Dinamica Non Lineare di Strutture e Sistemi Meccanici

Prof. Carlos Eduardo Nigro Mazzilli

Universidade de São Paulo

Lezione 1

Historical overview on dynamics

- Dynamics based on classic mechanics, whose fundamental laws are credited to Newton (1646-1727), ‘standing on giant's shoulders"...
- Greeks: axiomatic reasoning disconnected from experimentation
- Forces were necessarily caused by contact; what about field forces?
- Aristotle (384BC-322BC): a force causes constant velocity?
- Terrestrial mechanics vs celestial mechanics?
- Ptolemy (90-168): geocentric system vs Aristarco (310BC-230BC) heliocentric system (three centuries before)
- ...Galileo (1564-1642): ‘e pur si muove’
- Romans?

Historical overview on dynamics

- Moslems: from VIII to XIV centuries (Alexandria, Iberic Peninsula)
- Barakat (1080-1165) denied Aristotle: force causes velocity to change... Newton's second law?
- Alhazen (965-1040): body moves perpetually unless force obliges it to stop or change direction... Newton's first law?
- Avempace (1095-1138): to an action corresponds a reaction... Newton's third law?
- Kepler, Copernicus and Galileo: celestial mechanics
- Galileo: terrestrial mechanics (displacement of a falling body proportional to the square of time)
- Newton: law of universal gravitation and much more...

Historical overview on dynamics

Newton's laws

First law (inertia): there are priviledged observers, called inertial observers, with respect to whom isolated material points - that is, those subjected to null resultant force - are at rest or in uniform rectilinear motion.

Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare

Historical overview on dynamics

Newton's laws

$$
\vec{F}_{\alpha}=m_{\alpha} \frac{d^{2} \vec{R}_{\alpha}}{d t^{2}}
$$

Second law (fundamental): the resultant force of a mass point is proportional to its acceleration defined with respect to an inertial observer. The proportionality constant is termed mass, which is positive and it is a property of the material point.

Lex II: Mutationem motus proportionalem esse vi motrici impressae, et eri secundum lineam rectam qua vis illa imprimitur

Historical overview on dynamics

Newton's laws

Third law (action and reaction): to every action of a material point upon another one corresponds a reaction of same intensity and direction, yet in oposite sense.

Lex III: Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi

Historical overview on dynamics

- Newton: differential and integral calculus
- Leibniz (1646-1716): independent development of differential calculus \& fundamentals of analytical dynamics
- D’Alembert (1717-1783): principle...
- Lagrange (1736-1813): Mécanique Analytique and variational principles
- Hamilton (1805-1865): principle...

Physical space: affine Euclidian space of dimension 3

- $\quad N$ material points m_{i}
- position of m_{i} given by cartesian coordinates: $x_{\mathrm{i}}^{1}, x_{\mathrm{i}}^{2}, x_{\mathrm{i}}^{3}$

Configuration space: affine Euclidian space of dimension $3 N$ (provided the $3 N$ coordinates of the N material points are independent)

- a "point" in this space caracterizes completely the configuration of the system of material points in a given time t (co-ordinates of material points obtained by "projections")
- If there are \underline{c} constraint equations relating these co-ordinates, it is possible to define another configuration space with dimension $n=3 N-c$, termed "number of degrees of freedom" of the system

Example: a material point moving along a parabolic curve

$\left.\begin{array}{l}x^{3}=0 \\ x^{2}=\beta\left(x^{1}\right)^{2}\end{array}\right\} \quad \begin{aligned} & c=2 \text { constraint } \\ & \text { equations }\end{aligned}$
Original configuration space of $\operatorname{dim} 3 N=3$

