
The Journal of Systems and Software 83 (2010) 1123–1136
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/locate / jss
A feature-oriented approach for developing reusable product line assets
of service-based systems

Jaejoon Lee a,*, Dirk Muthig b,1, Matthias Naab c,2

a School of Computing and Communications, Lancaster University, Lancaster, United Kingdom
b Lufthansa Systems, Germany
c Fraunhofer Institute for Experimental Software Engineering (IESE), 67663 Kaiserslautern, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 February 2009
Received in revised form 1 September 2009
Accepted 27 January 2010
Available online 4 February 2010

Keywords:
Software product line engineering
Feature-oriented
Service-based systems
Software architecture
Software architecture styles
0164-1212/$ - see front matter � 2010 Elsevier Inc. A
doi:10.1016/j.jss.2010.01.048

* Corresponding author. Tel.: +44 1524 510359; fax
E-mail addresses: j.lee@comp.lancs.ac.uk (J. Lee),

(D. Muthig), matthias.naab@iese.fraunhofer.de (M. Na
1 Tel.: +49 69 696 32868; fax: +49 69 696 9832868.
2 Tel.: +49 631 6800 2249; fax: +49 631 6800 9 224
Service orientation (SO) is a relevant promising candidate for accommodating rapidly changing user
needs and expectations. One of the goals of adopting SO is the improvement of reusability, however,
the development of service-based system in practice has uncovered several challenging issues, such as
how to identify reusable services, how to determine configurations of services that are relevant to users’
current product configuration and context, and how to maintain service validity after configuration
changes. In this paper, we propose a method that addresses these issues by adapting a feature-oriented
product line engineering approach. The method is notable in that it guides developers to identify reusable
services at the right level of granularity and to map users’ context to relevant service configuration, and it
also provides a means to check the validity of services at runtime in terms of invariants and pre/post-con-
ditions of services. Moreover, we propose a heterogeneous style based architecture model for developing
such systems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Service orientation (SO) is a relatively new paradigm for soft-
ware development: systems are no longer developed, integrated,
and released in a centrally synchronized way, but services are
developed and deployed independently and separately in a net-
worked environment, as well as composed as late as at runtime
(Erl, 2008; Zhu, 2005; Dan et al., 2008).

Over the last few years, the emergence of many application do-
mains that could benefit from the idea of service orientation had
been observed. This is mainly due to the rapid growth of the Inter-
net in terms of size and speed, and ambient hardware devices that
are small but have enough computing power to provide services.
For example, diverse pieces of end user equipments are capable
of interacting on their own in a ‘‘virtual office” domain – either be-
cause certain persons are identified, messages are received from
other equipments, or based on status of higher-level business
workflows. Additionally, office equipment will provide services to
its potentially mobile users that are useful in their current context
(i.e., their role and responsibilities, the active workflows, and the
available technical infrastructure).
ll rights reserved.

: +44 1524 510492.
dirk.muthig@lhsystems.com

ab).

9.
While these application domains benefit from SO, there had not
been a great attention about the reusability of software artifacts. As
the domain matures, however, the need for a systematic approach
for developing reusable assets of such service-based systems is
being recognized in the literature (Zhu, 2005; Dan et al., 2008;
Lee et al., 2008).

The resulting method thus needs to tackle several challenging
issues organizations practically experience while developing reus-
able assets of service-based systems. These issues include:

– the identification of reusable services: SO facilitates an easy
composition (orchestration) of services. This capability is one
of the key benefits of service-based system, however, it also
results in populating multiple similar services, which is the main
obstacle to establishing a systematic reuse;

– the determination of service configurations that are relevant to
users’ current product configuration and context: different from
static variation control of traditional software product line
approaches, we should be able to control service configurations
depending on each user’s current needs and available resources
at runtime; and

– the provision of a means to maintain service validity during
workflow transactions: the capability of autonomous configura-
tion change requires a mechanism by which we can check
whether current services are valid for a particular configuration
and user’s context.

http://dx.doi.org/10.1016/j.jss.2010.01.048
mailto:j.lee@comp.lancs.ac.uk
mailto:dirk.muthig@lhsystems.com
mailto:matthias.naab@iese.fraunhofer.de
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

1124 J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136
Note that one important assumption in this paper is that the
developed assets are under the control of a developing organiza-
tion. That is, we focus on how to develop reusable assets of ser-
vice-based systems. Therefore, a service provider is also
developed and deployed by the organization with the reuse of
product line assets and we do not imply a third-party service
provider.

