

SEM0317 - Aula 4 Planejamento de Trajetórias em Manipuladores Robóticos

Prof. Assoc. Marcelo Becker

USP - EESC - SEM

LabRoM

Sumário da Aula

- Programação Explícita
 - Espaço das Juntas
 - Espaço Cartesiano
 - Observações
- Programação Baseada em Modelos
- Exercícios Recomendados
- Bibliografia Recomendada

- Como obter a trajetória que descreve o movimento desejado para o manipulador robótico?
 - Cinemática e Dinâmica conhecidas...
 - Técnicas:
 - 1. Programação Explícita: usuário fornece uma trajetória pré-definida que o manipulador deve seguir
 - Posições, Velocidades e Acelerações desejadas;
 - Presença de Obstáculos, etc.

- Como obter a trajetória que descreve o movimento desejado para o manipulador robótico?
 - Cinemática e Dinâmica conhecidas...
 - Técnicas:
 - 2. Programação Baseada em Modelos: usuário especifica modelos geométricos do manipulador e obstáculos e descreve a tarefa a ser executada através desses modelos
 - Condições de contorno para obter a trajetória desejada

- Como obter a trajetória que descreve o movimento desejado para o manipulador robótico?
 - Cinemática e Dinâmica conhecidas...
 - Técnicas:
 - 3. Programação Baseada em Tarefas: usuário especifica comandos para o manipulador: "pegar parafuso A e colocá-lo no furo B" (task-level controller)
 - Cuidado com singularidades...

Sumário da Aula

Programação Explícita

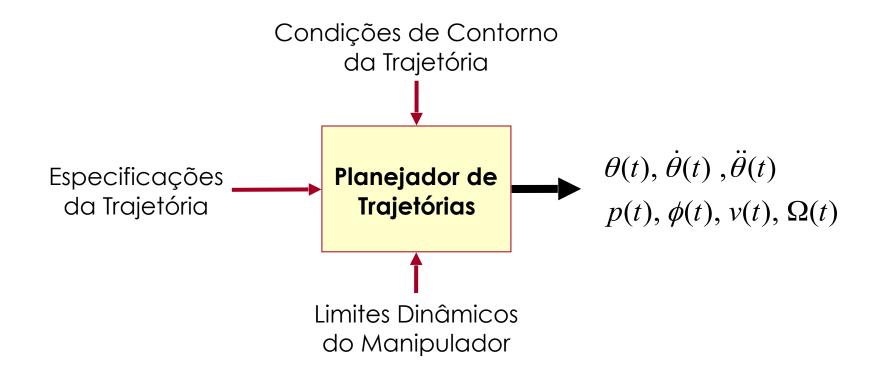
- Espaço das Juntas
- Espaço Cartesiano
- Observações
- Programação Baseada em Modelos
- Exercícios Recomendados
- Bibliografia Recomendada

- Como obter a trajetória que descreve o movimento desejado para o manipulador robótico?
 - Cinemática e Dinâmica conhecidas...
 - Trajetória:
 - Formas de representação
 - Tempo real: 60 ~ 2000 Hz
 - Trajetória pré-definida:
 - Posições, Velocidades e Acelerações desejadas;
 - Presença de Obstáculos
 - Interface com usuário

 Modos de controle para manipuladores robóticos

		Presença de Obstáculos	
		SIM	NÃO
Trajetórias Definidas	SIM	Planejador de trajetórias off-line livre de colisões e acompanhamento on-line da trajetória	Planejador de trajetórias off-line e acompanhamento on-line da trajetória
	NÃO	Controlador de posição com detecção e desvio de obstáculos on-line	Controlador de Posição

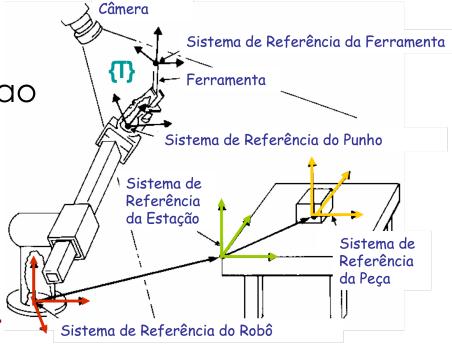
 Modos de controle para manipuladores robóticos



 Movimento desejado para o manipulador robótico?

 Movimento do sistema de coordenadas da ferramenta {T} relativo ao da estação {S}

Movimento
 desacoplado das n
 juntas do manipulador,
 etc.

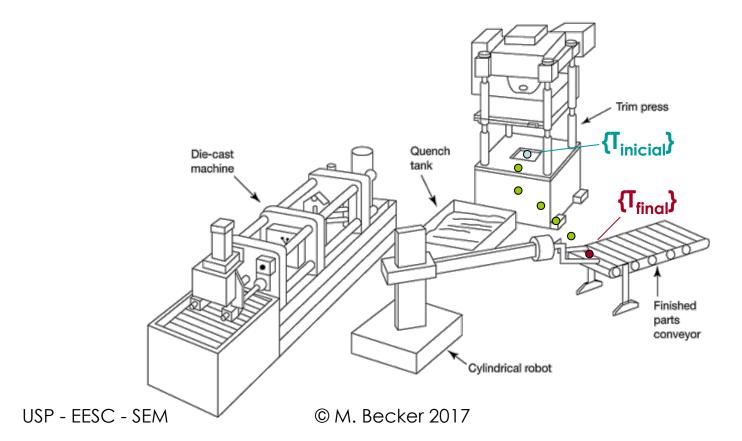


- Movimento desejado para o manipulador robótico?
 - Movimento desacoplado:
 - Independe do manipulador, ferramentas, peças a serem manuseadas, etc.
 - Problema básico:
 - $\{T_{inicial}\} \rightarrow \{T_{final}\}$
 - Mudança de posição e orientação da ferramenta com relação à estação (S)

11

- Movimento desejado para o manipulador robótico?
 - No caso de trajetórias mais complexas:
 - Seqüência de posições e orientações desejados (intermediários às posições inicial {T_{inicial}} e final da ferramenta {T_{final}})
 - Cada "ponto" intermediário: {T_{intermediário}}i
 - Especifica-se atributos espaciais e temporais
 - * Movimentos "suaves" (funções contínuas cujas derivadas também são contínuas 1^{as} e às vezes 2^{as})
 - * Evitar movimentos com variações bruscas de aceleração (**Jerk**) pois geram altas vibrações e atritos...

 Movimento desejado para o manipulador robótico?

