Aula 2

Nucleophilic Substitution Reactions at the Saturated C Atom

Aula 2

Nucleophilic Substitution Reactions at the Saturated C Atom

Erick Leite Bastos, IQ-USP <u>elbastos@iq.usp.br</u> http://www.bastoslab.com

• Within a group of nucleophiles that attack at the electrophile with the same atom, the nucleophilicity decreases with *decreasing basicity of the nucleophile* (Figure

• This parallel between nucleophilicity and basicity can be reversed by steric effects. Less basic but sterically unhindered nucleophiles therefore have a higher nucleophilicity than strongly basic but sterically hindered nucleophiles (Figure

 $\begin{array}{cccc} R_{prim} \dot{O}^{\ominus} & > & R_{sec} \dot{O}^{\ominus} & > & R_{tert} \dot{O}^{\ominus} \\ Na^{\oplus} & Na^{\oplus} & Na^{\oplus} \end{array}$ $R_{prim}OH > R_{sec}OH > R_{tert}OH$

• *Nucleophilicity decreases with increasing electronegativity of the attacking atom.* This is true both in comparisons of atomic centers that belong to the same *period* of the periodic table of the elements

$$R_2 N^{\ominus} \gg RO^{\ominus} \gg F^{\ominus} \qquad RS^{\ominus} \gg Cl^{\ominus}$$

Et₃N \gg Et₂O

• and in comparisons of atomic centers from the same *group* of the periodic table:

$$\overrightarrow{RS}^{\ominus} > \overrightarrow{RO}^{\ominus}$$
 $:I^{\ominus} > :Br^{\ominus} > :Cl^{\ominus} \gg :F^{\ominus}$
 $\overrightarrow{RSH} > \overrightarrow{ROH}$

• The nucleophilicity of a given nucleophilic center is increased by attached heteroatoms that possess free electron pairs (α -effect):

 $HO - O^{\ominus} > H - O^{\ominus}$ $H_2N - NH_2 > H - NH_2$

The reason for this is the unavoidable overlap of the orbitals that accommodate the free electron pairs at the nucleophilic center and its neighboring atom.

Grupo de partida

Para a próxima aula

- O postulado de Hammond implica que o grupo de partida é uma espécie estabilizada, não uma espécie de alta energia. Explique.
- Depois, baseado no texto acima explique:
- $--[I^- > Br^- > CI^- > F^-]$
- $--F_3C-SO_3^- > Me-C_6H_4-SO_3^-$

Substituição Núcleofílica Bimolecular, S_N2

An S_N 2 reaction refers to an S_N reaction

$$Nu: + R - X \xrightarrow{k} Nu - R + X^{\ominus}$$

Estereoseletividade em reações $S_N 2$

Mecanismo "guarda-chuva"

Reaction coordinate $_{intermolecular}$

Reaction coordinate intramolecular

Efeito estérico

Efeito estérico: Tendências e regras

• The $S_N 2$ reactivity of an alkylating agent decreases with an increasing **number** of the alkyl substituents at the attacked C atom. In other words, α branching at the C atom of the alkylating agent reduces its $S_N 2$ reactivity. This reduces the reactivity so much that tertiary C atoms can no longer be attacked according to an $S_N 2$ mechanism at all:

$$Nu^{\ominus} + Me - X \quad Et - X \quad iPr - X \quad tert-Bu - X$$

$$k_{S_N2, rel} = 30 \quad 1 \quad 0.025 \quad tiny$$

Generally stated, for $S_N 2$ reactivity we have $k(Me-X) > k(R_{prim}-X) > k(R_{sec}-X); k(R_{tert}-X) \approx 0$ (unit: 1 mol⁻¹ s⁻¹).

