Indices and their applications

Giovanni Galli

(ESALQ/USP)

Humberto Fanelli Carvalho

(Instituto Agronômico de Campinas)

- Electromagnetic Energy
- Electromagnetic Field
- Electromagnetic Waves

- Waves: disturbances that propagate periodically transmitting energy
- Electromagnetic waves:
- vertical vibration and horizontal propagation
- $3x10^8$ m/s vacuum speed

• Electromagnetic waves: frequency

$$Frequency = \frac{n*cicles}{\Delta t} \Rightarrow Hz$$

Electromagnetic Spectrum

- Absorbed light: fotosynthesis reaction
- Transmitted light: vegetation cover
- Reflected light: Vegetation Indices

What is a Spectral Signature?

- Different objects interact differently with electromagnetic energy (reflecting, absorbing or transmitting), this generates a spectral signature of each object;
- A target's spectral signature defines how the target interacts with different wavelenghts of the electromagnetic spectrum

Spectral Signature

Chlorophyll spectral signature;

$$CO_2 + H_2O \rightarrow [light] \rightarrow C_6H_{12}O_6 + O_2$$

SPECTRAL REFLECTANCE OF VEGETATION

Pixels

RGB from 0 to 255 range = 16 million;

Pixels

Spatial resolution :: Image quality Image quality :: amount of information

Spectral indices

They are new variables generated by the mathematical combination of two or more of the original spectral bands;

Can be used to correct for interfering structural features;

How to construct an index?

- 1. Factor of interest
- 2. Interfering factors

Example of indices

Examples of proximal sensing methods that show promise for field-based phenomics. IR - Infrared; NIR - near infrared.

Trait class	Target trait	Index or method	Applications or relevant traits	Point (P) or image-based (I)	Wavelengths	References
Pigment constituents	Chlorophyll	Normalized difference vegetation index (NDVI)		P	Red, NIR	Tucker (1979) Barnes et al. (2000)
		Canopy chlorophyll content index (CCCI)			720 and 790 nm	,
	Carotenoids	Green atmospherically resistant vegetation index (GARI)	Chlorophyll concentration, rate of photosynthesis	P/I	550 and 860 nm	Gitelson et al. (2006)
Non-pigment constituents	Cellulose	Cellulose absorption index (CAI)	Bioenergy potential.	P	2100 nm	Daughtry (2001); Kokaly et a (2009)
	Nitrogen	NDVI & CCCI	Plant nitrogen status, especially under stress	P	670, 720, 790 nm 670 and 770 nm; 590 and 880 nm	Tilling et al. (2007) Bronson et al. (2011)
	Lignin	Cellulose absorption bands	Stress responses. Bioenergy potential.	P		Kokaly et al. (2009)
Photosynthesis	Photosystem II activity	Photochemical reflectance index (PRI)	Diurnal radiation use efficiency	P	531 and 570 nm	Gamon et al. (1997)
	Photosystem II activity	Chlorophyll fluorescence	Stress effects on photosynthesis	P/I		Baker and Rosenqvist (2004)
Water relations	Transpiration or canopy conductance	Canopy temperature (CT) Crop water stress index (CWSI)	Instantaneous transpiration and hence crop water status.	P/I	Thermal IR	Jackson et al. (1981); Blum et al. (1982); Wanjura et al. (1984); Chaudhuri et al. (198
		Normalized water index (NWI)	Crop water status	P	850, 900 and 970 nm	Babar et al. (2006c); Gutierro et al. (2010)
	Canopy water content	Normalized difference water index (NDWI)	Crop water status	P	860 and 1240 nm	Gao (1996)
	Water content	Leaf water thickness (LWT)		Р	1300 nm and 1450 nm 1500–1700 nm	Seelig et al. (2008) Li et al. (2001)
Plant growth	Leaf area index Plant	NDVI NDVI	Overall growth Overall growth	P P	Red, NIR 590 and 880 nm; 670 and	Babar et al. (2006a) Bronson et al. (2011)
	biomass				770 nm	
		NWI	Overall growth	P	850, 880, 920 and 970 nm	Prasad et al. (2009)
Plant architecture	Canopy height	Close-range photogrammetry	Light interception, overall growth, lodging resistance	1	Visible or NIR	Biskup et al. (2007); Frasson and Krajewski (2010)
		Ultrasonic Depth camera	Canopy height and width Canopy height and width; leaf	P I	(Ultrasonic) Infrared	Ruixiu et al. (1989) Chéné et al. (2012)
Phenology	Maturity	Time series of index	orientation and size Tracking leaf senescence	1	Green, red	Idso et al. (1980)
	Flower number	Time series of fluorescence Image analysis	Anthocyanin levels Plant development	P I	Visible	Ghozlen et al. (2010) Adamsen et al. (2000); Thor
	Multiple stages	Analysis of time series of indices	Seedling emergence, onset of grain-filling, senescence	P+I	400-900 nm	and Dierig (2011) Viña et al. (2004)