Configuration space of $\operatorname{dim} n=3 N-c=1$

- Generalised coordinates $Q_{1}(t), Q_{2}(t), \ldots, Q_{n}(t), n=$ number of degrees of freedom, are scalars conveniently chosen, so that they uniquely define the original 3 N physical coordinates of the system

$$
\begin{aligned}
& x_{1}^{1}=x_{1}^{1}\left(Q_{1}, Q_{2}, \ldots, Q_{n}, t\right) \\
& x_{1}^{2}= x_{1}^{2}\left(Q_{1}, Q_{2}, \ldots, Q_{n}, t\right) \\
& \vdots \\
& x_{N}^{3}=x_{N}^{3}\left(Q_{1}, Q_{2}, \ldots, Q_{n}, t\right)
\end{aligned}
$$

3 N holonomic constraint equations

- the functions $x_{a}^{i}\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}, t\right)$ are finite of class C^{1}
- Jacobian of the transformation is non-null
- Particular case of holonomic constraint: scleronomic constraint

Example: a material point moving along a parabolic curve

$$
\begin{aligned}
& x^{1}=Q \\
& x^{2}=\beta\left(x^{1}\right)^{2}=\beta Q^{2} \\
& x^{3}=0
\end{aligned}
$$

\exists a transformation "matrix" (of order $n=1$) with det $T \neq 0$

Let it be $\quad T=\left[\frac{\partial x^{1}}{\partial Q}\right]$
$\mathrm{J}=\operatorname{det} T=1$

Virtual displacements in holonomic constraints

real infinitesimal displacement

$\delta \vec{R}_{\alpha} \Longleftrightarrow \delta x_{\alpha}^{i} \Longleftrightarrow \delta Q_{j} \quad$ virtual displacement

- Virtual displacements are kinematically admissible at a fixed time \underline{t}, that is, they satisfy the constraint equations at that time \underline{t}
- The class of real displacements doesn't necessarily coincide with the class of real displacements for holonomic constraints
- For scleronomic constraints, however, since the constraint equations are independent of \underline{t}, the class of real displacements coincides with the class of virtual displacements, that is, the real displacements are a particular case of virtual displacements
- Ideal (constraint) reactions are orthogonal to the virtual displacements at the points they are applied. Hence, the virtual work of ideal reactions is null.

D'Alembert's principle

Newton's $2^{\text {nd }}$ law

$$
\vec{F}_{\alpha}=m_{a} \frac{d^{2} \vec{R}_{\alpha}}{d t^{2}} \quad \alpha=1 \mathrm{a} N
$$

$$
\vec{F}_{a}-m_{a} \frac{d^{2} \vec{R}_{a}}{d t^{2}}=\overrightarrow{0} \quad \alpha=1 \text { a } N
$$

active non-ideal constraint

ideal constraint

$$
\vec{F}_{a}^{I}=-m_{a} \frac{d^{2} \vec{R}_{a}}{d t^{2}}=\text { inertia force }
$$

the sum of the resultant force and the inertial force is the null vector
"closing" of the force polygon, as in statics

$$
\sum_{a=1}^{N}\left(\vec{F}_{a}^{a}+\vec{F}_{a}^{v i}+\vec{F}_{a}^{v n}+\vec{F}_{a}^{l}\right) \cdot \delta \vec{R}_{a}=\sum_{a=1}^{N} \overrightarrow{0} \cdot \delta \vec{R}_{a}=0
$$

$$
\sum_{a=1}^{N}\left(\vec{F}_{a}^{a}+\vec{F}_{a}^{v n}+\vec{F}_{a}^{\prime}\right) \cdot \delta \vec{R}_{a}=0
$$

Generalised D'Alembert's principle

- Remark 1 Effective force $\quad \vec{F}_{a}{ }^{e}=\vec{F}_{a}{ }^{a}+\vec{F}_{a}{ }^{0 n}$
- Remark 2 System with ideal constraints:

$$
\sum_{\alpha=1}^{N}\left(\vec{F}_{a}^{a}+\vec{F}_{\alpha}^{I}\right) \cdot \delta \vec{R}_{\alpha}=0
$$

(it is not necessary to know a priori the reactions to write down the equations of equilibrium/motion)