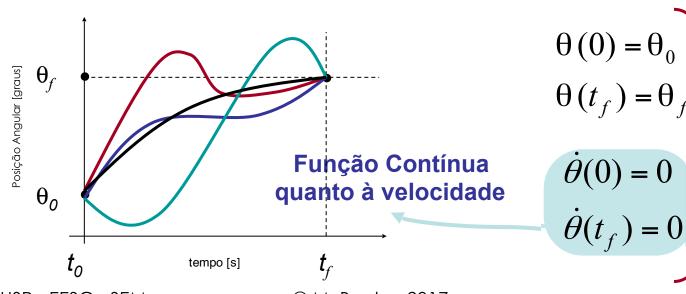


Sumário da Aula

- Espaço das Juntas
- Espaço Cartesiano
- Observações
- Programação Baseada em Modelos
- Exercícios Recomendados
- Bibliografia Recomendada

- Movimento desejado para o manipulador robótico é descrito em função das variáveis de junta
 - Não causa problemas de singularidade
 - Não é feita correspondência entre as variáveis de junta e o espaço cartesiano
 - Cada "ponto" é descrito como uma posição e orientação de {T} em relação a {S}
 - Converte-se os "pontos" para variáveis de junta através da cinemática inversa
 - Obtém-se uma função "suave" para cada uma das n juntas do manipulador

- Polinômios Cúbicos
 - Tem-se:
 - O "ponto" inicial (t_0, θ_0) e o final (t_f, θ_f)
 - Deseja-se:
 - Uma função "suave" para $\theta(t)$



Polinômio do 3º GRAU

- Polinômios Cúbicos
 - 4 coeficientes...

$$\theta(t) = a_0 + a_1 \cdot t + a_2 \cdot t^2 + a_3 \cdot t^3$$

Assim, para velocidade e aceleração:

$$\dot{\theta}(t) = a_1 + 2a_2.t + 3a_3.t^2$$

$$\theta(t) = 2a_2 + 6a_3.t$$

– Substituindo as condições para t = 0 e $t = t_f$...

- Polinômios Cúbicos
 - Obtém-se para as equações de posição e velocidade:

$$\theta_0 = a_0$$

$$\theta_f = a_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3$$

$$0 = a_1$$

$$0 = a_1 + 2a_2 t_f + 3a_3 t_f^2$$

- Polinômios Cúbicos
 - Obtém-se os 4 coeficientes...

$$a_0 = \theta_0$$

$$a_1 = 0$$

$$a_2 = \frac{3}{t_f^2} \cdot (\theta_f - \theta_0)$$

$$a_3 = -\frac{2}{t_f^3} \cdot (\theta_f - \theta_0)$$

- Polinômios Cúbicos (MatLab)
 - Para as condições: Tem-se:

$$\theta_0 = 15^{\circ}$$

$$\theta_f = 75^{\circ}$$

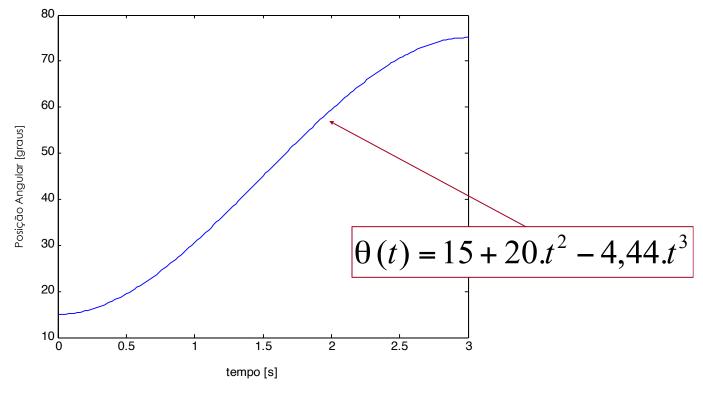
$$\Delta t = 3s$$

$$\theta(t) = 15 + 20.t^2 - 4.44.t^3$$

$$\dot{\theta}(t) = 40.t - 13,33.t^2$$

$$\ddot{\theta}(t) = 40 - 26,66.t$$

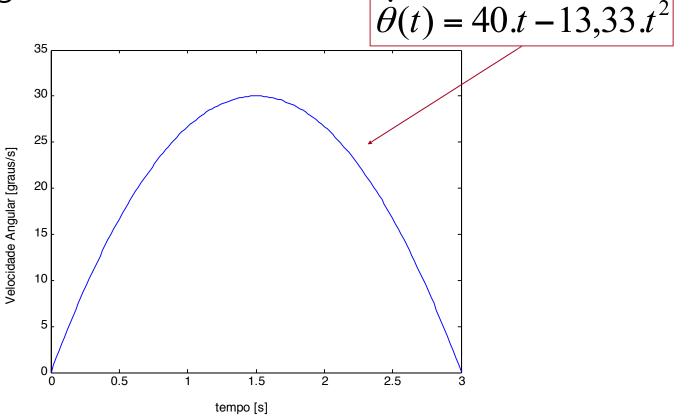
- Polinômios Cúbicos
 - Nos gráficos:



USP - EESC - SEM

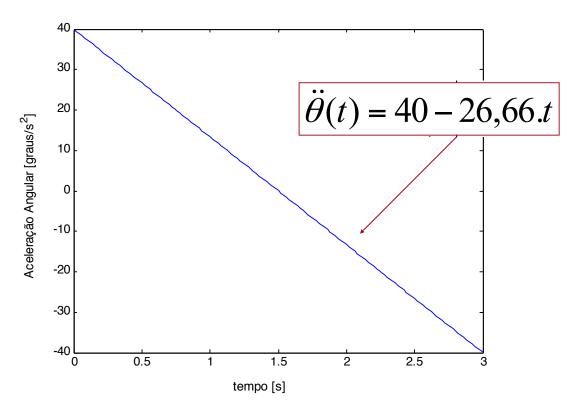
Polinômios Cúbicos

- Nos gráficos:



USP - EESC - SEM

- Polinômios Cúbicos
 - Nos gráficos:



USP - EESC - SEM

- Polinômios Cúbicos
 - Tem-se:
 - O "ponto" inicial (t_0, θ_0) e o final (t_f, θ_f)
 - Os "pontos" intermediários
 - Deseja-se:
 - Uma função "suave" para $\theta(t)$ SEM PARAR em cada "ponto" intermediário...
 - Procedimento:
 - Converter os pontos inicial, final e intermediário para as variáveis de junta através da cinemática inversa
 - Obter as cúbicas que conectam os pontos.

- Polinômios Cúbicos
 - Agora as condições de contorno não são nulas...

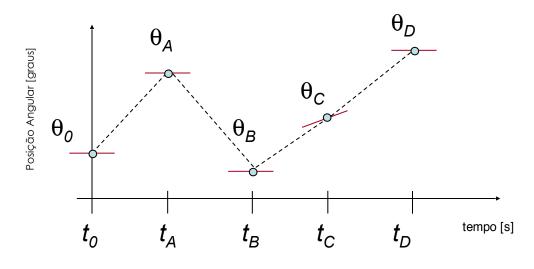
- Polinômios Cúbicos
 - Obtém-se os 4 coeficientes...

$$a_{0} = \theta_{0} \qquad a_{2} = \frac{3}{t_{f}^{2}} \cdot (\theta_{f} - \theta_{0}) - \frac{2}{t_{f}} \dot{\theta}_{0} - \frac{1}{t_{f}} \dot{\theta}_{f}$$

$$a_{1} = \dot{\theta}_{0} \qquad a_{3} = -\frac{2}{t_{f}^{3}} \cdot (\theta_{f} - \theta_{0}) + \frac{1}{t_{f}^{2}} \cdot (\dot{\theta}_{f} + \dot{\theta}_{0})$$

