LINHAS DE TRANSMISSÃO PLANARES

PSI 3483

Ondas Eletromagnéticas em Meios Guiados

Profa. Dra. Fatima Salete Correra

Sumário

- Introdução Estrutras Planares
 - PCB, MIC e MMIC
- Linhas de transmissão planares
 - STRIPLINE
 - MICROSTRIP LINE
 - CPW COPLANAR WAVEGUIDE
 - SLOTLINE
 - LINHAS ACOPLADAS
- Microstrip line
- LineCalc/ADS
- Aplicações

Introdução

Linhas de transmissão planares

- Estruturas leves, discretas e conformáveis
- Aplicação
 - Circuitos planares de micro-ondas

Acopladores, atenuadores, divisores de potência, filtros, circuladores, isoladores, etc.

Osciladores, amplificadores, conversores de frequência, etc.

- Antenas de micro-ondas
- Tecnologias de fabricação
 - MIC Circuitos Integrados de Micro-ondas
 - MMIC Circuitos Integrados Monolíticos de Micro-onda

MIC - Circuitos Integrados de Micro-ondas

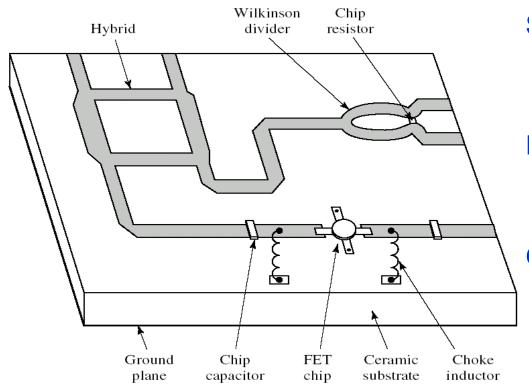
Microwave Integrated Circuit

Filmes Finos
Substratos Cerâmicos

Filmes Espessos
Substratos Cerâmicos

Circuito Impresso Substratos Flexíveis

MMIC - Circuitos Integrados Monolíticos de Micro-ondas


Microwave Monolithic Integrated Circuit

MonolíticaSubstratos Semicondutores

Exemplos de substratos

Substrato	Tecnologia	ϵ_{r}	Espessura do Substrato	Espessura do Metal
Alumina	MIC	9,8	0,254 e 0,625cm	~ 5 μm
FR-4 Fibra de Vidro	PCB	4,4	0,762 e 1,524 cm	17μm
RT-Duroid-5880	PCB	2,20	0,254 e 0,508 cm	17μm
RT-Duroid-6010	PCB	10,2	0,254 e 0,635 cm	17μm
Arseneto de Gálio	MMIC	12,9	100 a 400 μm	~ 5 μm

Exemplo de MIC – Circuito Integrado de Micro-ondas

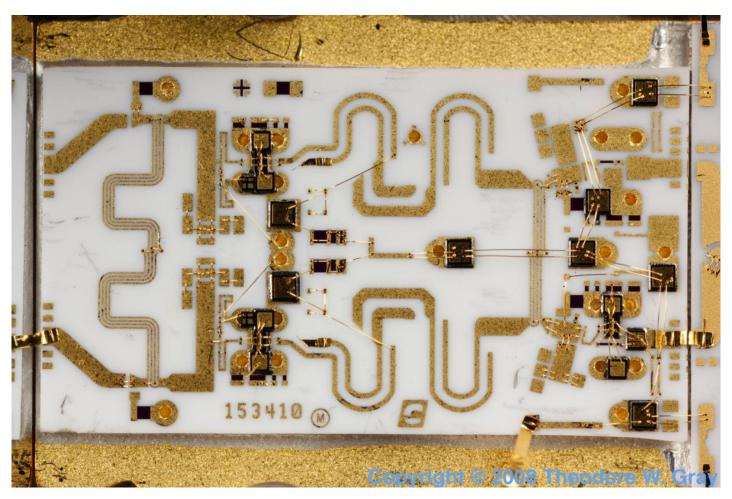
Substrato dielétrico

- Cerâmico Ex.: Alumina
- Flexível Ex. Duroid

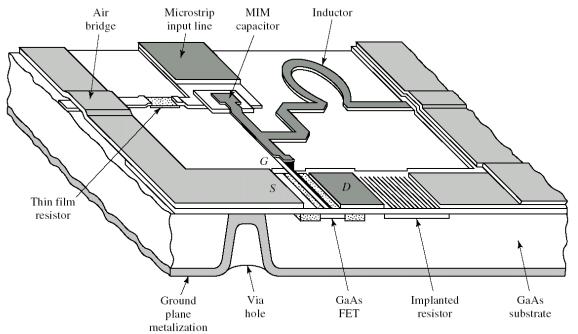
Estruturas metálicas

Linhas de transmissão

Componentes discretos soldados


- Transistores
- Capacitores
- Indutores
- Resistores

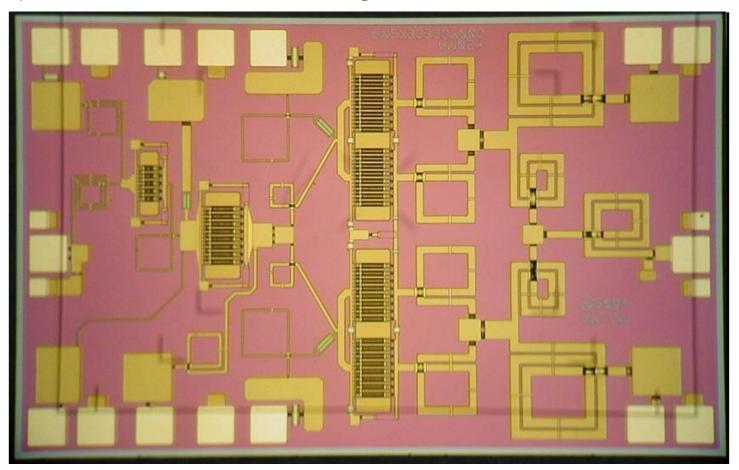
Circuito Integrado de Micro-ondas em Substrato Flexível


Fonte: http://theodoregray.com

Circuito Integrado de Micro-ondas em Substrato Cerâmico

Fonte: http://theodoregray.com

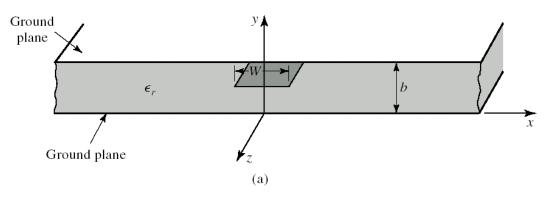
Exemplo de MMIC – Circuito Integrado Monolítico de Micro-ondas

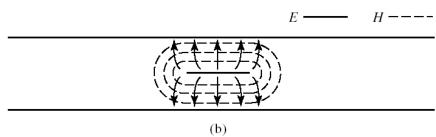

Substrato semicondutor

- Semi-isolante
- Ex.: GaAs Arseneto de Gálio

Estruturas integradas no substrato

- Tecnologia de várias camadas
- Linhas de transmissão
- Transistores
- Capacitores (MIM e interdigital)
- Indutores espirais planares
- Resistores
- Via hole