In this paper, we extend (Lee et al., 2008) by (1) focusing on
improving reusability of service-based systems, (2) adding context
definition and specification, (3) explaining product engineering pro-
cess, and (4) refining our case study to provide more technical details
to readers. We adapted a feature-oriented product line engineering
approach, which has been applied successfully for establishing
software reuse in practice (Kang et al., 2002; Lee and Kang,
2006). Our method is the novel fusion of the two research themes
of services and software product line engineering: achieving flexi-
bility of network based systems through service orientation, but
still managing product variations through product line engineering
techniques.

It is based on the feature analysis technique (Lee and Muthig,
2006; Lee et al., 2002) that enables us to identify reusable services
of a service-based system. The method is notable in that it guides
developers to identify reusable services of a service-based system
and to map users’ context to relevant service configuration, and
it also provides a means to check the validity of services in terms
of invariants and pre/post-conditions of services. Moreover, we
propose a heterogeneous style based architecture model for the
systematic development and variation control of such systems.
1.1. Related work

Achieving reusability is an often stated goal of SOA in the liter-
ature. In spite of this, only a few approaches and ideas exist in re-
search publications. While the approach in this paper concentrates
on achieving reusability by means of proper identification and
specification of services using product line technologies, Zhu
(2005) follows another approach. There, reusability is claimed to
be achieved by the structure of systems and the interaction mech-
anisms. This mainly means the availability of a service repository
and the concepts for discovering, negotiating, and binding services.
Dan et al. (2008) address reuse of services very explicitly. The main
idea is to apply different practices of SOA governance to address
aspects like terminology, service discovery and creation, and ser-
vice entitlement. Mainly, the paper details and discusses and de-
tails the challenges of reuse in SOA. Our approach can be seen as
a constructive answer to the challenges in the area of service
creation.

IBM developed a method for the development of SO systems
called ‘Service-Oriented Modeling and Architecture’ (Arsanjani,
2004; Arsanjani and Allam, 2006). It provides guidelines for three
steps towards SO systems: Identification, specification, and realiza-
tion of services, flows, and components. Most details in Arsanjani
(2004) are related to the identification of services. There, a combi-
nation of three complementary ideas is proposed: First, the domain
of the respective software systems is analyzed and decomposed.
Second, existing legacy systems are explored in order to discover
parts to be reused as services. Third, business goals are taken into
account to complete the identification of services.

The first and third ideas are also reflected in our approach. Our
approach supports the service identification by the feature
orientated analysis and thus we could also analyze various
relationships (i.e., aggregation, generalization/specialization, and
binding) among identified services. The approach of IBM further
suggests organizing services in a hierarchy of services of different
granularity. Our approach adds the dedicated layer of molecular
services that form reusable assets in the specific domain. According
to the respective domain, the molecules would be composed in dif-
ferent ways to optimally fit the requirement of reuse. Thus, reuse
becomes easier by only selecting from a rather small number of as-
sets with well-tailored granularity. The concept of flows of services
is mentioned to be important in Arsanjani (2004), however, there
are no details about the identification or specification of these
flows. Our approach incorporates the defined molecular services
as the building blocks of which to orchestrate workflows.

To a certain extent SOA and SPLE (Software Product Line Engi-
neering) share common goals like reusability in order to achieve
economic benefits. The relationship among the two and the poten-
tial for mutual benefits has been recently explored. So far, this
exploration is mostly done at the general level (e.g. Helferich
et al., 2007) in order to identify common ideas and differences.
Especially feature-orientation, which is often used as an approach
to capture commonalities and variabilities in SPLE has been ana-
lyzed for the support of service orientation. Challenges identified
in this area are presented in Apel et al. (2008). Our paper presents
a very concrete way how feature-orientation is applied in order to
improve the reusability of services.

Another approach of using feature-oriented analysis to identify
services for a SO system is described in Chen et al. (2005). Their
main focus is reengineering towards SO systems. Therefore, they
claim to do a feature analysis of the particular system and use
the result as input for the service identification. What is missing
there is concrete guidelines how to come up with services of the
right granularity. It is only stated that services should be as
coarse-grained as possible. The lack of elements putting more
structure on the feature model, like feature binding units, makes
service identification more complex.