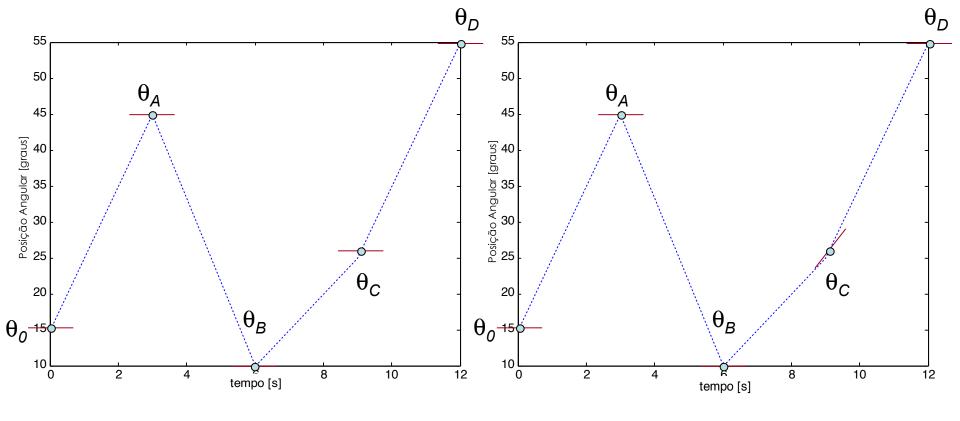
- Polinômios Cúbicos
 - Tendo as velocidades das juntas desejadas para cada "ponto", aplica-se as equações anteriores para cada trecho.
 - Especificação das velocidades:
 - Via usuário: fornece para cada posição a velocidade linear e angular no espaço cartesiano
 - 2. <u>Via Sistema</u>: velocidades escolhidas automaticamente através de um processo heurístico
 - Via Sistema: velocidades escolhidas automaticamente para manter uma aceleraçe contínua

- Polinômios Cúbicos
 - Heurística:
 - Se ocorre mudança de sinal na inclinação na linha tracejada → velocidade nula...
 - Senão, a velocidade é obtida pela média das inclinações

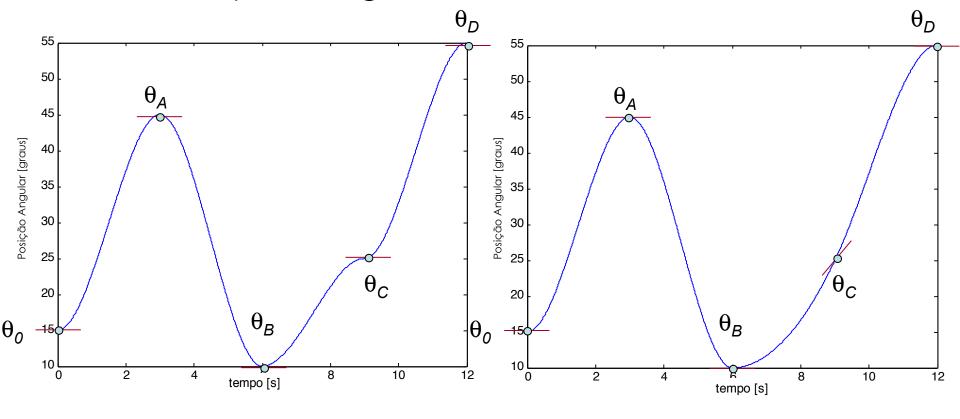


USP - EESC - SEM

- Polinômios Cúbicos
 - Exemplo "Pontos" desejados (MatLab)

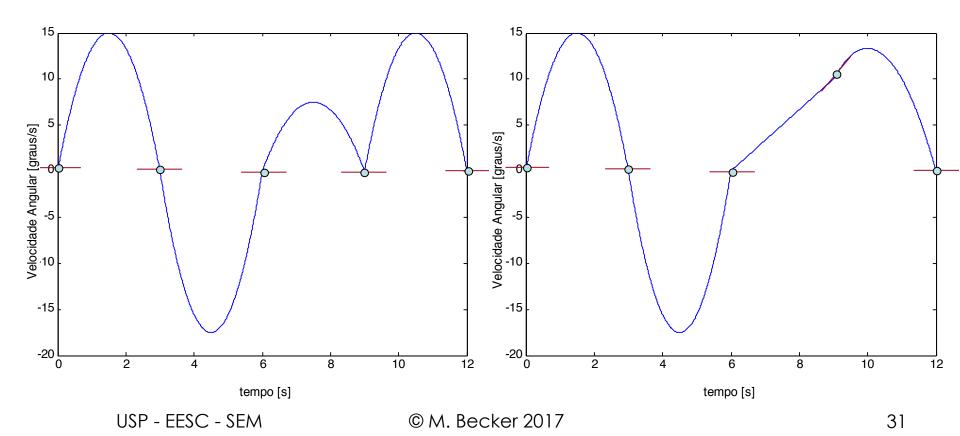


- Polinômios Cúbicos
 - Exemplo Ângulos da Junta



USP - EESC - SEM

- Polinômios Cúbicos
 - Exemplo Velocidade



- Polinômios de "Ordem mais Elevada"
 - Empregados quando se deseja definir posição, velocidade e aceleração no início e o final do segmento da trajetória
 - Polinômios de 5^a ordem:
 - 6 coeficientes...

$$\theta(t) = a_0 + a_1 \cdot t + a_2 \cdot t^2 + a_3 \cdot t^3 + a_4 \cdot t^4 + a_5 \cdot t^5$$

$$\dot{\theta}(t) = a_1 + 2a_2 \cdot t + 3a_3 \cdot t^2 + 4a_4 \cdot t^3 + 5a_5 \cdot t^4$$

$$\ddot{\theta}(t) = 2a_2 + 6a_3 \cdot t + 12a_4 \cdot t^2 + 20a_5 \cdot t^3$$

- Polinômios de 5^a Ordem
 - Obtém-se para as equações de posição, velocidade e aceleração:

$$\begin{aligned} \theta_0 &= a_0 & \theta_f &= a_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3 + a_4 t_f^4 + a_5 t_f^5 \\ \dot{\theta}_0 &= a_1 & \dot{\theta}_f &= a_1 + 2a_2 t_f + 3a_3 t_f^2 + 4a_4 t_f^3 + 5a_5 t_f^4 \\ \ddot{\theta}_0 &= 2a_2 & \ddot{\theta}_f &= 2a_2 + 6a_3 t_f + 12a_4 t_f^2 + 20a_5 t_f^3 \end{aligned}$$

- Polinômios de 5^a Ordem
 - Obtém-se os 6 coeficientes...

$$a_0 = \theta_0 \qquad a_3 = \frac{20.\theta_f - 20.\theta_0 - (8.\dot{\theta}_f + 12.\dot{\theta}_0)t_f - (3.\ddot{\theta}_0 - \ddot{\theta}_f)t_f^2}{2.t_f^3}$$

$$a_1 = \dot{\theta}_0 \qquad a_4 = \frac{30.\theta_0 - 30.\theta_f + (14.\dot{\theta}_f + 16.\dot{\theta}_0)t_f + (3.\ddot{\theta}_0 - 2.\ddot{\theta}_f)t_f^2}{2t_f^4}$$

$$a_2 = \frac{\ddot{\theta}_0}{2} \qquad a_5 = \frac{12.\theta_f - 12.\theta_0 - (6.\dot{\theta}_f + 6.\dot{\theta}_0)t_f - (\ddot{\theta}_0 - \ddot{\theta}_f)t_f^2}{2t_f^5}$$