Vegetation indices

Vegetation Indices

 Dimensionless measures derived from radiometric data used to indicate amount of green vegetation in a field view;

 Are based on a variation reflectance in a 700nm wavelenghts, that is a characteristic of green vegetation;

 Other natural surfaces do not show as much reflection variation in this wavelength;

Vegetation Indices

Soil relation with NIR and R wavebands

$$\rho_{NIR} = a * \rho_R + b$$

Broadband Indices

$$NDVI = \frac{\left(\rho_{NIR} - \rho_{R}\right)}{\left(\rho_{NIR} + \rho_{R}\right)}$$

- Numerator fraction represent vegetation quantity:
 - Lowe quantity = Less vegetation
 - Higher quantity = More vegetation
- The sum in denominador fraction represent:
 - Avarege reflectance in both wavelenghts;
 - Reduces the effect of non-uniform illumination;

- Scale index: 0 to 1;
- There is negative numbers with clouds, snow or water surfaces image: -1 to 1;

$$NDVI = \frac{\left(\rho_{NIR} - \rho_{R}\right)}{\left(\rho_{NIR} + \rho_{R}\right)}$$

$$\rho_{R} \geq \rho_{NIR}$$

NDVI is correlated with:

- canopy density;
- vigor;
- chlorophyll content;
- leaf nitrogen;
- biomass;
- photosynthesis;
- productivity;
- leaf area index (LAI);
- fraction vegetation cover (fVEG);
- fraction of absorbed photosynthetically active radiation (fAPAR);

NDVI variation by the mechanisms:

- i) distinction between what is vegetation and what is soil in the index;
- ii) chlorophyll concentration and other biochemical compounds that may affect the leaf spectral reflectance;
- iii) variation between the R and NIR reflectance of the radiation as a function of the illumination angle and shading variation of the visible area;

- The shadows response effects and ilumination angle can be correct with a proportion of fVEG;
- The response can be:

$$1 - \text{convex} \rightarrow \left(\rho_{\textit{NIR-plant}} - \rho_{\textit{NIR-soil}}\right) \ge \left(\rho_{\textit{R-soil}} - \rho_{\textit{R-plant}}\right)$$

2 - concave ->
$$(\rho_{\mathit{NIR-plant}} - \rho_{\mathit{NIR-soil}}) \le (\rho_{\mathit{R-soil}} - \rho_{\mathit{R-plant}})$$

fraction vegetation cover: fVEG

$$\rho_{R} = f_{VEG} * \rho_{R-vegetation} + (1 - f_{VEG}) * \rho_{R-soil}$$

$$f_{VEG} \cong \frac{\left(VI - VI_{soil}\right)}{\left(VI_{vegetation} - VI_{soil}\right)}$$