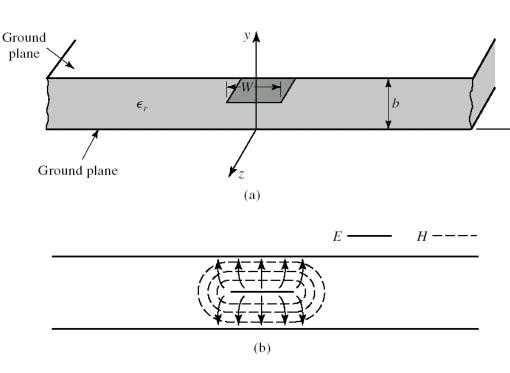

Exemplo de MMIC – Circuito Integrado Monolítico de Micro-ondas



Fonte: http://dehron.com/

- Linhas de transmissão planares
 - Construídas em camadas metálicas
 - Sobre placas de dielétricos
 - Conduzem o Campo EM ao longo do substrato
 - Principais tipos de linhas de transmissão planares
 - STRIPLINE
 - MICROSTRIP LINE
 - CPW COPLANAR WAVEGUIDE
 - SLOTLINE
 - LINHAS ACOPLADAS

STRIPLINE



- (a) Estrutura física
- (b) Distribuição dos Campos EM

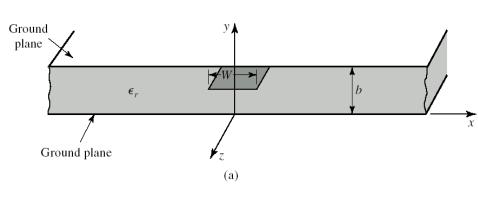
Linha triplaca

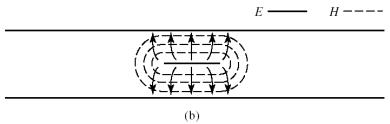
- Condutor central envolto pelo substrato
- Plano de terra superior e inferior
- Linhas de campo encerrados no substrato

STRIPLINE

- (a) Estrutura física
- (b) Distribuição dos Campos EM

Linha triplaca


Coaxial Cable


2−D view

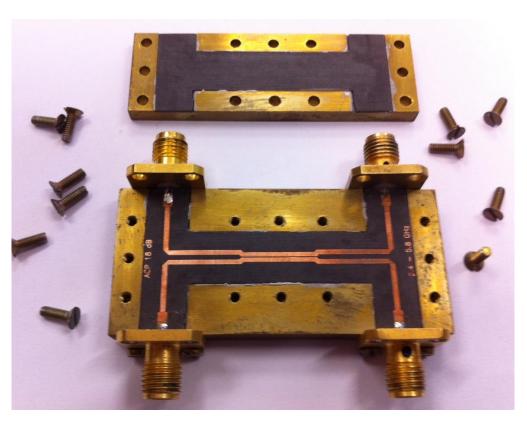
- Modo de propagação TEM
- Como linha coaxial "achatada"

STRIPLINE

- (a) Estrutura física
- (b) Distribuição dos Campos EM

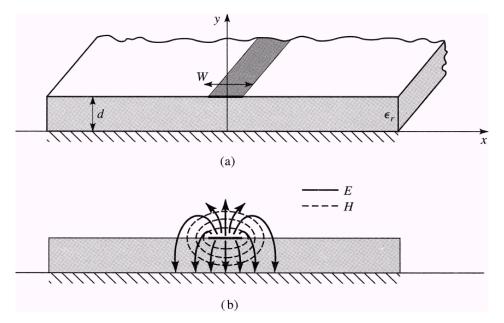
Linha triplaca

Vantagem

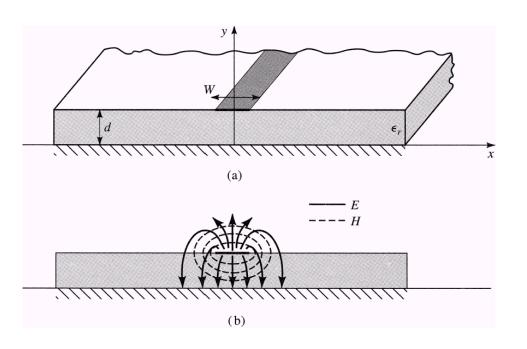

- Blindagem contra Interferências
 Eletromagnéticas
- Não tem dispersão
 (Z₀ não varia com a frequência)

Desvantagem

 dificuldade em adicionar componentes

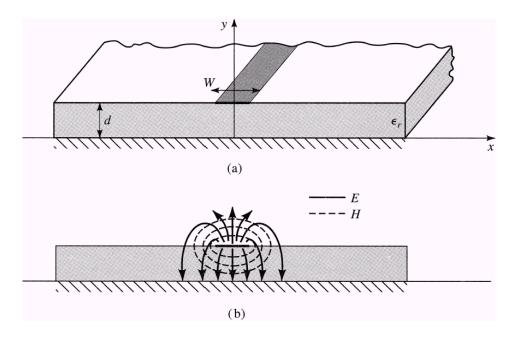

STRIPLINE

Acoplador banda larga usando linhas acopladas STRIPLINE


MICROSTRIP LINE (aberta)

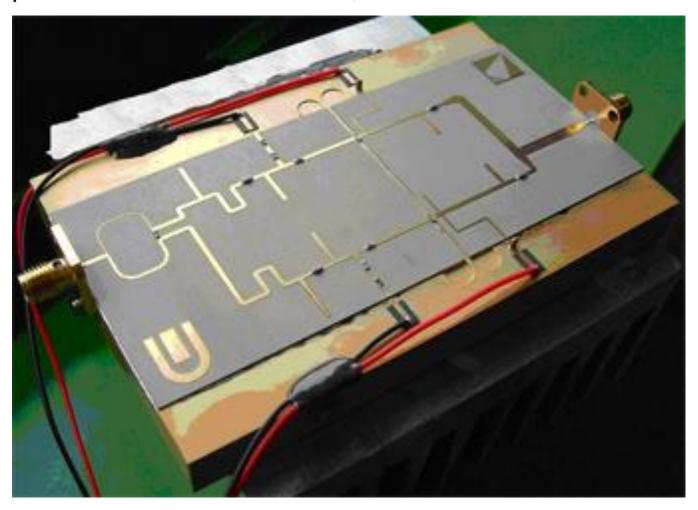
- (a) Estrutura física
- (b) Distribuição dos Campos EM

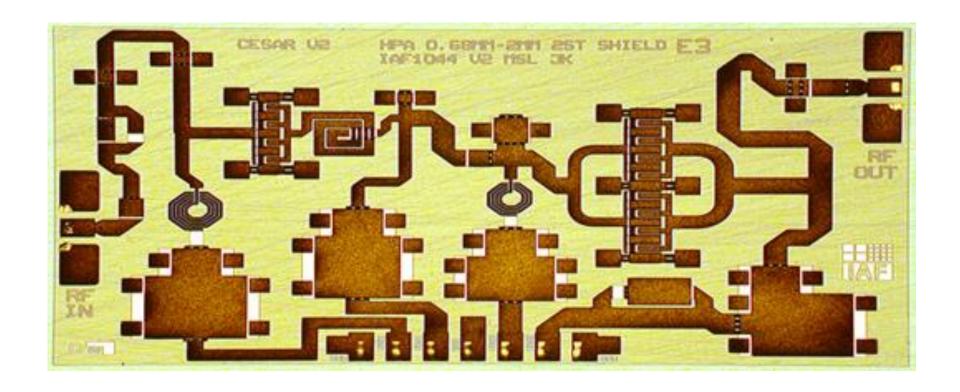
- Linha de microfita ou
 Microlinha de transmissão
- Condutor central aberto no lado superior → ar
- Perdas por irradiação
- Plano de terra na face inferior
- Linhas de campo: parte no substrato, parte no ar