 $Nu^{\ominus} + MeCH_2 - X$ EtCH₂ - X⁶ *i*PrCH₂ - X *tert*-BuCH₂ - X

Efeito estérico: Tendências e regras k_{SN2, rel} = 30 1 0.025 tiny

• The $S_N 2$ reactivity of an alkylating agent decreases with an increase in size of the alkyl substituents at the attacked C atom. In other words, β branching in the alkylating agent reduces its $S_N 2$ reactivity. This reduces the reactivity so much that a C atom with a tertiary C atom in the β position can no longer be attacked at all according to an $S_N 2$ mechanism:

 $Nu^{\ominus} + MeCH_2 - X \qquad EtCH_2 - X \qquad iPrCH_2 - X \qquad tert-BuCH_2 - X \\ k_{S_N2, rel} = 1 \qquad 0.4 \qquad 0.03 \qquad tiny$

Generally stated, for S_N2 reactivity we have $k(MeCH_2-X) > k(R_{prim}CH_2-X) > k(R_{sec}CH_2-X); k(R_{tert}CH_2-X) \approx 0$ (unit: 1 mol⁻¹ s⁻¹).

Efeitos eletrônicos na reatividade: Estabilização conjugativa

 $Nu^{\ominus} + MeCH_2 - X \quad vinylCH_2 - X \quad PhCH_2 - X$ $k_{S_N2, rel} = 1 \quad 40 \quad 120$

Because of the substituent effect just described, allyl and benzyl halides generally react with nucleophiles according to an $S_N 2$ mechanism. This occurs even though the $S_N 1$ reactivity of allyl and benzyl halides is *higher* than that of nonconjugated alkylating agents

Substituição Nucleofílica Unimolecular, S_NI

Para próxima aula: Quem é o melhor nucleófilo?

 $k_{\rm het}$

 Cl^{\ominus}

+ NEt₃

(1:1,large excess)

Cl

+

Experiment 1

Experiment 2

:NEt₃

+

⊕ NEt₃

Solvent-separated ion pair

50% S-Enantiomer + 50% R-Enantiomer, thus: 0% S-Enantiomer + 100% Racemic mixture

Table 2.1. Free Energy Values from Gas Phase Studies (Lines 1–3). Free Energies of Heterolysis in Water (Line 4) Calculated Therefrom According to Figure 2.15^{*}

		$R \xrightarrow{R} Br \xrightarrow{R^{\oplus}} F$	Me	Et	<i>i</i> Pr	<i>tert</i> -Bu	PhCH ₂	•
		$\frac{\Delta G_{\rm het, g}}{\rm kcal/mol}$	+214	+179	+157	+140	+141	
	gás	$\frac{\Delta G_{\text{hyd } (\mathbb{R}^{\oplus})}}{\text{kcal/mol}}$	-96	-78	-59	-54	-59	
		$\frac{\Delta G_{\rm hyd~(Br^{\Theta})}}{\rm kcal/mol}$	-72	-72	-72	-72	-72	
l ₂ O ·		$\frac{\Delta G_{\rm het, H_2O}}{\rm kcal/mol}$	+47	+30	+27	+14	+11	
		$\left(\text{cf.} \frac{\Delta H_{\text{hom, any medium}}}{\text{kcal/mol}} \right)$	(+71)	(+68)	(+69)	(+63)	(+51)	
		$ au_{1/2, ext{ het, } 298 ext{ K}}$	$\geq 10^{16} \mathrm{yr}$	$\geq 10^5 \mathrm{yr}$	≥ 220 yr	≥ 0.7 s	≥ 0.007 s	

*From these energies and using the Eyring equation (Equation 1.1), one can calculate minimum half-lives for the pertinent heterolyses in water (line 6). These are minimum values because the $\Delta G_{\text{het,H}_2\text{O}}$ values were used for ΔG^{\ddagger} in the Eyring equation, whereas actually $\Delta G^{\ddagger} > * \Delta G_{\text{het,H}_2\text{O}}$. $\Delta G_{\text{hyd}} =$ free energy of hydration, $\Delta G_{\text{het}} =$ free energy of heterolysis, and $\Delta H_{\text{hom}} =$ enthalpy of homolysis.