- Polinômios de 5^a Ordem (MatLab)
 - Para as condições iniciais, tem-se:

$$\theta_0 = 15^{\circ}$$
 $\dot{\theta}_0 = 0^{\circ}/s$
 $\dot{\theta}_0 = 0^{\circ}/s^2$
 $\theta_f = 75^{\circ}$
 $\dot{\theta}_f = 0^{\circ}/s$
 $\dot{\theta}_f = 0^{\circ}/s^2$
 $\Delta t = t_f = 3s$

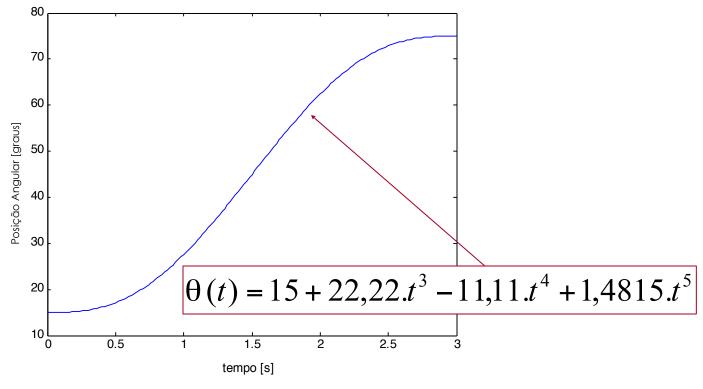
- Polinômios de 5^a Ordem (MatLab)
 - Obtém-se as equações:

$$\theta(t) = 15 + 22,22.t^{3} - 11,11.t^{4} + 1,4815.t^{5}$$

$$\dot{\theta}(t) = 66,66.t^{2} - 44,44.t^{3} + 7,4075.t^{4}$$

$$\ddot{\theta}(t) = 133,32.t - 133,32.t^{2} + 29,63.t^{3}$$

- Polinômios de 5^a Ordem
 - Nos gráficos:

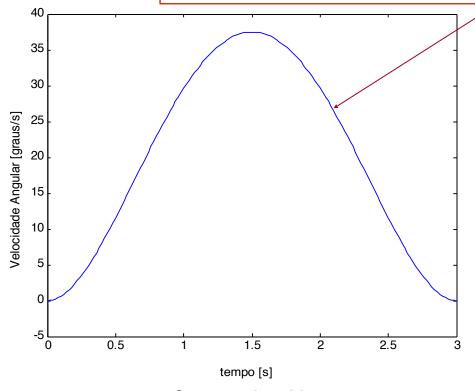


USP - EESC - SEM

• Polinômios de 5^a Ordem

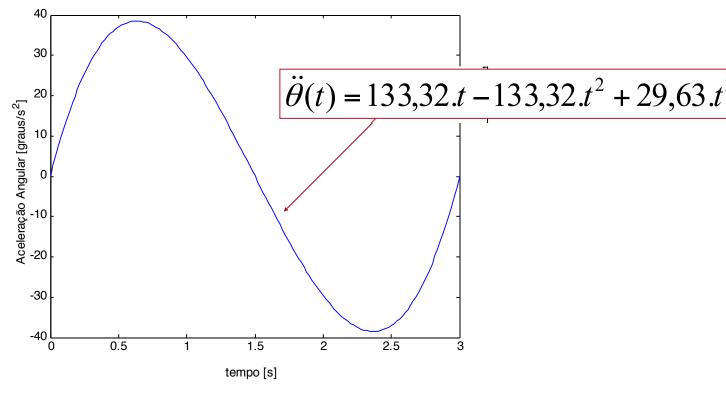
- Nos gráficos:

$$\dot{\theta}(t) = 66,66.t^2 - 44,44.t^3 + 7,4075.t^4$$



USP - EESC - SEM

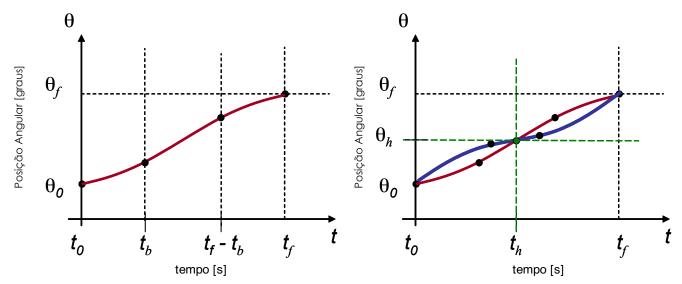
- Polinômios de 5^a Ordem
 - Nos gráficos:



USP - EESC - SEM

- Funções Lineares e Parabólicas
 - Interpolação linear para mover a junta da posição atual para a posição final
 - Velocidade torna-se descontínua no início e no final do movimento...
 - Para obter uma trajetória "suave": adiciona-se trechos parabólicos...
 - Emprega-se trechos de aceleração constante
 - Comportamento "suave" para a velocidade
 - Comportamento contínuo para posição e velocidade
 - Diversas soluções são possíveis...
 - Simetria com relação a t_h na solução!

Funções Lineares e Parabólicas



 Como a velocidade na fronteira da parábola é igual à velocidade no segmento de reta:

$$\ddot{\theta}.t_b = \frac{\theta_h - \theta_b}{t_h - t_b} \qquad \theta_b = \theta_0 + \frac{1}{2}.\ddot{\theta}.t_b^2$$

- Funções Lineares e Parabólicas
 - Assim, para $t = 2.t_h$:

$$\ddot{\theta}.t_b^2 - \ddot{\theta}.t.t_b + (\theta_f - \theta_0) = 0$$

Duração desejada para o Movimento

$$t_b = \frac{t}{2} - \frac{\sqrt{\ddot{\theta}^2 t^2 - 4\ddot{\theta}(\theta_f - \theta_0)}}{2\ddot{\theta}}$$

$$\ddot{\theta} \ge \frac{4(\theta_f - \theta_0)}{t^2}$$

- Funções Lineares e Parabólicas
 - Tem-se:
 - O "ponto" inicial (t_0, θ_0) e o final (t_f, θ_f)
 - Os "pontos" intermediários
 - Deseja-se:
 - Uma função "suave" para $\theta(t)$ SEM PARAR em cada "ponto" intermediário...
 - Procedimento:
 - Segmentos lineares unem os pontos especificados;
 - Segmentos parabólicos suavizam o movimento.

