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Abstract

Newton’s derivation of the inverse of the distance square law, the same but otherwise.
Aulas para a diversão, ou talvez não, dos alunos de Física 1 de Ciências Moleculares 2017

1 Introduction
This note deals with Proposition XI, Problem VI from Newton’s Principia that is (see figure 1):

If a body revolves in an ellipsis; it is required to find the law of the centripetal force
tending to the focus of the ellipsis.

Reading Newton’s Principia is a little beyond the reach of a typical first year student. Actually
Feynman had his problems too. Thanks to Goodstein and Goodstein we have an account of
Feynman’s struggle to deal with the proof that an elliptical orbit would result from a central force
directed to the focus of the ellipse and decaying with the square of the distance. He blamed our lack
of familiarity with Apollonious. Reading Apollonious is still more difficult than Newton. It is a fact
that the modern training that students (and their teachers) have is quite different with what was
expected at the time of Newton and it is certainly inferior with regard to the methods of Euclid and
Apollonious. A biographer of Newton claims that the effort to use geometry instead of the newly
developed tools of calculus was guided by his desire to present the results in a geometric language,
the lingua franca of the contemporary scholars. However Newton’s mastery of such methods is
beyond other scientists, such as Hooke, whom despite claiming to know that the force was central
and decayed with the square of the distance -obtained in the particular case of circular orbits - was
unable to determine that in general the trajectories would be conics. Chandrasekhar has written
a guide to the common reader. It is really helpful despite having gaps in the explanations that
were the source of the trouble that Feynman found. In this note the proof of Newton is simplified
so that a first year student can understand every detail. It is not easy but it is within the reach
of a dedicated student. In addition we prove the converse, that an inverse square law would give
rise to a conic using Feynman’s method, which he introduces because Newton "perpetually uses
(for me) completely obscure properties of the conic sections." It is a beautiful way to say that, he
couldn’t follow Newton....but, had he traveled backwards in time and met Newton, he could have
shown a geometric way that was even more elegant than Newton’s.

Only a few concepts are needed so that a beginner can follow the proofs here. First we are
going to use the rules to sum vectors. In addition we need, the first two of Newton’s laws of
Dynamics. Actually these are according to Newton, due to Galileo, although no one was able
to learn them by reading Galileo. Finally Galileo’s theorem (as Newton called it), that under a
constant acceleration A acting during a time ∆t, the change in position with respect to the zero
acceleration case is ∆x = A(∆t)2/2. The big IC. Of course some properties of the conics have to
be used but these are given below.

2 Some properties of an ellipse

1



Figure 1:
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Figure 2:
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We use the figure from Newton’s Principia shown here. C is the center of the ellipse, A and
B are two of its vertices. The semiaxes are a = CA and b = CB. The focii are S and H. Define
the vectors ~rP = ~CP , ~rS = ~SP and ~rH = ~HP for any point P . Call rS = |~rS |, rH = |~rH | and
rP = |~rP | their modules. What makes the generic point P be at the ellipse is that rS + rH is a
constant independent of P , which for these particular ellipse is 2a. Note that of all these distances
the important one, that will remain at the end of the analysis is rS the distance of the point mass
to the center of force at S.

The eccentricity ε is defined as the ratio of the distance of a focus to the center and the
semimajor axis a:

ε :=
SC

CA
=

√
1− b2

a2
(1)

Using the normal cartesian coordinates, the points on the ellipse satisfy

x2

a2
+
y2

b2
= 1 (2)

An interesting parametrization that will be useful here is obtained by writing

x = a cosψ, (3)
y = b sinψ, (4)

ψ is not an obvious angle in the figure. It is called the eccentric anomaly. Draw two concentric
circles, with center on C of radii a and b. Draw a line which makes an angle ψ with the x axis.
It crosses the large circle at an x coordinate and the small circle at a y coordinate that satisfy
equations 3 and 4 respectively. As ψ goes from 0 to 2π point P describes the ellipse. The nice
property of this parametrization is that if ψ increases by π/2 another point, D in the figure is
determined. Any line that goes through the center is called a diameter of the ellipse and if their
eccentric anomalies differ by π/2 the diameters are called conjugated. Since

d cosψ

dψ
= − sinψ = cos(ψ + π/2), (5)

d sinψ

dψ
= cosψ = sin(ψ + π/2), (6)

one concludes that the conjugated diameter CD is parallel to the line RZ tangent to the ellipse at
P . 1

Point P is the position of a point mass (a planet?) at a certain time and point Q the position
at an interval ∆t later. Since Q is also at the ellipse we can write:

~rP = a~i cosψ + b~j sinψ, (7)
~rQ = a~i cos(ψ + ∆ψ) + b~j sin(ψ + ∆ψ), (8)