MICROSTRIP LINE (aberta)

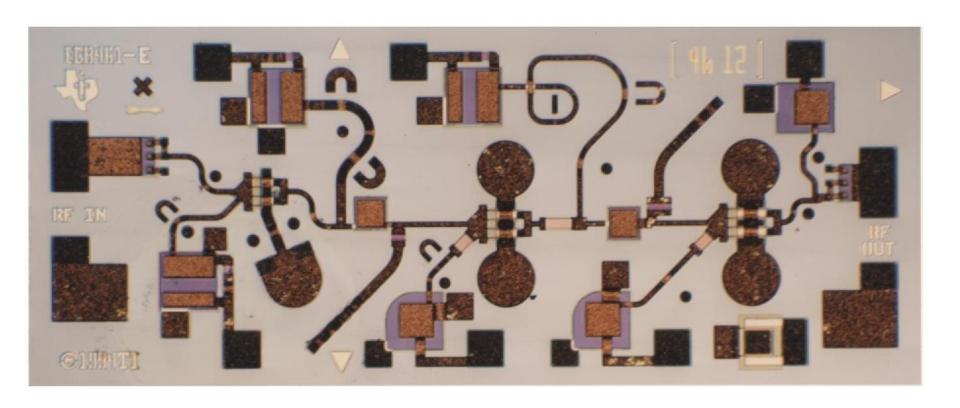
- (a) Estrutura física
- (b) Distribuição dos Campos EM

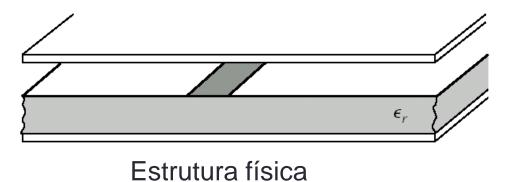
- Linha de microfita
- Propagação de campos EM
 - Meio híbrido: ar/dielétrico
 - Constante dielétrica efetiva que varia com a frequência
 - Dispersão $\rightarrow Z_0 = Z_0(f)$
- Modo de propagação
 - Quase-TEM


MICROSTRIP LINE (aberta)

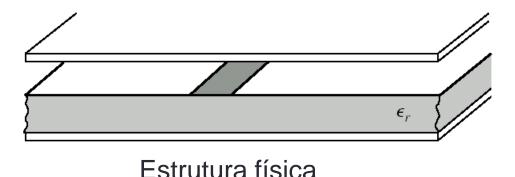

- (a) Estrutura física
- (b) Distribuição dos Campos EM

- Linha de microfita
- Vantagem
 - Facilidade em adicionar componentes
- Desvantagem
 - Sujeito a Interferências Eletromagnéticas


Amplificador MIC em alumina, usando MICROSTRIP LINE


Amplificador MMIC usando MICROSTRIP LINE

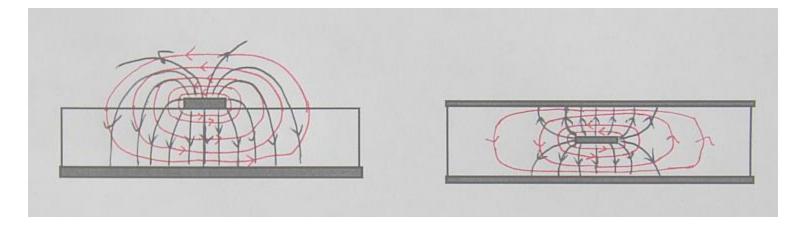
Amplificador MMIC usando MICROSTRIP LINE


MICROSTRIP LINE (coberta)

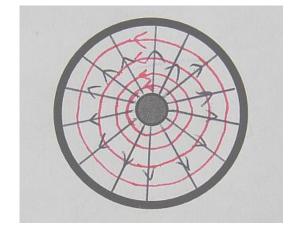
Na prática

- Condutor central aberto no lado superior
- MAS circuitos são acondicionados em caixas metálicas
- Tampa metálica gera "microlinha coberta"
 - Blindagem do campo radiado pelas estruturas planares
 - Evita interferências eletromagnética

MICROSTRIP LINE ou microlinha (coberta)

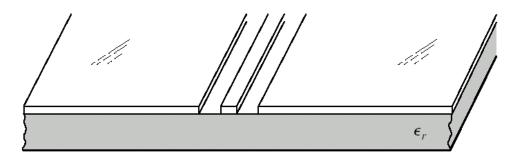


- Efeito da tampa metálica
 - Afeta a impedância característica da linha de transmissão se a tampa estiver próxima do substrato
 - Efeito da tampa pode ser desprezado para


(distância entre substrato e tampa) \geq 5 X(altura do substrato)