- Funções Lineares e Parabólicas (MatLab)
 - Para as condições iniciais, tem-se:

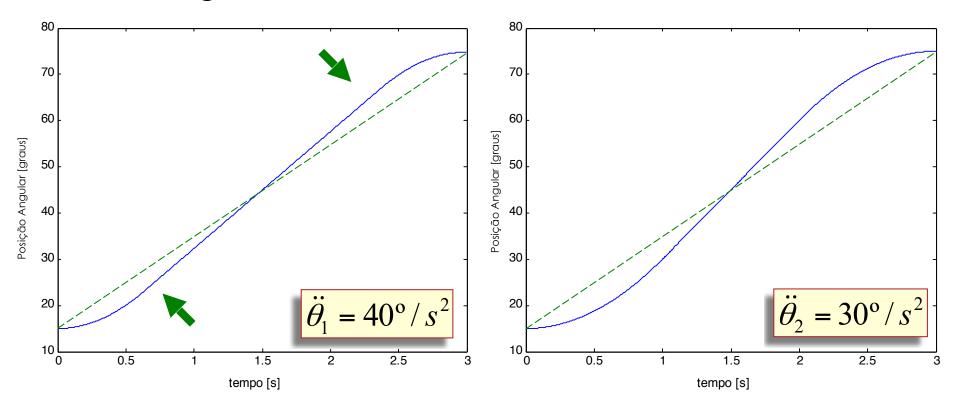
$$\theta_0 = 15^{\circ}$$

$$\theta_0 = 15^{\circ}$$
 $\theta_f = 75^{\circ}$

$$\ddot{\theta}_1 = 40^{\circ}/s^2$$

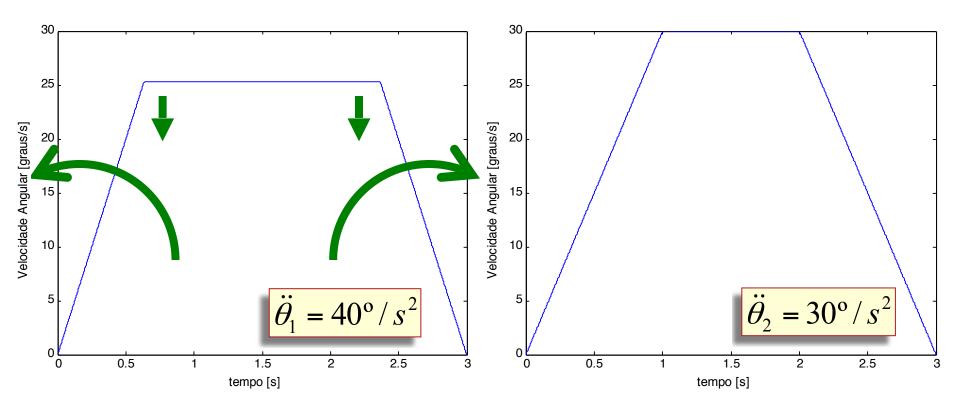
$$\ddot{\theta}_2 = 30^{\circ}/s^2$$

- Funções Lineares e Parabólicas
 - Nos gráficos:



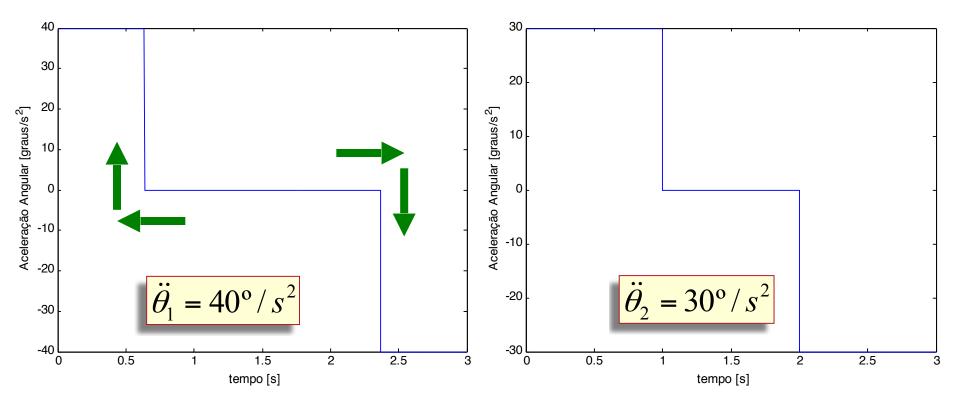
USP - EESC - SEM

- Funções Lineares e Parabólicas
 - Nos gráficos:



USP - EESC - SEM

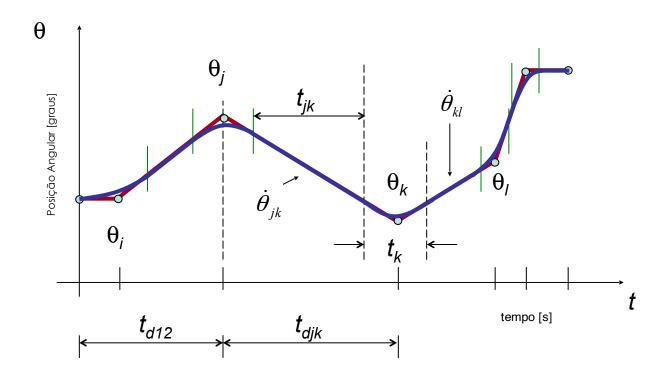
- Funções Lineares e Parabólicas
 - Nos gráficos:



USP - EESC - SEM

- Funções Lineares e Parabólicas
 - Sejam:
 - $j, k \in l$ 3 pontos consecutivos
 - A duração do segmento que conecta os pontos j e k é t_{dik}
 - A duração do segmento de parábola que conecta os pontos j e k é t_k
 - A duração do segmento de reta que conecta os pontos j e k é t_{jk}
 - A velocidade durante o trecho linear é $heta_{jk}$
 - A aceleração durante o trecho parabólico no ponto $j \in \dot{\vec{\theta}}_i$

Funções Lineares e Parabólicas



- Funções Lineares e Parabólicas
 - Dados:
 - Todos os pontos desejados da trajetória: θ_k
 - As durações desejadas dos trechos da trajetória: t_{djk}
 - A magnitude desejada da aceleração para cada trecho: $\left|\ddot{\theta}_{\boldsymbol{k}}\right|$
 - Obtém-se:
 - A duração dos segmentos parabólicos que conectam os pontos da trajetória: t_k

- Funções Lineares e Parabólicas
 - Para os pontos internos à trajetória:

$$\dot{\theta}_{jk} = \frac{\theta_k - \theta_j}{t_{djk}}$$

$$\ddot{\theta}_k = \operatorname{sgn}(\dot{\theta}_{kl} - \dot{\theta}_{jk}) | \ddot{\theta}_k |$$

$$t_k = \frac{\dot{\theta}_{kl} - \dot{\theta}_{jk}}{\ddot{\theta}_k}$$

$$t_{jk} = t_{djk} - \frac{1}{2}t_j - \frac{1}{2}t_k$$

- Funções Lineares e Parabólicas
 - Para o 1º trecho da trajetória:

$$\ddot{\theta}_1 t_1 = \frac{\theta_2 - \theta_1}{t_{12} - \frac{1}{2} t_1}$$

$$\ddot{\theta}_1 = \operatorname{sgn}(\dot{\theta}_2 - \dot{\theta}_1) | \ddot{\theta}_1 |$$

$$t_1 = t_{d12} - \sqrt{t_{d12}^2 - \frac{2(\theta_2 - \theta_1)}{\ddot{\theta}_1}}$$

$$\dot{\theta}_{12} = \frac{\theta_2 - \theta_1}{t_{d12} - \frac{1}{2}t_1}$$

$$t_{12} = t_{d12} - t_1 - \frac{1}{2}t_2$$

- Funções Lineares e Parabólicas
 - Para o último trecho da trajetória:

$$\ddot{\theta}_n t_n = \frac{\dot{\theta}_{n-1} - \dot{\theta}_n}{t_{d(n-1)} - \frac{1}{2} t_n}$$

$$\ddot{\theta}_n = \operatorname{sgn}(\dot{\theta}_{n-1} - \dot{\theta}_n) | \ddot{\theta}_n |$$

$$t_{n} = t_{d(n-1)n} - \sqrt{t_{d(n-1)n}^{2} - \frac{2(\theta_{n} - \theta_{n-1})}{\ddot{\theta}_{n}}}$$

$$\dot{\theta}_{(n-1)n} = \frac{\theta_n - \theta_{n-1}}{t_{d(n-1)n} - \frac{1}{2}t_n}$$

$$t_{(n-1)n} = t_{d(n-1)n} - t_n - \frac{1}{2}t_{n-1}$$

Sumário da Aula

- Espaço Cartesiano
- Observações
- Programação Baseada em Modelos
- Exercícios Recomendados
- Bibliografia Recomendada