- Remark 3 Principle of virtual displacements in statics is a particular case

$$
\sum_{\alpha=1}^{N} \vec{F}_{\alpha}^{a} \cdot \delta \vec{R}_{\alpha}=0 \Leftrightarrow \text { equilibrium }
$$

Hamilton's principle

Newton's $2^{\text {nd }}$ law

$$
\int_{1}^{t_{2}}\left(\delta T-\delta V+\delta W^{n c}\right) d t=0
$$

\square
$\delta I=$ virtual rariation of kinetic energ y
$\delta V=$ vitional variation of potential energ!
$\delta W^{n c}=$ virtualwork of non-conservative forces

$$
T=\text { kinetic energy }=\frac{1}{2} \sum_{\alpha=1}^{N} m_{\alpha}\left(\frac{d \vec{R}_{\alpha}}{d t} \cdot \frac{d \vec{R}_{\alpha}}{d t}\right)
$$

$$
\delta T=\sum_{a=1}^{N} m_{a}\left(\dot{\vec{R}}_{a} \cdot \delta \dot{\vec{R}}_{a}\right) \quad \text { notation } \quad \dot{x}=\frac{d}{d t}(x)
$$

$$
\delta V=-\sum_{a=1}^{N} \vec{F}_{a}^{c} \cdot \delta \vec{R}_{a}=- \text { virtual work of conservative forces }
$$

$$
\delta W^{n c}=\sum_{a=1}^{N} \vec{F}_{a}^{n c} \cdot \delta \vec{R}_{a}=\text { virtual work of non-conservative forces }
$$

Lagrange's equation
Hamilton's principle
\Leftrightarrow Lagrange's equation

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}_{i}}\right)-\frac{\partial T}{\partial Q_{i}}=-\frac{\partial V}{\partial Q_{i}}+N_{i}
$$

$$
T=T\left(Q_{1}, Q_{2}, \ldots, Q_{n}, \dot{Q}_{1}, \dot{Q}_{2}, \ldots, \dot{Q}_{n}, t\right) \quad \text { kinetic energy }
$$

$$
V=V\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}, t\right) \quad \text { potential energy }
$$

$$
N_{i}=\text { generalized non-conservative force }=\sum_{a=1}^{N} \vec{F}_{a}^{n c} \cdot \frac{\partial \vec{R}_{a}}{\partial Q_{i}}
$$

- Remark

$$
\sum_{i=1}^{n} N{ }_{i} \delta Q_{i}=\sum_{a=1}^{N} \vec{F}_{a}^{n c} \cdot \delta \vec{R}_{a}=\delta W^{n c}
$$

virtual work of the nonconservative forces

Formulation of equations of motion
Example 1: One-degree-of-freedom linear oscillator

Newton's $2^{\text {nd }}$ law:
$p(t)-r l-c l=n l^{i}$

D'Alembert's principle:
$p(t)-k l-c \dot{l}-m \ddot{l}=0$
$m 0^{2}+c 0^{2}+i \underline{l}=p(t)$

Generalised D'Alembert's principle:
$[p(t)-k l-c!-m!\delta \ell=0 \forall \delta \ell$

Hamilton's principle:

$$
\int_{L_{1}}^{2}\left(\delta T-\delta V+\delta W^{n c}\right) d t=0
$$

$$
\begin{array}{ll}
T=\frac{1}{2} m \dot{Q}^{2} \\
V=\frac{1}{2} k Q^{2}
\end{array} \quad \begin{aligned}
& \quad \\
&
\end{aligned} \quad \begin{aligned}
& \delta T=m Q \dot{Q}
\end{aligned}
$$

$$
\delta W^{n c}=N \delta Q=(p(t)-c \dot{Q}) \delta Q
$$

Substituting...