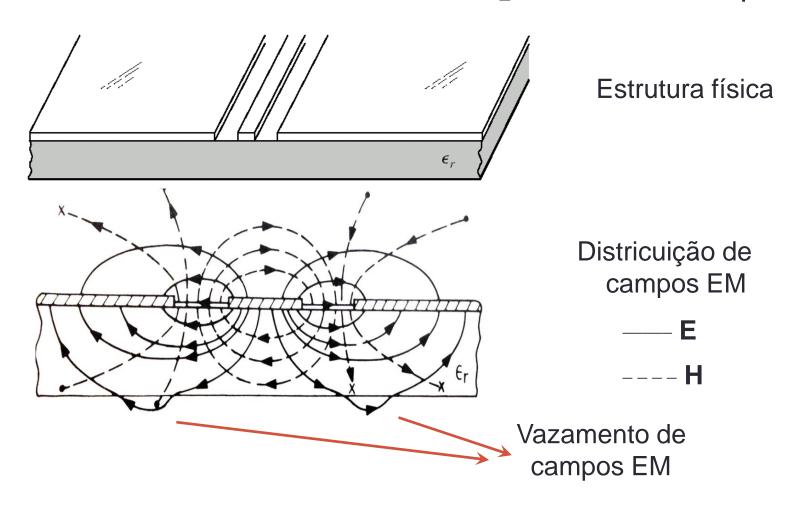
Microstrip line

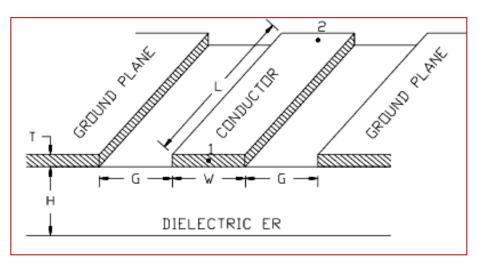
Stripline

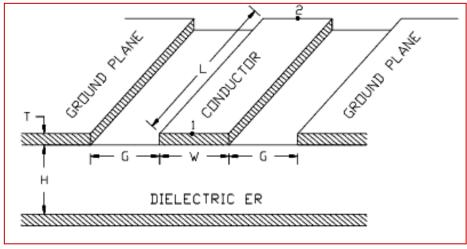

Cabo coaxial

TEM or quasi-TEM mode

E-field
H-field

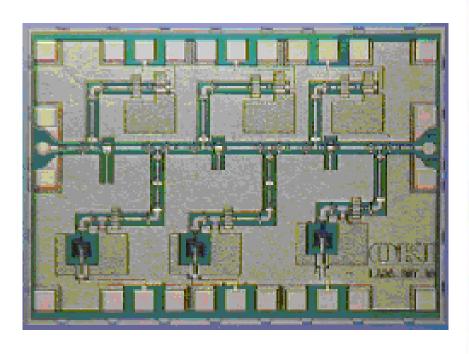

CPW – COPLANAR WAVEGUIDE – guia de ondas coplanar

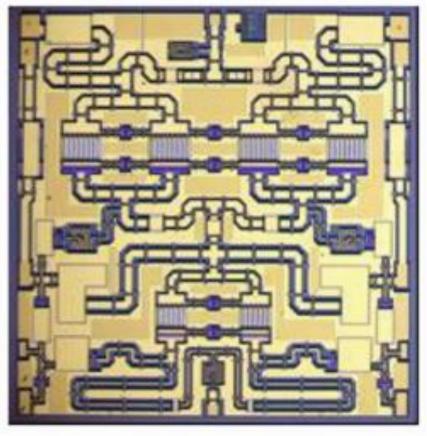

Estrutura física


- Condutor central e o plano de terra na face superior do substrato
- Campo EM
 - Propaga-se entre o condutor central e os planos de terra na face superior
- Variação da CPW → CPW-G
 - Face inferior do substrato contém camada metálica de plano de terra.

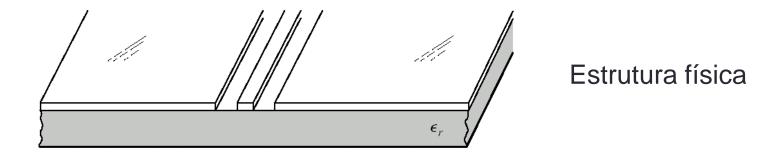
CPW – COPLANAR WAVEGUIDE – guia de ondas coplanar

CPW – COPLANAR WAVEGUIDE – guia de ondas coplanar



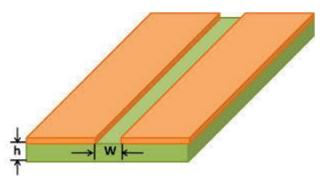


CPW
Guia de ondas coplanar


CPW-G
Guia de ondas coplanar com plano terra

Amplificadores MMIC usando COPLANAR WAVEGUIDE

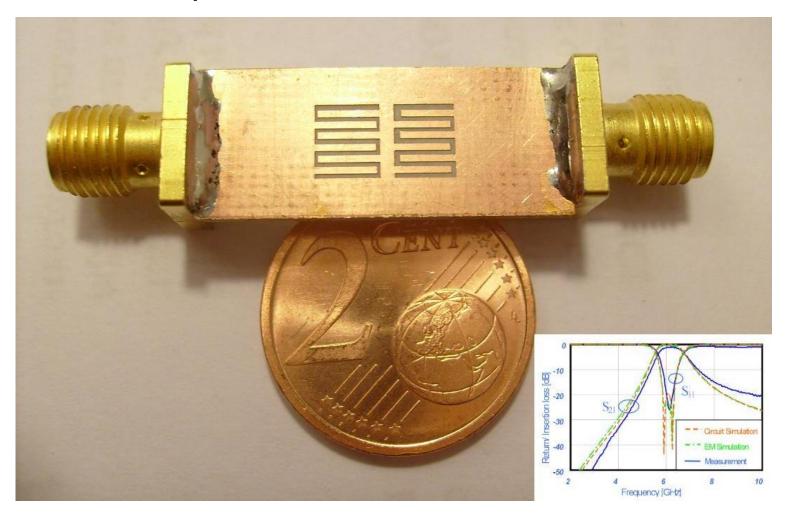
CPW – COPLANAR WAVEGUIDE – guia de ondas coplanar


Vantagem

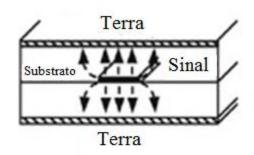
 Facilidade em montar componentes do condutor central para o plano de terra.

Desvantagem

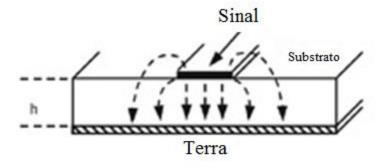
 Campos EM concentrados na borda dos condutores ⇒ maiores perdas condutivas

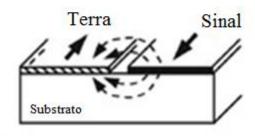

SLOTLINE – linha de fenda

Estrutura física da slotline

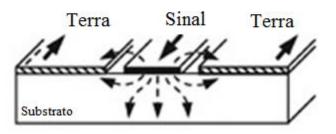

- Onda eletromagnética se propaga na fenda entre duas superfícies metálicas na face superior do substrato dielétrico
- Usadas em antenas em que a fenda irradia
- Usadas em associação com microlinhas
- Desvantagem
 - Campos EM concentrados na borda dos condutores
 - Maiores perdas condutivas

Filtro passa-faixa usando SLOTLINE


Antena usando SLOTLINE


STRIPLINE

Triplaca

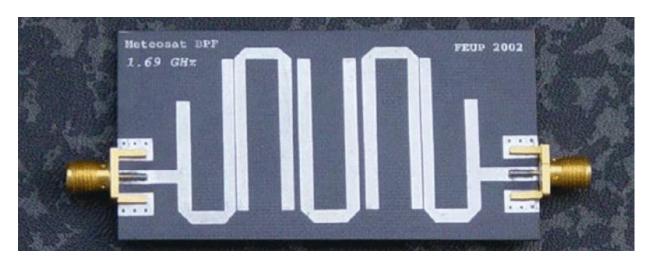

MICROSTRIPLINE

Linha de microfita

SLOT LINE

Linha de fenda

COPLANAR WAVEGUIDE


Guia de onda coplanar

LINHAS ACOPLADAS

- Linhas de Transmissão (LTs) são ditas "acopladas" quando
 - Duas ou mais linhas de transmissão não-blindadas
 - Próximas entre si, tal que
 - há interação entre campos EM das LTs
 - há acoplamento de potência entre as LTs
- Aplicações filtros e acopladores
- Tecnologias de fabricação
 - Stripline
 - Microstrip line
 - Slotline
 - Guia de ondas coplanar

LINHAS ACOPLADAS

Exemplo de aplicação - filtros passa-faixa usando linhas de microfita acopladas

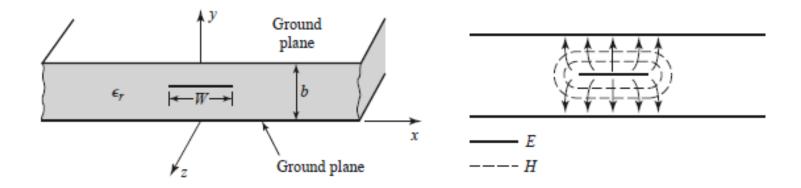
Fonte: https://paginas.fe.up.pt

Programa LineCalc do ADS

Exercício 1

- Na janela de esquemático
- Barra superior → Tools → LineCalc → Start LineCalc
- Veja as linhas de transmissão e seus parâmetros
 - Type: MLIN microstrip line
 - Type: CPW coplanar wave guide
 - Type: CPWG coplanar wave guide w/lower graund plane
- Utilize o "help" para ver a descrição de MLIN, CPW e CPWG

Exercício 2


Verifique os tipos de linhas de transmissão planares disponíveis na janela de esquemático.