- Movimento desejado para o manipulador robótico é descrito em função de variáveis Cartesianas
 - Seqüência de "pontos" que fornecem a Posição e
 Orientação da ferramenta em função do tempo
 - Cada "ponto" é descrito como uma posição e orientação de {T} em relação a {S} em Coordenadas Cartesianas
 - Trajetórias mais comuns: segmentos de reta, arcos de circunferência, elipses, senoidais, etc.

- Movimento desejado para o manipulador robótico é descrito em função de variáveis Cartesianas
 - Seqüência de "pontos" que fornecem a Posição e
 Orientação da ferramenta em função do tempo
 - Não é necessário converter inicialmente os "pontos" para variáveis de junta através da cinemática inversa
 - São "computacionalmente" mais pesadas pois requerem a solução da cinemática inversa do manipulador "em tempo real" (taxa de atualização – update rate)

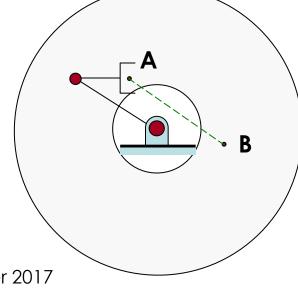
- Movimento Retilíneo no Espaço Cartesiano
 - Movimento comumente empregado
 - Seleciona-se uma seqüência de pontos alinhados e próximos
 - Emprega-se uma função "suave" para conectar os pontos
 - Splines, p.e.: funções lineares e parabólicas
 - Componentes de posição: alinhados
 - Componentes de orientação: Matriz de rotação
 - » Não se pode usar interpolação linear
 - » Emprega-se então a representação ângulo-eixo (angle-axis)

- Problemas encontrados no Espaço Cartesiano com Movimento Retilíneos
 - Incompatibilidade com o espaço de trabalho e singularidades

Pontos intermediários da Trajetória fora do espaço de trabalho

→ Posição Inicial e Final

* Posições intermediárias

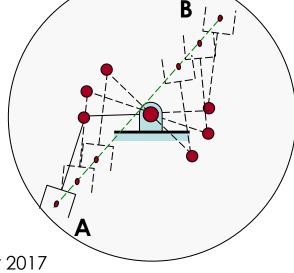


- Problemas encontrados no Espaço Cartesiano com Movimento Retilíneos
 - Incompatibilidade com o espaço de trabalho e singularidades

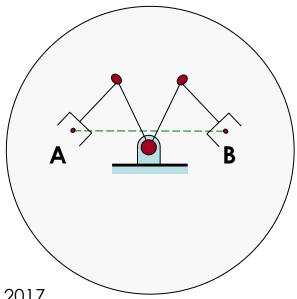
2. Velocidades de Junta Elevadas quando próximos a

singularidades

* Manipulador desvia da trajetória desejada...



- Problemas encontrados no Espaço Cartesiano com Movimento Retilíneos
 - Incompatibilidade com o espaço de trabalho e singularidades
 - 3. Posições inicial e final atingíveis em diferentes soluções



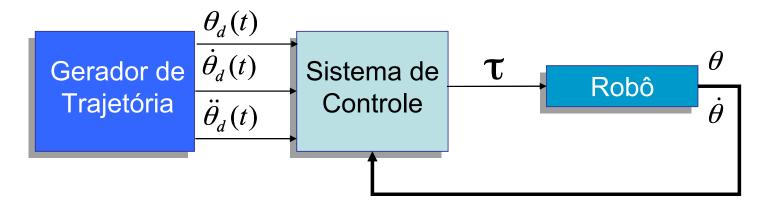
USP - EESC - SEM

Sumário da Aula

•

- Programação Baseada em Modelos
- Exercícios Recomendados
- Bibliografia Recomendada

- Geração de Trajetórias em "Tempo Real"
 - Trajetória usualmente gerada em termos de $\theta(t)$, $\dot{\theta}(t)$ e $\ddot{\theta}(t)$ \rightarrow variáveis de junta
 - Enviadas para o Sistema de Controle do Manipulador
 - Taxa de atualização (update rate)...



62

- Geração de Trajetórias em "Tempo Real"
 - Espaço das Juntas
 - Para splines cúbicas (polinômios de 3º grau)
 - Todos os coeficientes das n splines cúbicas são calculados previamente:

$$\theta_n(t_n) = a_{0_n} + a_{1_n} t_n + a_{2_n} t_n^2 + a_{3_n} t_n^3$$

 Quando se chega ao final de um trecho da trajetória, um novo conjunto de coeficientes do polinômio é empregado e t reiniciado como 0 ("zero")

- Geração de Trajetórias em "Tempo Real"
 - Espaço das Juntas
 - Para splines Lineares e Parabólicas
 - O valor de t é verificado a cada atualização para determinar se o trecho atual é linear ou parabólico.

Para o trecho linear:

$$\theta = \theta_j + \dot{\theta}_{jk}.t$$

$$\dot{\theta} = \dot{\theta}_{jk}$$

$$\ddot{\theta} = 0$$

- Geração de Trajetórias em "Tempo Real"
 - Espaço das Juntas
 - Para splines Lineares e Parabólicas
 - O valor de t é verificado a cada atualização para determinar se o trecho atual é linear ou parabólico.