With the notation of Newton in the figure, points PRQx in the figure form a parallelogram by
construction, hence |Qx| = |PR| and |Px| = |QR| := xP . The distance xP is the change in position
that the planet (Q) has with respect to what it would be (R) if the planet moved under the action
of no force (first law). Galileo’s theorem

xP =
1

2

Fc
m

(∆t)2 (9)

holds the promise that, if we are able to obtain the change in position xP from the geometrical
properties of the figure, we might be able to obtain the centripetal force directed from point P to
the focus S (where the sun is), provided we are able to deal with the time ∆t it took the planet to
move to Q. This problem will be dealt geometrically with the result that for a central force equal
areas are swept in equal times. For this we need another angle θ, which now is quite natural to
define. It is the angle that the vector ~rs makes with the x-axis. It is not the usual polar angle,
defined as the angle that the vector ~rP , from the center of the ellipse to the planet, makes with

1 Note that Newton (or the translator) didn’t bother to mention at this point that the diameters CD and CP
are conjugated, although, in previous figures it is mentioned, but some letters do not maintain the same meaning
across all figures.
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Figure 3: A similar diagram to Newton’s. Here we have extended the line SP to point V by an
amount equal to the length of HP . Since |SP | + |HP | = 2a is a constant as the point P moves
around, the point V describes a circle.

the x-axis. Of course they coincide for the particular case when the ellipse is a circle. The relation
between the two angles we have introduced is simple to obtain, in terms of the coordinates x and
y and therefore:

rs cos θ = |SC|+ x = aε+ a cosψ,

rs sin θ = y = b sinψ. (10)

Summing the squares of the left sides we obtain

rs = a(1 + ε cosψ), (11)

Dividing the left sides we obtain:

tan θ =
b

a

sinψ

ε+ cosψ
(12)

and small variations of θ are related to small variations of ψ by

∆θ

cos2 θ
=
b

a
∆ψ

1 + ε cosψ

(ε+ cosψ)2
. (13)

The reader who wants to very this result should use that the derivative of uv is u′v−uv′
v2

3 The geometry using vectors
From figure 4 one can see that the following relations between the vectors:

~rQ = ~CS + ~SX + ~XQ (14)

~rQ = −aε~i+ ξ1~rS + ξ2~rD, (15)
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Figure 4: The vectors ~SC + ~Sx+ ~xQ

are valid, where we introduced the unknown quantities ξ1 and ξ2, since the vectors ~SX and ~rS are
parallel and so are ~XQ and ~rD. These yet unknown quantities can’t be arbitrarily chosen, since
equation 8 has to be satisfied, otherwise point Q is not on the ellipse. From equations 8 and 15 we
obtain two equations, for the x and y components respectively, for the two unknowns:

x coord: ξ1(ε+ cosψ)− ξ2 sinψ = ε+ cos(ψ + ∆ψ) (16)
y coord: ξ1 sinψ + ξ2 cosψ = sin(ψ + ∆ψ). (17)

Cramer’s rule leads to

ξ1 =
cos ∆ψ + ε cosψ

1 + ε cosψ
(18)

ξ2 = ε
sin(ψ + ∆ψ)− sinψ

1 + ε cosψ
. (19)

Note that as Q→ P , ∆ψ → 0 and ξ1 → 1 and ξ2 → 0 as it should. Actually we need to be a little
more careful in analyzing the behavior of ξ1 for small ∆ψ:

ξ1 =
1− ∆ψ2

2 + ...+ ε cosψ

1 + ε cosψ
= 1− ∆ψ2/2

1 + ε cosψ
(20)

and using equation 11

ξ1 = 1− 1

2
∆ψ2 a

rs
(21)

The interest in this development derives from the relation between the fallen distance xP , the
distance from the planet to the sun, rP and ξ1:

xP = (1− ξ1)rs (22)

4 Putting all together
We now have almost all the ingredients:

• (i) Fc = 2m
∆t2 (1− ξ1)rs.
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For small values of ∆ψ

• 1− ξ1 ≈ 1
2∆ψ2 a

rs

The relation between ∆ψ and ∆θ can be simplified

• From equation 13

∆ψ = ∆θ
a

b

1

cos2 θ
(
rs cos θ

a
)2 1

1 + ε cosψ

and using equation 11
∆ψ = ∆θ

rs
b

(23)

Putting it all together with Galileo’s result, Newton could obtain the centripetal force

Fc =
m

∆t2
a∆ψ2 = ma(

∆ψ

∆t
)2

=

(
∆θ

∆t

)2
mar2

s

b2
(24)

which is not the whole history since we have to investigate how the angular velocity, obtained at
the limit Q→ P of ∆θ

∆t .
But this is obtained from a previous result of Newton, that for a central force equal areas are

swept in equal times:
∆A

∆t
=

1

2
r2
s

∆θ

∆t
= K (25)

and K has, for a particular planet a fixed value. Of course, the fact that this was empirically
found by Kepler suggested to Hooke and Newton that the gravitational force was central, a result
that would have surprised Kepler and Copernicus, who thought that the gravitational force acted
transversely, i.e. in the direction of the motion of the planet. Then ∆θ

∆t = 2K
r2s

and together with
equation 24 gives the final result for the magnitude of the centripetal force:

Fc =
4maK2

b2
r2
s

r4
s

Fc =
C

r2
s

. (26)

Hooke could not prove this result for the the ellipse, although he could for the circular orbit. In
the controversy between Hooke and Newton, that followed the 1/r2 law, Newton’s claim to priority
was supported by the fact that no other had the geometrical ability to obtain this result for the
conics. It also follows for the hyperbole or parabola, but we will not pursue now, and the reader
is invited to make the small changes needed for the proof.