Tlines-Ideal

Tlines-Microstrip

Tlines-Stripline

Tlines-Waveguide

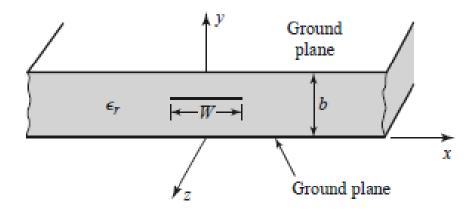
- Campo EM propaga-se entre 2 condutores
 - Estrutura suporta modo TEM
- Possíveis modos de propagação
 - **b** $< \lambda_q/2 \rightarrow$ modo TEM \rightarrow desejado
 - **b** $\geq \lambda_g/2 \rightarrow$ modos TEM,TE e TM \rightarrow indesejado

Velocidade de fase

$$v_p = \frac{1}{\sqrt{\mu \varepsilon}} = \frac{1}{\sqrt{\mu_0 \varepsilon_0 \varepsilon_r}} = \frac{c}{\sqrt{\varepsilon_r}}$$

Comprimento de onda

$$\lambda_g = \frac{v_p}{f} = \frac{c}{f\sqrt{\varepsilon_r}} = \frac{\lambda_0}{\sqrt{\varepsilon_r}}$$

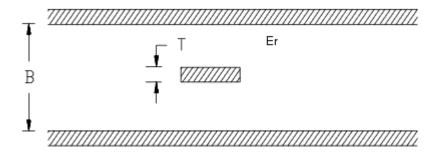

Constante de propagação

$$\beta = \frac{\omega}{v_p} = \omega \sqrt{\mu \varepsilon} = \omega \sqrt{\mu_0 \varepsilon_0 \varepsilon_r} = \sqrt{\varepsilon_r} k_0$$

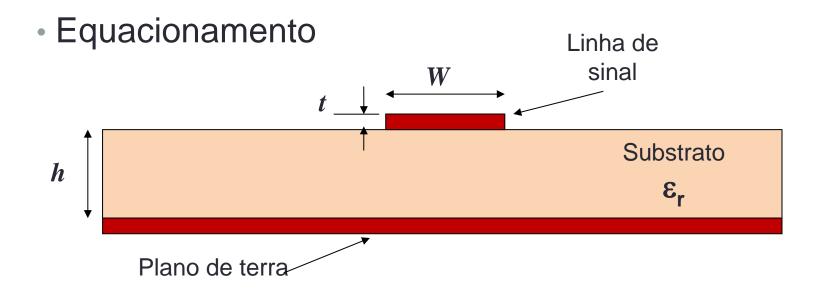
Fórmulas simplificadas, com erro < 1 %

Impedância característica

$$Z_0 = \frac{30\pi}{\sqrt{\mu\varepsilon_r}} \frac{b}{W_e + 0,441b}$$



$$\frac{W_e}{b} = \frac{W}{b} - \begin{cases} 0 & para W/b \ge 0.35 \\ (0.35 - W/b)^2 & para W/b < 0.35 \end{cases}$$


$$para W/b \ge 0.35$$

ADS

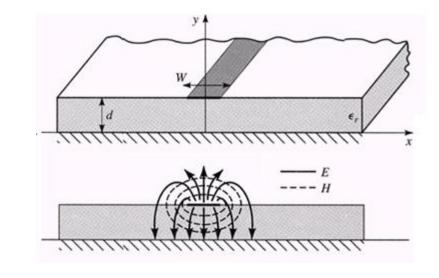
- Palheta TLines Stripline
- Stripline simétrica com 1 condutor
 - Tira metálica centrada na altura do substrato
 - Substrato SSUB

- SLIN stripline
- SCLIN striplines acopladas

- Parâmetros da microstrip line ou microlinha de transmissão
 - *h* espessura do substrato
 - ε_r constante dielétrica relativa do substrato
 - W largura da microfita
 - t espessura do metal

Constante dielétrica efetiva

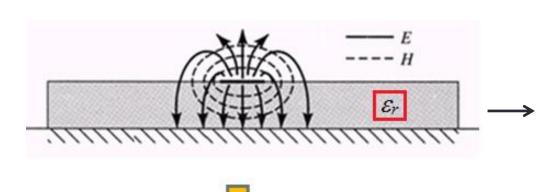

Propagação do campo EM


- Maior parte viaja pelo substrato

$$\varepsilon_r > 1$$
 e $v = \frac{c}{\sqrt{\varepsilon_r}}$

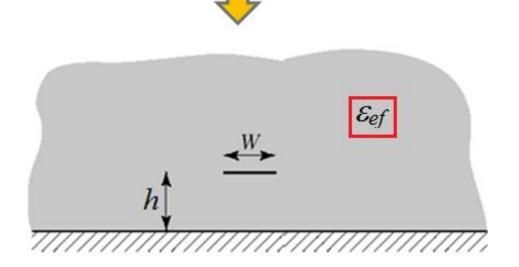
- Um a parte menor viaja pelo ar

$$\varepsilon_r = 1$$
 e $v = c$



Define-se uma constante dielétrica efetiva ε_{ef} da linha de microfita

$$1<\varepsilon_{ef}<\varepsilon_{r}$$
 sendo $\frac{\varepsilon_{r}+1}{2}<\varepsilon_{ef}<\varepsilon_{r}$


Constante dielétrica efetiva da linha de microfita

Microfita coberta com ar, sobre substrato com

$$\varepsilon = \varepsilon_r \cdot \varepsilon_0$$

Estrutura equivalente

Microfita envolvida por meio uniforme com

$$\varepsilon = \varepsilon_{ef} \cdot \varepsilon_0$$

Modelo aproximado da linha de microfita

- Equações que aproximam as curvas teóricas

$$\varepsilon_{ef} x W/h$$
 e $Z_0 x W/h$

Válidas para

W = largura da tira da linha de microfita

- Não consideram efeitos de dispersão
 - Variação dos parâmetros da linha de microfita com a frequência de operação

Modelo aproximado da linha de microfita

Constante dielétrica efetiva

$$\varepsilon_{ef} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2 \cdot \sqrt{1 + 12 \, h/W}}$$

- h espessura do substrato
- ϵ_r constante dielétrica relativa do substrato
- W largura da microfita

Velocidade de propagação da onda

$$v = \frac{c}{\sqrt{\varepsilon_{ef}}}$$

 $v = \frac{c}{\sqrt{\epsilon_{ef}}}$ c: velocidade da luz no espaço livre

Comprimento de onda

$$\lambda_g = \frac{\lambda_0}{\sqrt{\epsilon_{ef}}}$$
 $\lambda_o = c/f o$ comprimento de onda no espaço livre