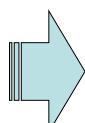
Para o trecho parabólico:

$$t_{inb} = t - \left(\frac{1}{2}t_j + t_{jk}\right)$$

$$\theta = \theta_j + \dot{\theta}_{jk}.(t - t_{inb}) + \frac{1}{2}\ddot{\theta}_k.t_{inb}^2$$

$$\dot{\theta} = \dot{\theta}_{jk} + \ddot{\theta}_k.t_{inb}$$

$$\ddot{\theta} = \ddot{\theta}_k$$



Para um novo trecho com spline linear e parabólica, t é reiniciado como sendo $t_k/2$

- Geração de Trajetórias em "Tempo Real"
 - Espaço Cartesiano
 - Para splines Lineares e Parabólicas
 - Valores de posição e orientação representados no espaço cartesiano.
 - x representa a posição e orientação.
 - Para cada grau de liberdade, tem-se, no trecho linear:

$$x = x_j + \dot{x}_{jk}.t$$
$$\dot{x} = \dot{x}_{jk}$$
$$\ddot{x} = 0$$

- Geração de Trajetórias em "Tempo Real"
 - Espaço Cartesiano
 - Para splines Lineares e Parabólicas
 - No trecho parabólico:

$$t_{inb} = t - \left(\frac{1}{2}t_j + t_{jk}\right)$$

$$x = x_j + \dot{x}_{jk}.(t - t_{inb}) + \frac{1}{2}\ddot{x}_k.t_{inb}^2$$

$$\dot{x} = \dot{x}_{jk} + \ddot{x}_k.t_{inb}$$

$$\ddot{x} = \ddot{x}_k$$

- Geração de Trajetórias em "Tempo Real"
 - Espaço Cartesiano
 - Para splines Lineares e Parabólicas
 - Converte-se então a trajetória em coordenadas Cartesianas χ , $\dot{\chi}$ \ominus $\ddot{\chi}$ para variáveis de junta θ , $\dot{\theta}$ \ominus $\ddot{\theta}$:
 - Para posição: CINEMÁTICA INVERSA
 - Para velocidade: JACOBIANO
 - Para aceleração: JACOBIANO INVERSO e sua DERIVADA
 - Modo mais simples:
 - Converter $X \in \mathcal{C}^{S}$ T e empregar um SOLVE para se obter um vetor Θ com as variáveis de junta (taxa de aquisição);
 - Diferenciação Numérica é então empregada: $\dot{\Theta}$ $\dot{\Theta}$

- Geração de Trajetórias em "Tempo Real"
 - Espaço Cartesiano
 - Para splines Lineares e Parabólicas
 - Algoritmo, para cada instante de tempo t:

$$\chi \rightarrow {}_{G}^{S}\mathsf{T}$$

$$\Theta(t) = SOLVE({}_{G}^{S}\mathsf{T})$$

$$\dot{\Theta}(t) = \frac{\Theta(t) - \Theta(t - \delta t)}{\delta t}$$

$$\ddot{\Theta}(t) = \frac{\dot{\Theta}(t) - \dot{\Theta}(t - \delta t)}{\delta t}$$

Envia-se $\Theta, \dot{\Theta} \in \ddot{\Theta}$ para o sistema de controle do Manipulador

- Planejar Trajetórias com o Modelo Dinâmico
 - Em geral, considera-se um valor padrão ou máximo de aceleração na geração de trajetórias
 - Função da dinâmica do Manipulador e de seus limites
 - Atuadores são caracterizados:
 - Não por torque e aceleração máximos...
 - Por curvas de torque x velocidade
 - Induz-se Simplificações:
 - Considerar uma aceleração máxima ("conservadora") para cada junta do manipulador
 - Não se aproveita completamente as capacidades de velocidade do atuador...

- Planejar Trajetórias com o Modelo Dinâmico
 - Para se obter o tempo mínimo para um manipulador atingir uma posição ou executar uma trajetória:
 - Modelo Dinâmico do Manipulador
 - Curvas de torque x velocidade dos atuadores
 - ✓ Soluções Numéricas são empregadas...

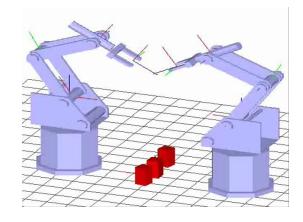
- Uso de Quartenions
 - Comparação entre o uso de quartenions e matrizes

Operação	Quartenions	Matrizes
R_1R_2	9 (+) e 16 (x)	15 (+) e 24 (x)
R_v	12 (+) e 22 (x)	6 (+) e 9 (x)
$R o Rol(n, \theta)$	24 (x), 1 (√) e 1 (arctan)	8 (+), 10 (x), 2 (√) e 1 (arctan)

Sumário da Aula

- Programação Baseada em Modelos
- Exercícios Recomendados
- Bibliografia Recomendada

- Planejar Trajetórias Livres de Colisões
 - Colisões com obstáculos:
 - Fixos (máquinas, paredes, grades, etc.)
 - Móveis (pessoas, objetos, outros manipuladores, etc.)
 - Não disponíveis comercialmente...
 - O sistema deve ter modelos:
 - Do manipulador;
 - Da área de trabalho;
 - Dos obstáculos potenciais.



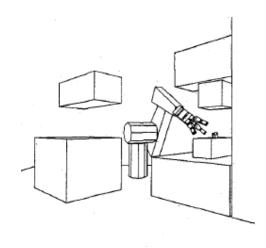
74

- Planejar Trajetórias livres de Colisões
 - Várias técnicas são aplicadas:
 - Modelar o espaço livre da área de trabalho empregando a Teoria de Grafos e encontrar uma trajetória livre de colisões
 - Complexidade exponencial no número de juntas do manipulador...
 - Empregar Campos de Potencial Artificial ao redor dos obstáculos e um pólo de atração na posição desejada

75

Mínimos Locais...

- Planejar Trajetórias livres de Colisões
 - Exemplo: Lozano-Pérez (1987)
 - Robô PUMA com garra de 3 dedos
 - 6 Graus de Liberdade

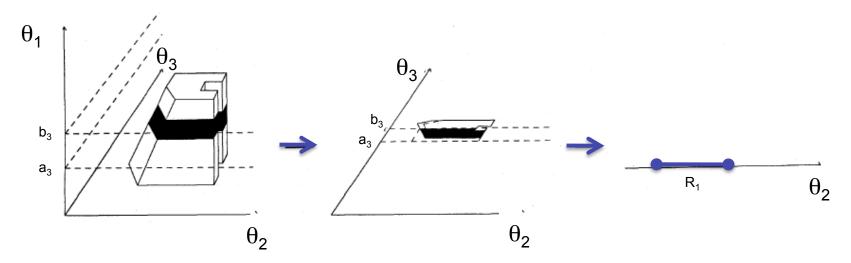


76

- Planejar Trajetórias livres de Colisões
 - Exemplo: Lozano-Pérez (1987)
 - Manipulador com n graus de liberdade
 - Representação no Espaço de Configurações:
 - Configuration Space (C-space): Conjunto de parâmetros que definem completamente a posição de qualquer ponto do manipulador ou obstáculo (fixo ou móvel) dentro de seu espaço de trabalho.
 - Forma de representação:
 - Espaço das Juntas
 - Espaço Cartesiano

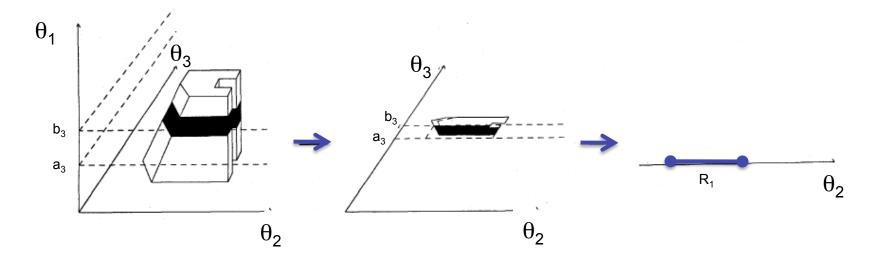
Multiplicidade de Soluções obtidas na cinemática inversa...