$$
\int_{t_{1}}^{t_{2}} m \dot{Q} \delta \dot{Q} d t+\int_{t_{1}}^{t_{2}}[-k Q+p(t)-c \dot{Q}] \delta Q d t=0
$$

integrating by parts
$\delta Q\left(t_{1}\right)=\delta Q\left(t_{2}\right)=0$

$$
\left.m \dot{Q} \delta Q\right|_{t_{1}} ^{t_{2}}-\int_{t_{1}}^{t_{2}}[m \ddot{Q}+c \dot{Q}+k Q-p(t)] \delta Q d t=0
$$

$\int_{1}^{t_{2}}[m \ddot{Q}+c \dot{Q}+k Q-p(t)] \delta Q d t=0 \quad \forall \delta Q$

$$
m \ddot{Q}+c \dot{Q}+k Q=p(t)
$$

Lagrange's equation:

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}}\right)-\frac{\partial T}{\partial Q}=-\frac{\partial V}{\partial Q}+N
$$

$$
\delta W^{n c}=N \delta Q=(p(t)-c \dot{Q}) \delta Q
$$

$$
\begin{aligned}
& T=\frac{1}{2} m \dot{Q}^{2} \longleftrightarrow \begin{array}{l}
\frac{\partial T}{\partial \dot{Q}}=m \dot{Q} ; \frac{\partial T}{\partial Q}=0 \\
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}}\right)=m \ddot{Q} \\
V=\frac{1}{2} k Q^{2} \\
(t)-c \dot{Q} \mid \delta Q \\
\frac{\partial V}{\partial Q}=k Q
\end{array} \\
& \\
& N=p(t)-c \dot{Q}
\end{aligned}
$$

Substituting...

$$
m 0=-k 0+p(t)-c 0
$$

$m \ddot{l}+c \dot{l}+k \underline{l}=p(t)$

Example 2: sistem of rigid rods

$A B$ and $B C$ rigid rods
$B C$ massless rod

Linear dynamics: horizontal displacements of B and C are negligible for small Q

$$
T=\frac{1}{2} m_{2}\left(\frac{2}{3} \dot{Q}\right)^{2}+\int_{0}^{4 a} \frac{1}{2} \bar{m}\left(\frac{x}{4 a} \dot{Q}\right)^{2} d x=\frac{1}{2} m^{*} \dot{Q}^{2}
$$

$$
\text { with } m^{*}=\frac{4}{9} m_{2}+\frac{4}{3} \bar{m} a
$$

$$
V=\frac{1}{2} k_{1}\left(\frac{3}{4} Q\right)^{2}+\frac{1}{2} k_{2}\left(\frac{1}{3} Q\right)^{2}+\int_{0}^{4 a} \bar{m} g\left(\frac{x}{4 a} Q\right) d x+m_{2} g\left(\frac{2}{3} Q\right)
$$

】

$$
V=\frac{1}{2} k^{*} Q^{2}-p_{0}^{*} Q
$$

$$
\text { with } \quad k^{*}=\frac{9}{16} k_{1}+\frac{1}{9} k_{2}
$$

$$
\text { and } \quad p_{0}^{*}=-\left(2 \bar{m} a+\frac{2}{3} m_{2}\right) g
$$

$$
\delta W^{n c}=-c_{1} \frac{\dot{Q}}{4} \frac{\delta Q}{4}-c_{2} \dot{Q} \delta Q+\int_{0}^{4 a} \bar{p} \frac{x}{a} \zeta(t)\left(\frac{x}{4 a} \delta Q\right) d x=N \delta Q
$$

1

$$
N=-c^{*} \dot{Q}+p^{*}(t)
$$

with $c^{*}=\frac{c_{1}}{16}+c_{2}$

$$
\text { and } p^{*}(t)=\frac{16}{3} \bar{p} a \zeta(t)
$$

Lagrange's equation:

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}}\right)-\frac{\partial T}{\partial Q}=-\frac{\partial V}{\partial Q}+N
$$