Modelo aproximado da linha de microfita

Impedância característica da linha de microfita

Para $W/h \le 1$ e t/W << 1

$$Z_0 = \frac{60}{\sqrt{\varepsilon_{ef}}} \cdot \ln\left(\frac{8h}{W} + \frac{W}{4h}\right) \ (\Omega)$$

Para $W/h \ge 1$ e t/W << 1

h espessura do substrato

ε_r constante dielétrica relativa do substrato

W largura da microfita

t espessura do metal

$$Z_{0} = \frac{1}{\sqrt{\varepsilon_{ef}}} \cdot \frac{120\pi}{\frac{W}{h} + 1,393 + 0,667 \cdot ln\left(\frac{W}{h} + 1,444\right)} \quad (\Omega)$$

Perdas e atenuação

Atenuação devido a perdas no dielétrico

$$\alpha_{d} = \frac{k_{0}.\varepsilon_{r}.(\varepsilon_{ef}-1).tg\delta}{2.\sqrt{\varepsilon_{ef}}.(\varepsilon_{r}-1)} Np/m$$

$$tg\delta = \frac{\varepsilon''}{\varepsilon'}$$
 $\varepsilon = \varepsilon' - j. \varepsilon''$

tgδ: propriedade do substrato dielétrico

$$k_0 = \omega \sqrt{\mu_0 \cdot \varepsilon_0}$$

Perdas e atenuação

Atenuação devido a perdas nos condutores

$$\alpha_c = \frac{R_s}{Z_0.W} \quad Np/m$$

Sendo

$$R_s = \sqrt{\frac{\omega \cdot \mu_0}{2 \cdot \sigma}} \quad \Omega / m^2$$

 $oldsymbol{\sigma} o$ condutividade do meta

R_s é função da frequência devido ao efeito pelicular

- Efeito pelicular
 - Em bons condutores, em altas frequências
 - Campo concentra-se na superfície
- Amplitude de campo é atenuada exponencialmente

$$E = E_0 \cdot exp(-z/\delta_S)$$

δ_s - profundidade de penetração

$$\delta_{S} = \frac{1}{\sqrt{\pi . f . \mu . \sigma}}$$

- Campos E e H desprezíveis para $z \ge 5.\delta_{\rm S}$
 - \rightarrow usa-se espessura do metal $t \approx 5.\delta_{\rm S}$

Material	Condutividade (S/m)	Profundidade de penetração (µm) @ 10 GHz		
Alumínio*	3,813E+7		0,84	
Cobre*	5,813E+7		0,66	
Ouro*	4,098E+7		0,78	
Prata*	6,137E+7		0,64	

*
$$\mu = \mu_0 = 4\pi.10^{-7} \text{ Henry/m}$$

$$\delta_{S} = \frac{1}{\sqrt{\pi.f.\mu.\sigma}}$$

$$t \approx 5.\delta_{S}$$

$$t \approx 5 \mu m$$

Faixa de operação da linha de microfita

- De DC até f_{max}
- Operação da linha de microfita é limitada por:
 - Perdas
 - Dispersão variação com a frequência
 - Excitação de modos de propagação não-TEM.

$$f_{max} = \frac{c}{4h\sqrt{\varepsilon_r}}, \quad para W < 2h$$

Exercício usando as equações

- Dado um substrato com $\epsilon_{\rm r}$ =10 , h=0,5 mm e tg δ =0,002
- Metalizado com cobre, $\sigma = 5.8 \times 10^7 \text{ S/m}$
- Sobre o qual foi construída uma linha de microfita com largura W=0,5 mm
- Calcule para essa linha de microfita
 - A constante dielétrica efetiva
 - A impedância característica
 - O comprimento de onda na estrutura para um sinal de 1 GHz
 - A atenuação por metro devido a perdas condutivas
 - A atenuação por metro devido a perdas dielétricas

Simuladores de circuitos de micro-ondas

- Dados de entrada
 - Características do substrato dielétrico
 - ε_r permissividade relativa
 - h espessura
 - $tg\delta$ tangente de perdas
 - Características do metal que recobre o substrato
 - σ condutividade do metal
 - t espessura do metal
 - Tipo de linha de transmissão planar
 - Microstripline Stripline, etc..
 - Frequência de operação
 - f frequência

Simuladores de circuitos de micro-ondas

Dados de entrada

Parâmetros linha de transmissão

Z₀ – impedância característica

θ – comprimento elétrico

Síntese

 λ – comprimento de onda

Dados de saída

Dimensões físicas e parâmetros da linha de transmissão

W – largura da microfita

– comprimento da microfita

ε_{ef} – permissividade efetiva

atenuação em dB do trecho de comprimento L

Simuladores de circuitos de micro-ondas

Análise

Dados de entrada

Dimensões físicas da LT

W – largura da microfita

L – comprimento da microfita

Dados de saída

Parâmetros linha de transmissão

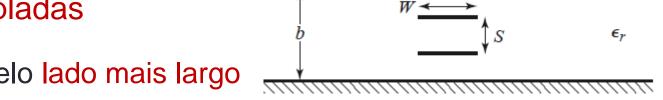
Z₀ – impedância característica

θ – comprimento elétrico

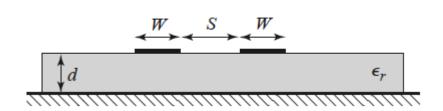
 $\varepsilon_{\rm ef}$ – permissividade efetiva

α – atenuação em dB/m

Simuladores de circuitos de micro-ondas

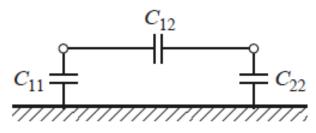

- Exemplo de cálculo de linha de microfita
 - ADS Advanced Design System
 - Programa LineCalc
- Dado um substrato com $\epsilon_r = 10$, h=0,5 mm e tg $\delta = 0.002$
- Metalizado com cobre, $\sigma = 5.8 \times 10^7$ S/m e espessura de 17 µm
- Calcule largura, comprimento, constante dielétrica relativa efetiva e atenuação da linha de microfita operando em 10 GHz
- Para Z_0 = 30, 50, 70 e 90 Ω e comprimento L: 1 comprimento de onda ou 360°

Exemplos de Linhas Acopladas


- Striplines acopladas
 - Planar
 - Acopladas pela borda

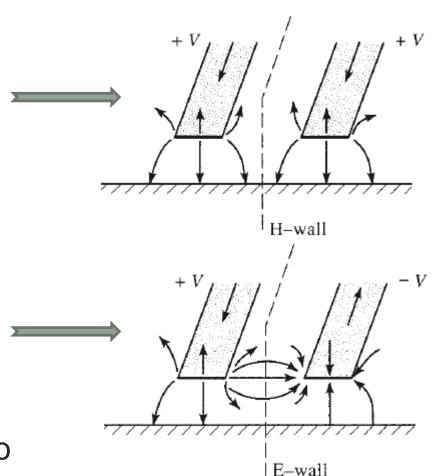
- Empilhadas
- Acopladas pelo lado mais largo