$$VI = (\rho_{NIR} - \rho_R)$$

- To correct for chlorofill concentration can be used fAPAR
- fAPAR = fraction absorbed of photosynthetic active radiation

$$\rho_{R} = f_{APAR} * \rho_{R-veg} + (1 - f_{APAR}) * \rho_{R-soil}$$

$$f_{APAR} = f_{VEG} * \alpha_{VEG}$$

GNDVI green NDVI

- Improved sensitivety for dense vegetation with high LAI and increases over a much wide range of chlorofill than NDVI;
- Range: -1 to 1;

$$GNDVI = \frac{\left(\rho_{NIR} - \rho_{G}\right)}{\left(\rho_{NIR} + \rho_{G}\right)}$$

SAVI soil-adjusted vegetation index

Corrects for varying soil reflectances(brightness), with "L" as an empirical correction factor to account for the fact that with increasing canopy density a greater proportion of NIR reaches the soil. The L coefficient varies from 0 at high LAI to 1 at low LAI and often assumed to be 0.5.

$$SAVI = \frac{\left(\rho_{NIR} - \rho_{RED}\right)}{\left(\rho_{NIR} + \rho_{RED}\right) + L} * (1 + L)$$

$$MSAVI = \frac{2\rho_{NIR} + 1 - \sqrt{(2\rho_{NIR} + 1)^2 - 8(\rho_{NIR} - \rho_{RED})}}{2}$$

SAVI soil-adjusted vegetation index

Soil reflectance spectrum

Narrowband indices

Xanthophyll adjust the energy distribution at the photosynthetic apparatus: light-use efficiency (ϵ) and hence photosynthesis rate.

Is it possible to measure energy flux remotely?

How to associate cycle and spectrum?

Absorption of zea and violaxanthin;

$$PRI = (p_{531} - p_{570})/(p_{531} + p_{570})$$

Temporal behaviour

Association to light use efficiency

$$NPP = f(APAR) \times \epsilon$$

NPP: net primary productivity; f(APAR): fraction of absorbed photosynthetically active radiation; ϵ : light use-efficiency.

Aproximation:

$$NPP = NDVI \times PRI$$

Determination of ϵ remains a primary challenge

Relative Water Content (RWC) = $(fresh\ mass - dry\ mass)/(turgid\ mass - dry\ mass)$

RWC range: 60 ~ 98%

Conventional procedures:

Difficult to measure; Sometimes destructive; Restricted number of samples;

Remote sensing:

Ease; Sample size.

Canopy water content::crop water status (deficit-stress)

How find the appropriate band?

Sensor accuracy vs absorption depth;

$$LeafWaterIndex = \frac{p_{1300}}{p_{1450}}$$

$$\begin{split} NDWI_{1240} &= (p_{980} - p_{1240})/(p_{980} + p_{1240}) \\ NDWI_{1640} &= (p_{858} - p_{1640}) \, / (p_{858} + p_{1640}) \end{split}$$

Remote sensing: Instantaneous, non-destructive & large scale

water stress detection

fire risk assessment

efficient irrigation scheduling

Thermal indices

Canopy temperature::transpiration::stomatal conductance;

Stressing conditions (drought):: canopy temperature is affected;

Stomatal conductance vs photosynthesis;

OBS.: Conductance depends mainly on stomatal closure.

Crop water stress index $(CWSI) = (T_{canopy} - T_{nwsb}/T_{upper} - T_{nwsb})$

Çolaka et al., 2015

Advantages:

Calibration eliminates significant amount of error;

Disadvantages:

Baselines must be determined;

Environmental conditions must be similar.

Single leaf or full canopies (no soil): soil visible *vs* stomatal closure;

Plot level

Staygreen

Irrigation systems

Animal health

Nutrient effect

FINAL REMARKS

Indices can be useful when correctly utilized;

Plant breeding – field based phenomics;

Indices have been around for decades – but it is just the beginning.

Thank You!

humberto.fanelli@gmail.com giovannigalli@usp.br