gives the solution in Figure 4b and the arcs used by ry; and
ris change to (1, 5), (4, 5), (3, 4), and (2, 3). This set of arcs satisfies the
tree property and closer inspection of the other origin nodes shows that
the solutions given in Figures 4a and 4b are adjacent extreme points.

These procedures appear most effective when flow originates at a single
node since this assumption limits the number of shortest-path problems
that the procedure must solve. Computational results with these algo-
rithms have been very promising. For example, Gallo and Sodini, in
solving a class of problems with 48 nodes, 174 arcs, 1 origin, and 20

destinations were able to improve the marginal cost algorithm’s solutions
by an average of 20% in 30 to 60 seconds of IBM 370/168 computer time.
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Branch and Bound Procedures

A variety of authors have used discrete optimization techniques such
as branch and bound and dynamic programming to exploit the tree
property of single commodity concave cost flow problems. These methods
are able to compute optimal solutions, but only with the usual cost of
increased computational effort.

FLORIAN AND ROBILLARD® and Gallo et al.l*” use similar branch and
bound approaches to determine which arcs will carry flow in a single
commodity concave cost flow problem. Each vertex of the branch and
bound tree has two successors where a particular arc is either included
in or excluded from the sdlution. The methods calculate lower bounds
from average cost linearizations that are solved as minimum cost flow
problems. Gallo et al. are able to optimally solve a problem with 34 nodes,
122 arcs, 1 origin and 10 destinations in 184 seconds on an IBM 370/168
computer.

ACHIM et al.lV use a very different branch and bound approach for the
same problem by adopting FALK AND SOLAND’s* procedure for noncon-
vex optimization problems. At each vertex of the branch and bound tree,
they solve an average cost linearization (a minimum cost flow problem)
to derive a lower bound on the optimal objective value. Suppose that, at
the vertex, the feasible set of flow values for an arc G,
is the interval [l,, u;]. Bisecting this interval creates two successors to
the vertex that restrict arc (i, j)’s flow to the intervals

[lu’ (llj + uu)/2] and [(ll] + uzj)/2’ uij]'

Each successor vertex gives rise to a more refined average cost approxi-
mation and a more accurate lower bond. The algorithm converts each
linear approximation solution into a feasible solution and, consequently,
specifies an upper bound for the search process. The bisecting of arc
intervals (expansion of the search tree) continues until the difference
between the upper and lower bounds is sufficiently small. The procedure
has optimally solved a network with 24 nodes, 57 arcs, 4 source nodes, 8
destination nodes and piecewise linear arc cost functions in about 25
seconds on a CDC 6400 computer.

Dynamic Programming

Recently, ERICKSON et al.'*” proposed a dynamic programming ap-
proach to single-commodity-concave cost flow problems that generalizes
many previous contributions from the literature. For ease of exposition,
we restrict our discussion to the case of a single source node supplying a
set D of demand nodes. Their method easily generalizes to situations in
which a set of sources supply a set of demand nodes.
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The tree property given earlier indicates that for an extreme point
solution, the set of arcs used to supply the demand set D forms a tree,
which we will call a supply tree. Let C;; be the optimal cost of supplying
a set of nodes I from supply at node i. Then C,; gives the optimal cost
of the entire problem. The C,; values can be computed recursively with
the relationships

C.; = min(min,[C,, + ¢,(r;)], B.;)
and
B,; = minyc,c/{C.y + C,1—s].

The initial conditions are given by

Jo if I={i

Cu = | otherwise.

The first equation indicates that the best supply tree rooted at node i
satisfies one of two possible conditions. First, node i in the supply tree
has a single son j with a total cost given by C,; (the cost of supplying the
demand set I from node j) plus c,(r;) (the cost of sending the total
demand r; in the set I from node i to node j). The inner minimization
selects the best possible single son j.

The second condition corresponds to a supply tree in which root node
¢ has two or more sons. The B,; term represents the optimal splitting of
the supply tree rooted at node i into two trees rooted at i supplying J
and I — J, respectively. The initial conditions indicate the cost of
supplying demand node ¢ from node i is zero.

The above dynamic programming recursion essentially requires the
computation of C,; for all values of i and all possible subsets I of the
demand set D. For the general case, if there are d nodes in D and n nodes
in the entire network, the number of C;; computations become propor-
tional to n2¢ which grows exponentially with network size in the worst
case.