5 Feynman’s solution for the inverse problem
Given that the gravitational force on the planet due to the sun is attractive and decays inversely
with the square of the distance to the sun, we want to prove that the orbit is in general a conic
and in particular, for the case considered here, an ellipse.

The method is quite simple once a few ideas are introduced. Extend the line SP in figure 3
by a distance equal to PH to a point V . This is essentially the first time we mention the other
focus, which is usually thought to be of no interest, but was shown by Feynman’s method to have
a quite interesting role. Note that the sum of distances from P to the focii is fixed:

2a = |SP |+ |PH| = |SP |+ |PV | = |SV | (27)

hence, as point P moves around the ellipse, point V describes a circle of radius 2a. Keep this circle
in mind. We have to find a circle in the dynamics. This is the central point in Feynman’s method,
and he mentions this key idea was due to Mr. Fano who was working with Rutherford scattering.
Divide the trajectory into N equal intervals ∆θ = 2π

N and eventually we will take N →∞ The law
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of areas for a central force again plays an fundamental role, but now we write it stressing that the
angular intervals to be considered are the same, and so the time intervals can’t be equal

∆An
∆tn

=
1

2
rs(n)2 ∆θ

∆tn
= K. (28)

For equal angles the time intervals scale like the r2
s

∆tn =
1

2K
rs(n)2∆θ. (29)

From Newton’s second law, for a central force that decays with the square of distance we have, for
the nth interval

m
~∆v

∆tn
= − C1

rs(n)2

~SP

|SP |
, (30)

where we have indicated the direction − ~SP
|SP | towards the sun. Note that the changes in velocities

at each point θn has a constant magnitude, since

| ~∆v| = ∆tn
C2

rs(n)2
= C3∆θ (31)

where the constant C3 is easy to calculate but unnecessary. Furthermore the direction is radial and
hence the change in direction from one angle to the next is just the constant ∆θ. If we draw the
changes ∆~v, as in the top of figure 5, they all point in the direction of the sun. But we can move
the ∆~v vectors so that they look as in the bottom of figure 5. If we plot the velocity vectors ~vn
from a common center, then they radiate with different lengths, but the vectors ∆~vn move around
in a perfect circle whose center doesn’t coincide with the radiating center of the velocities, which
change magnitude as shown in figure 6 (top). You may now realize that the new center from where
the velocities radiate is related to the other focus of the ellipse... but we have to work a little bit
more to see that.

It turns out to be easier, if we measure θ from the x axis, and start describing the motion
when the direction is perpendicular to the axis. So the center from where the velocities radiate
is at the position in the vertical line which contains the circle of velocities as shown for the N
points in figure 6(top). The angle θ as the planet moves is exactly the same as the angle measured
from such vertical with respect to the center of the circle. Note that all changes in velocity change
orientation by the same ∆θ. The Feynman trick is to rotate the circle by an angle of π/2 so that
the the direction of a velocity vector rotates to a perpendicular orientation to what is the velocity
of the planet, shown in figure 6(bottom). From this we have to reconstruct the position of the
planet. There are three conditions that have to be satisfied:

1. The position of the planet makes an angle θ with respect to the x− axis.

2. The velocity of the planet is perpendicular to the line HṼ, obtained from the velocity ~v(θ)
by a rotation of π/2.

3. The trajectories are tangent to the velocity of the planet.

We show again this rotation for just one point in the trajectory in figures 7 and 9. Compare this last
one to figure 3. You might complain that it is difficult to compare a diagram where the lengths
in the picture represent distances (figure 3 and one where the lengths in the picture represent
velocities and their variations. We are interested in the relative size of the several parameters in
the orbit, and we can draw them so that the outer circles coincides on paper. The three conditions
above are satisfied if the planet’s position is chosen at the intersection of the line SV (condition 1)
and a perpendicular to the line HV (condition 2). But which perpendicular? The midpoint of line
HV is the only choice possible in order to satisfy the third.
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Figure 5: Top: At N equal angular intervals the changes in velocities ∆~vi are equal in magnitude
and turn by ∆θ = 2π/N with respect to the previous vector. Bottom: the same vectors are plotted
from a point rotated by π/2−∆θ/2. Here N = 15 and as N →∞ the vectors cover the circle.
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Figure 6: Drawing the velocity vectors from a common center H, such that when the planet is at
θ = 0 the velocity is in the y direction. Then the radiating center of the velocities is above S.
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Figure 7: Pick just one point in the trajectory. Measure the angle of the planet as seen from the
sun by θ.

Figure 8: Rotate the previous picture by π/2. Since we measure the angle of the planet as seen
from the sun by θ, now the line SṼ points in the direction of the planet.
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Figure 9: The result of choosing the mid point, for a set of points where the eccentric anomaly
varies by a constant angle. Note that this is, first, easier to program and second irrelevant, since
the construction should be valid for any θ
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