S_NI: Efeito da polaridade do solvente

Solventes

DMF = Dimethylformamide: $H - C - NMe_2$ NMP = *N*-Methylpyrrolidone: ODMSO = Dimethylsulfoxide: Me - S - Me ODMPU = *N*,*N'*-Dimethyl-*N*,*N'*-propylene urea:

HMPA = Hexamethyl phosphoric acid triamide:

Me

Efeitos de substituintes, VB Theory

Table 2.2. Stabilization of a Trivalent Carbenium Ion Center by Conjugating Substituents: Experimental Findings and Their Explanation by Means of Resonance Theory

Stabili-**VB** formulation zation of \oplus Η H_3C^\oplus H H_β, H^\oplus_β Η Η $H_3C - H_2C^{\oplus}$ H_β- H_{β} Η_β H_β Η Н $H_{\beta_{n}}$ i.e., 1 no-bond H_b Η Η resonance form H^{\oplus}_{β} H_βincreases per H_{β} H^{\oplus}_{β} Η_β Η Η H_{β} , H_{β} H_β $(H_3C)_2HC^{\oplus}$ 6 no-bond resonance forms H_β H_β Η H_b H_β H_β H_β 9 no-bond resonance forms $(H_3C)_3C^{\oplus}$ H_β-H΄ $-H_{\beta}$ H_{β} H_{β}

Table 2.3. Stabilization of Trivalent Carbenium Ion Centers by Methyl Substituents: ExperimentalFindings and Their Explanation by Means of Resonance Theory

Efeitos de substituintes, MO Theory

Efeitos de substituintes, MO Theory

SNI vs. SN2

 $S_N 1$ reactions are observed

- always in substitutions on R_{tert} —X, Ar_2HC —X, and Ar_3C —X;
- always in substitutions on substituted and unsubstituted benzyl and allyl triflates;
- in substitutions on R_{sec} —X when poor nucleophiles are used (e.g., in solvolyses);
- in substitutions on R_{sec}—X that are carried out in the presence of strong Lewis acids such as in the substitution by aromatics ("Friedel–Crafts alkylation;" Figure 5.21);
- almost never in substitutions on R_{prim} —X (exception: R_{prim} —N⁺=N).

 $S_N 2$ reactions take place

- almost always in substitutions in sterically unhindered benzyl and allyl positions (exception: benzyl and allyl triflates react according to $S_N 1$);
- always in substitutions in MeX and R_{prim}—X;
- in substitutions in R_{sec} —X, provided a reasonably good nucleophile is used;
- never in substitutions in substrates of the type R_{tert} —X or R_{tert} —C—X.

Participação do grupo vizinho

Because of this neighboring group participation, a cyclic and possibly strained (depending on the ring size) intermediate A is formed from the alkylating agent:

Participação do grupo vizinho

 n_{sp}^{3}

 n_{sp^2}

 π

 $\boldsymbol{\sigma}$

Exemplo

Aumento da velocidade com a participação do grupo vizinho

Estereoseletividade como efeito do grupo vizinho

Estereoseletividade devido à participação do grupo vizinho

Hydride nucleophiles

 $R_{prim/sec} - X + LiBEt_{3}H \longrightarrow R - H$ $+ LiAlH_{4} \longrightarrow R - H$

Organometallic compounds

 $R_{prim} - X + (R'_{prim})_{2}CuLi \longrightarrow R_{prim} - R'_{prim}$ $+ \text{ vinLi or vinMgX/cat. CuHal or vin_{2}CuLi \longrightarrow R_{prim} - \text{ vin}$ $+ \text{ ArLi or ArMgX/cat. CuHal or Ar_{2}CuLi \longrightarrow R_{prim} - \text{ Ar}$

Heteroatom-stabilized organolithium compounds

Enolates

Further C-nucleophiles

N-nucleophiles

S-nucleophiles

Hal-nucleophiles

P-nucleophiles (>> precursors for the Wittig or Korner–Wadsworth–Emmons reaction)

O-nucleophiles