Microstrip lines acopladas

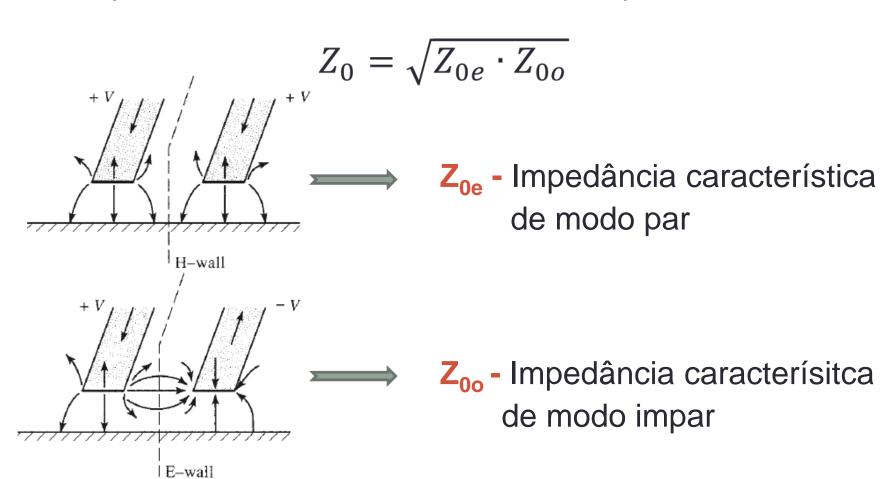

 ϵ_r

- Linhas acopladas simétricas
 - Modelo de 3 fios
 - Circuito equivalente capacitivo
- Assumindo propagação no modo TEM
 - Características elétricas determinadas pelas capacitâncias
 - C₁₁ e C₂₂ capacitâncias entre uma tira condutora e o plano de terra
 - C₁₂ capacitância entre as tiras condutoras

 C_{11} , C_{22} e C_{12} : capacitâncias por unidade de comprimento

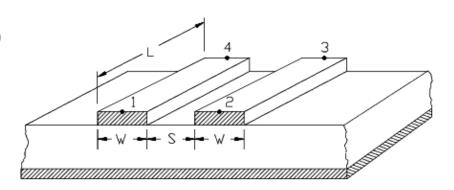


Modelo de três fios da LT acoplada



Circuito equivalente da LT acoplada

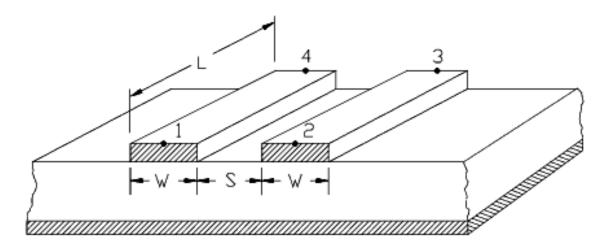
- Dois tipos de excitação
 - Modo par (even)
 - Correntes nas duas fitas
 - Mesma amplitude
 - Mesma direção
 - Modo impar (odd)
 - Correntes nas duas fitas
 - Mesma amplitude
 - Direções opostas
 - Outros modos de excitação
 - Combinação dos modos par e impar


Impedância característica da linha acoplada

Impedância característica Z₀

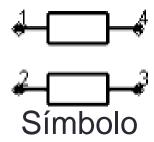
$$Z_0 = \sqrt{Z_{0e} \cdot Z_{0o}}$$

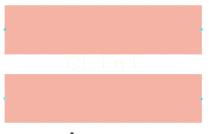
Acoplamento C


$$C = P_{acoplada} / P_{entrada}$$

$$C(dB) = 10.\log(P_{acoplada} / P_{entrada})$$

• $C \in Z_0 \rightarrow \text{funções de } S \in W$


W – largura das fitas metálicas

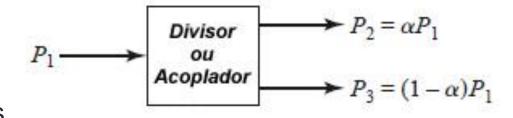

S — espaçamento entre as fitas metálicas

- Exemplo 4 ferramentas de CAD
 - Microstrip lines acopladas
 - CAD ⇒ ADS/Agilent
 - MCLIN ⇒ Microstrip Coupled Lines

Estrutura das linhas acopladas

layout

APLICAÇÕES DE LINHAS PLANARES


- Circuitos passivos
 - Filtros
 - Acopladores
 - Divisores e combinadores de potência, etc...
 - Exemplos: ADS Passive Circuits DG Microstrip Circuits
 - Circuitos ativos
- Amplificadores, osciladores
 - Circuitos de casamento de impedância
 - Ressoadores, etc...

Divisores e Combinadores de Potência

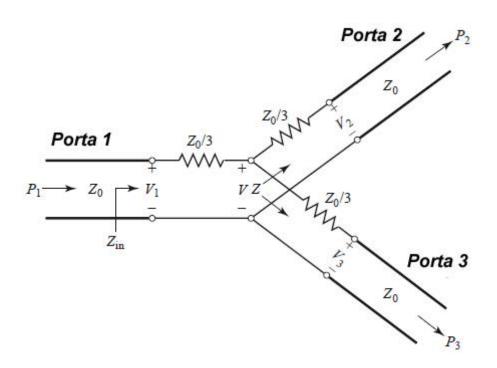
Função dos circuitos

Divisor de potência

- Divide a potência de entrada
- Entre 2 ou mais saídas
- Em partes iguais ou diferentes

Combinador de potência

- Combina a potência
- De 2 ou mais entradas
- Entrega na porta de saída


Divisores e Combinadores de Potência

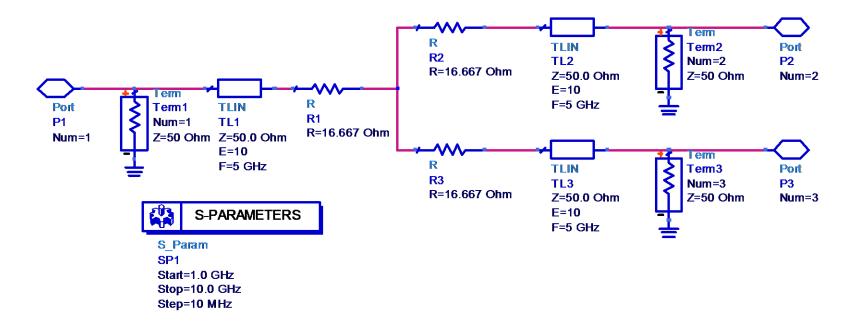
Tipos mais comuns

- Divisor resistivo (tem perdas resistivas)
- Divisor de Wilkinson
- Híbridos de 90°
- Híbridos de 180°
- Acoplador direcional de linhas acopladas
- Acoplador de Lange