1

$$
m^{2} \dot{l}+c^{\dot{b}}+k^{3} \underline{l}=p_{0}^{*}+p^{*}(t)
$$

Example 3: Simple pendulum

Lagrange's equation:

$$
T=\frac{1}{2} m(L \dot{Q})^{2}
$$

$$
V=+m g L(1-\cos Q)
$$

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}}\right)-\frac{\partial T}{\partial Q}=-\frac{\partial V}{\partial Q}+N
$$

$$
\text { or } \quad \ddot{Q}+\frac{g}{L} \operatorname{sen} Q=0 \quad \text { (non-linear analysis) }
$$

$$
\ddot{Q}+\frac{g}{L} Q=0 \quad \text { (linear analysis) }
$$

Example 4: Simple pendulum subjected to support excitation

$$
\vec{R}=L \operatorname{sen} Q \dot{i}+(f-L \cos Q) \dot{j}
$$

$$
\dot{R}=L \dot{Q} \cos Q \dot{i}+(\dot{f}+L \dot{Q} \operatorname{sen} Q) \vec{j}
$$

$$
T=\frac{1}{2} m\left(L^{2} \dot{Q}^{2} \cos ^{2} Q+L^{2} \dot{Q}^{2} \operatorname{sen}^{2} Q+2 L \dot{f} \dot{Q} \operatorname{sen} Q+\dot{f}^{2}\right)
$$

$V=m q[f+L(1-\cos \ell)]$

$$
T=\frac{1}{2} m L^{2} \dot{Q}^{2}+\frac{1}{2} m \dot{f}^{2}+m \dot{\mathcal{f}} \dot{Q} \dot{\operatorname{sen} Q}
$$

Lagrange's equation:

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}}\right)-\frac{\partial T}{\partial Q}=-\frac{\partial V}{\partial Q}+\mathbb{N}
$$

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}}\right)=m L^{2} \ddot{Q}+m L \ddot{f} \sin Q+m L \dot{f} \dot{Q} \cos Q
$$

$$
\frac{\partial T}{\partial Q}=m L \dot{f} \dot{Q} \cos Q
$$

$$
\frac{\partial V}{\partial Q}=m g L \sin Q
$$

$$
m L^{2} \ddot{Q}+m L \ddot{f} \sin Q+m L \dot{f} \dot{Q} \cos Q-m L \dot{f} \dot{Q} \cos Q=-m g L \sin Q
$$

$$
\text { out } \quad \ddot{Q}+\frac{1}{L}(g+\ddot{f}) \sin Q=0 \quad \text { (non-linear analysis) }
$$

$$
\ddot{Q}+\frac{1}{L}(g+\ddot{f}) Q=0 \quad \text { (linear analysis) }
$$

Example 5: Rigid rod with non-linear spring and geometric imperfection, subjected to static and dynamic loading

foometric imperfection : <<<l

Non-linear "constitutive" law
$M(Q)=K(Q-\varepsilon)\left[1-(Q-\varepsilon)^{2}\right]$

$$
T=\frac{1}{2} m L^{2} \dot{Q}^{2}
$$

$$
V=\int_{0}^{Q-\varepsilon} K \theta\left[1-\theta^{2}\right] d \theta-m g L(\cos \varepsilon-\cos Q)=K\left[\frac{(Q-\varepsilon)^{2}}{2}-\frac{(Q-\varepsilon)^{4}}{4}\right]-m g L(\cos \varepsilon-\cos Q)
$$

$$
\delta W^{n c}=N \delta Q=P(t) L \operatorname{sen} \ell \delta \ell \quad \longrightarrow \quad N=P(t) L \operatorname{sen} \ell
$$

Lagrange's equation:

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}}\right)-\frac{\partial T}{\partial Q}=-\frac{\partial V}{\partial Q}+N
$$

$$
m L^{2} \ddot{\ddot{Q}}+K(Q-\varepsilon)\left[1-(Q-\varepsilon)^{2}\right]=[m g+P(t)] L \sin Q
$$