Erickson, Monma and Veinott describe a special class of networks
where their procedure has a polynomial time bound. A network is called
D-planar if it can be embedded in the plane so that all demand nodes are
on the boundary of the outer face. Now assume the demand nodes of a
D-planar network are always labeled cyclically 1, 2, ---, d around the
outer face. We define an interval set as having either the form {q, g + 1,

~»q+kjor{g,g+1,-..-d,1,2, ..., t} for some g, k, and ¢t. Figure 5
gives a D-planar network where D = {1, 2, 3, 4, 5}. The sets {2, 3, 4} and
{4, 5, 1, 2} are interval sets, but {4, 5, 1, 3} and {1, 2, 4} are not interval
sets.

Using the extreme point (tree) property of concave cost flow problems,
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Fig. 5. D-Planar network.

the authors show that, in order to find the optimal solution, the only C;;
that must be evaluated are the ones where I is an interval set. Since in
the worst case, there are O(n?) interval sets, the algorithm requires at
most O(n®) computations to find the optimal supply tree.

The above solution approach is applicable to a variety of special
network design problems and is as efficient as specialized algorithms for
particular problems. A number of distribution system problems can be
modeled as single commodity concave cost flow problems on D-planar
networks (WAGNER AND WHITIN,!"'®! ZANGWILL,'**'*7 MANNE AND
VEINOTT'®2 and VEINOTT"'”). The Erickson, Monma and Veinott algo-
rithm presents a unified approach to all of these problems which is as
efficient as the algorithms proposed for each special problem. Since the
Steiner tree problem on a graph (introduced in Section 2) can be viewed
as a single commodity concave cost flow problem on a general network,
the above algorithm could be used with an exponential worst-case time
bound. This time complexity matches the bound for a special purpose
Steiner problem dynamic programming approach proposed by DREYFUS
AND WAGNER.?® In fact, the two dynamic programming approaches are
very similar in structure.

Summary

This section has considered a wide variety of network design models
and solution techniques for problems with nonlinear routing costs. As is
the case with linear cost models, decomposition techniques are especially
useful for solving these network design problems. Benders decomposition
partitions a design model into a multicommodity flow subproblem and a
master problem that selects candidate values for arc capacities. Steen-
brink decomposition is another type of resource directive decomposition
(GEOFFRION*). It utilizes a multicommodity flow master problem
(which incorporates the routing and construction costs into a single
objective function) and a simple set of subproblems that selects the arc
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TABLE V
Optimization Methods for Single Commodity Concave Cost Flow Problems*®
Soluien Cqppuaina
Achim et al.lV Branch and bound 24 nodes, 57 arcs, 4 sources,
8 destinations, 25 sec-
onds; CDC 6400
Daeninck and Smeers"® Adjacent vertex search heu- 83 nodes, 234 arcs, 1 origin,
ristic 35 destinations, 3.6 sec-
onds; IBM 370/158
Gallo et al.¥ Branch and bound 34 nodes, 122 arcs, 1 source,
10 destinations, 184 sec-
onds; IBM 370/168
Gallo and Sodini® Marginal cost linear ap- 48 nodes, 174 arcs, 1 origin,
proximation and adjacent 20 destinations, 40 sec-
vertex search heuristic onds; IBM 370/168

= All problems are single commodity concave cost flow problems.

capacity as a function of arc flow. A crucial factor determining the
effectiveness of these schemes is the difficulty of solving the resulting
multicommodity flow problem. When the flow problems have convex
costs and thus can be solved efficiently, the decomposition schemes have
been reasonably successful. When the flow problems have concave or
other nonlinear costs, they are much harder to solve and the decompo-
sition scheme usually produces suboptimal results. These results under-
score the close relationship between solving network design problems
and solving network flow problems.

Since the concave cost flow problem arises in many applied network
design problem contexts and is difficult to solve, researchers have been
motivated to develop a variety of solution techniques. The linear (mar-
ginal cost and average cost) approximation methods are equivalent to
methods used to solve convex cost flow problems. Other techniques such
as the adjacent vertex search procedure attempt to exploit the property
that an optimal solution for a concave cost flow problem is always located
at an extreme point. For the special case of a single commodity concave
cost flow model, several branch and bound and dynamic programming
algorithms are available to solve medium-sized networks.

Tables IV and V summarize the computational results on solving
network design models with nonlinear routing costs.
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