Divisor Resistivo

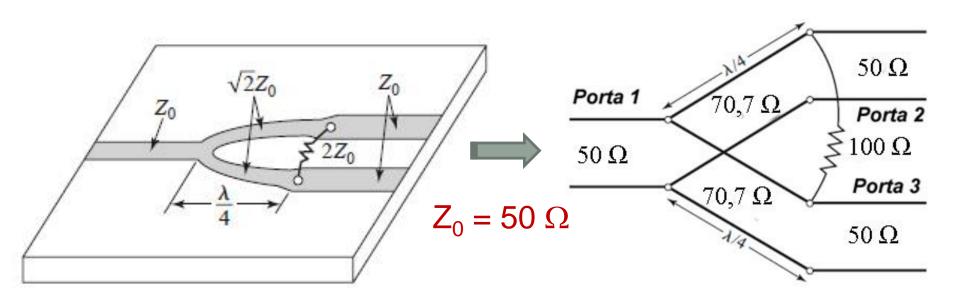
- Sinal de entrada → porta 1
- Divisão de potência igual entre portas 2 e 3

Vantagem

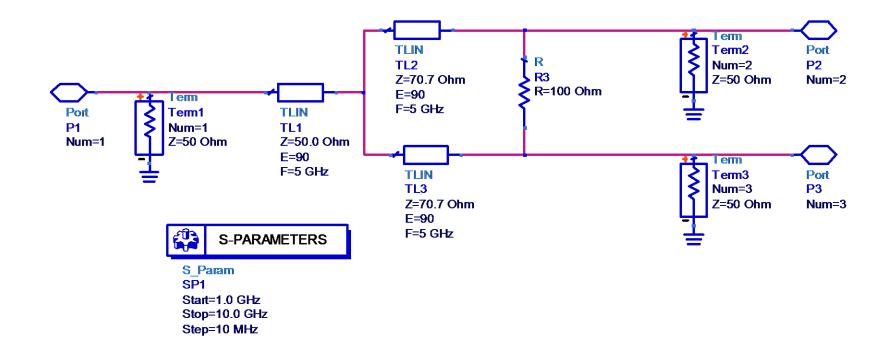

Banda larga

Desvantagem

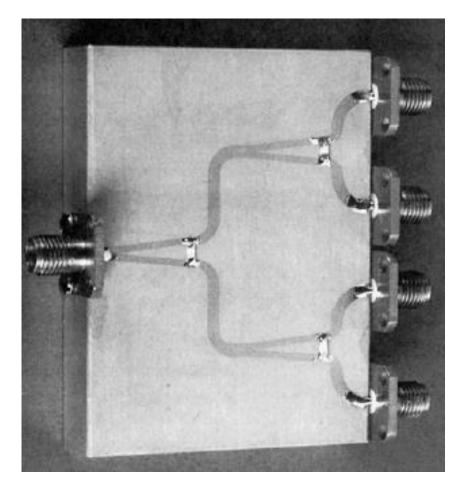
 Resistores consomem potência → perdas


Divisor Resistivo

- Simule o divisor resistivo com linhas de transmissão ideais
- Trace as curvas de S₂₁, S₃₁ e S₃₂ ideais
- Trace as curvas de S₁₁, S₂₂ e S₃₂ ideais
- Verifique que esse divisor opera em banda larga


Divisor de Wilkinson

- Sinal de entrada → porta 1
- Divisão igual de potência entre as portas 2 e 3


Divisor de Wilkinson

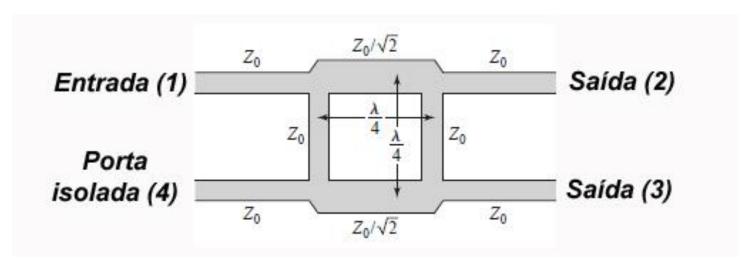
- Simule o Divisor de Wilkinson com linhas de transmissão ideais
- Trace as curvas de S₂₁, S₃₁ e S₃₂ ideais
- Trace as curvas de S₁₁, S₂₂ e S₃₂ ideais
- Verifique que esse divisor opera em banda estreita

Divisor de Wilkinson

- Divisor de potência com 4 saídas iguais
- Usando 3 Divisores de Wilkinson

Saída 1

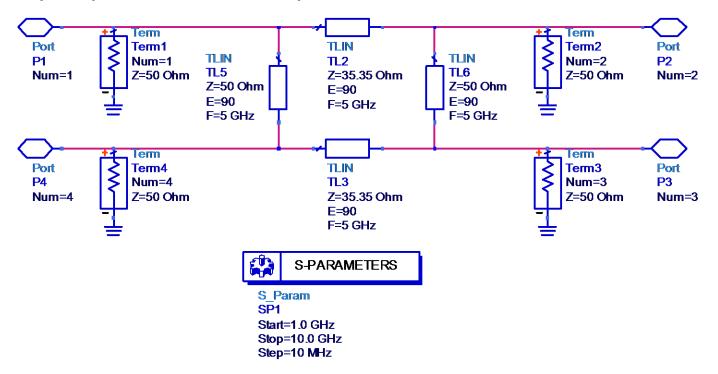
Saída 2


Saída 3

Saída 4

Entrada

Híbridos de Quadratura (90°)


- Híbrido de quadratura ou de 90°
 - Acopladores direcionais de 3 dB
 - Diferença de fase de 90° entre os sinais de saída dos braços acoplados

- Impedância característica das linhas em paralelo: $Z_0 = 50 \Omega$
- Impedância característica das linhas em série: $Z_0/e2 = 35,35 \Omega$
- Entrada → porta 1 Saídas → portas 2 e 3 Porta isolada → porta 4

Híbridos de Quadratura (90°)

- Estude as características do acoplador branch arm com LTs ideais
 - Trace as curvas de S₂₁, S₃₁ e S₄₁ em dB
 - Trace as curvas de fase de S₂₁ e S₃₁
 - Trace as curvas de S₁₁, S₂₂ e S₃₂ em dB
 - Verifique que esse divisor opera em banda estreita

Exemplo de Aplicação

- Circuito de casamento de impedância
 - Casar para 50Ω , a impedância
 - RL paralelo
 - R=100 Ω e L=1 nH
 - Em 2 GHz
 - Circuito de casamento para um dado substrato
 - Um trecho de microlinha de transmissão em aberto (open stub)
 - em paralelo com a impedância
 - para cancelar a reatância X₁ em 2 GHz
 - Um transformador de $\lambda/4$ e Z=SQRT(Z_0 .R)=77,46 Ω

Exemplo de Aplicação

- Linha de transmissão terminada pela impedância Z_L
 - Microlinha de transmissão, com
 - Impedância característica Z₀
 - Comprimento físico l
 - Constante de propagação β = 2π/λ
 - Terminada pela impedância Z_L
 - Impedância de entrada

$$Z_{in} = Z_0 \frac{Z_L + j.Z_0 tg(\beta.l)}{Z_0 + j.Z_L tg(\beta.l)}$$

Exemplo de Aplicação

Linha de transmissão terminada em circuito aberto

$$Z_{in} = -j.\frac{Z_0}{tg(\beta.l)}$$

- Comportamento capacitivo para β . $l < 90^{\circ}$
- Linha de transmissão terminada em curto-circuito

$$Z_{in} = +j.Z_0.tg(\beta.l)$$

• Comportamento indutivo para $\beta . l < 90^{\circ}$