- Planejar Trajetórias livres de Colisões
 - Exemplo: Lozano-Pérez (1987)
 - Mapeia-se os obstáculos no Espaço de Configurações
 - C-Space Obstacles

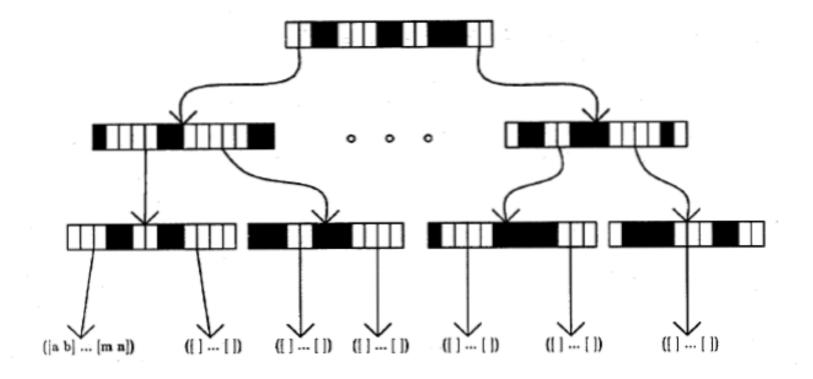


Espaço Livre: complemento do C-Space Obstacles

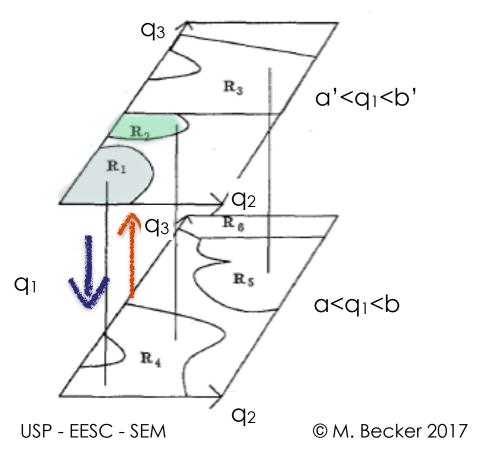
- Planejar Trajetórias livres de Colisões
 - Exemplo: Lozano-Pérez (1987)
 - Espaço livre é obtido para cada junta
 - n juntas → n C-spaces

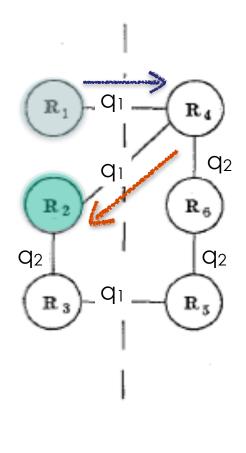


- Planejar Trajetórias livres de Colisões
 - Exemplo: Lozano-Pérez (1987)

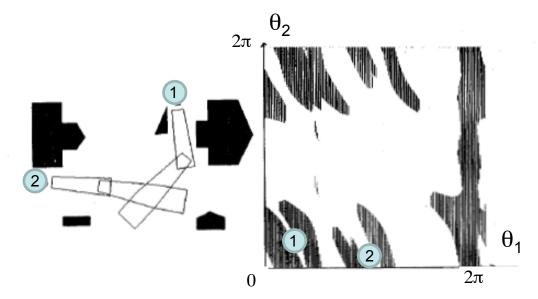


- Planejar Trajetórias livres de Colisões
 - Exemplo: Lozano-Pérez (1987)



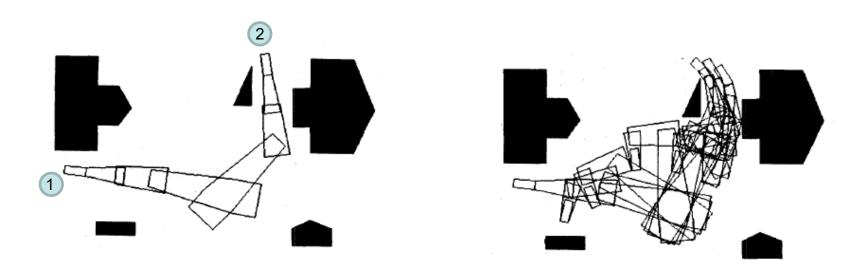


- Planejar Trajetórias livres de Colisões
 - Exemplo: Lozano-Pérez (1987)



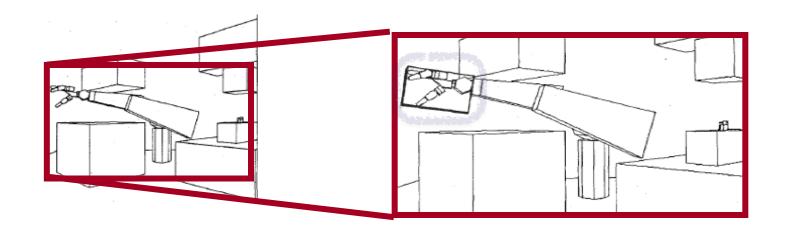
Um manipulador com 2 juntas rotacionais (RR) e obstáculos no espaço cartesiano (2D) e no espaço das juntas (*C-space*)

- Planejar Trajetórias livres de Colisões
 - Exemplo: Lozano-Pérez (1987)

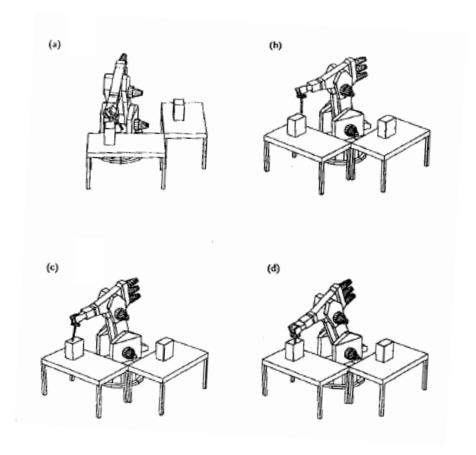


Um manipulador com 3 juntas rotacionais (RRR) e obstáculos no espaço cartesiano (2D) e no espaço das juntas (*C-space*)

- Planejar Trajetórias livres de Colisões
 - Exemplo: Lozano-Pérez (1987)



Planejar Trajetórias livres de Colisões



Sumário da Aula

Exercícios Recomendados

Exercícios Recomendados

- Exercícios:
 - Livro do Craig (2005): pp. 226-229
 - Livro do Fu et al. (1991): pp. 198-200

Sumário da Aula

- Craig, J.C., 2005, Introduction to Robotics: Mechanics and Control, 3rd Edition, Pearson Education Inc., ISBN 0-201-54361-3
- Paul, R. P., 1981, Robot Manipulators. Mathematics, Programming and Control, The MIT Press.
- Fu, K.S., Gonzales, R.C., and Lee, C.S.G., 1987, Robotics: Control, Sensing, Vision, and Intelligence, McGraw-Hill Int. Editions, ISBN 0-07-100421-1.
- Corke, P., Robotics Toolbox for MatLab (Release 7).

- **Lozano-Perez, T.**, 1987, A Simple Motion-Planning Algorithm for General Robot Manipulators, IEEE Journal of Robotics and Automation, Vol. RA-3, N° 3, pp. 224-238.
- Lozano-Perez, T., 1981, Automatic Planning of Manipulator Transfer Movements, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-11, N° 10, pp. 681-698.