In the literature, there are a number of languages to express ser-
vice orchestrations. In the field of Web Services, the most popular
technology for realizing SO systems, BPEL4WS (Business Process
Execution Language for Web Services) (Juric et al., 2003) is well
known. It represents a language to specify orchestrations of ser-
vices that are then accessible as higher-level services.

In our approach, the orchestrated services are described as
workflows. A further concept we transferred to service composi-
tion is ‘Design by Contract’ (Meyer, 1991). This means to enrich
the composition language and service description by pre/post-con-
ditions and invariants that can be automatically verified. Hence,
the reliability of service composition, static as well as dynamic,
can be improved by checking the correct usage of services. Thus,
the reusability of services with advanced description is improved
since automatic checks can reduce the number of feasible candi-
date services, which makes selection easier.

For the development of service-oriented systems, a number of
reference architectures have been proposed (Georgantas et al.,
2005; Arsanjani et al., 2007a,b; OASIS Reference Architecture; Dur-
vasula, 2007). Typically, the focus in these reference architectures
is on the description of the overall system and especially on the
organization and orchestration of services on the provider’s side.
That is, only less documentation is available how applications are
to be designed that are settled in a service-oriented architecture
(Krafzig et al., 2005). Such applications are mostly characterized
as service consumers, but their internals are not subject of the ref-
erence architecture. In contrast, our architectural model empha-
sizes the service consumers and combines architectural styles to
achieve the domain-specific design goals.

1.2. Approach overview

Product line processes generally aim at a systematic exploita-
tion of common characteristics and predicted variations among
products of the same family (Arsanjani, 2004; Clements and

Fig. 1. Activities of the approach.

J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136 1125
Northrop, 2002; Pohl et al., 2005). The key idea is thereby to split
the overall lifecycle into two main phases: application and family
engineering. Each instance of application engineering constructs
and maintains one particular product. Family engineering con-
structs and evolves the reuse infrastructure that is supposed to
make application engineering more efficient. The input to family
engineering is the specification of a product family (i.e., the prod-
uct line scope), whose members are produced by application engi-
neering projects.

The method has thus to guide through the construction of a re-
use infrastructure, on the one hand, that consists of generic ser-
vices optimized for the particular family of envisioned products.
On the other hand, it also must guide construction and evolution
of family members, which are heavily based on existing services
(i.e., heavily reusing existing services).

Fig. 1 shows activities and their relationships of the technical
component presented. These activities are executed iteratively;
the arrows in Fig. 1 indicate the flow of data and which work prod-
ucts are used by each activity.

A feature analysis organizes product family features into an ini-
tial model, which is then refined by adding design features such as
operating environments, domain technologies, or implementation
techniques. Within the feature model, the subsequent binding
analysis identifies binding units and determines their relative
binding times among each others (Lee and Kang, 2004).

The service analysis consumes the results of these analyses.
Each binding unit is further analyzed to determine its service cat-
egory (i.e., orchestrating service or molecular service) with respect
to the particular family at hand. We assume here families whose
variations can be described best by variations in workflows
executed by the system users. Additionally, the context and the
technical infrastructures available vary and thus dynamic reconfig-
urations of product variants are expected.

In our approach, the mass of low level services are grouped into
richer services as required by the family. We call these services as
‘molecular’3 services. Note that each product family has thus its
own specific set of molecules, the reusable services for construct-
ing family members. Due to the definition of those molecules
based on product line processes, molecular services are more reus-
3 In chemistry, a molecule is defined as ‘a sufficiently stable electrically neutral
group of at least two atoms in a definite arrangement held together by strong
chemical bonds’ (Union of Pure and Chemistry, 1994) We adopt this notion of
molecular, as a molecular service represents a unique service, which will be used as-is
without a further decomposition in a particular domain.
able than low level services in the context of a particular product
family. On the other hand, the high level services, that we call
orchestrating services, are specified first as workflows and their
constituting tasks. Then, their pre/post-conditions, invariants, and
service interfaces are specified. Finally, the system integration
and deployment activity form a product and the orchestrating ser-
vices provide services to users by integrating and parameterizing
the molecular services at runtime.

1.3. Outline

The remainder of this paper is organized as follows: Section 2
generally introduces feature analysis as a key activity within prod-
uct line engineering to identify commonalities and predicted vari-
abilities of a product line. Section 3 then describes in detail the one
major step of our method, namely the analysis of services, their
identification and orchestration. Section 4 presents then the other
major part of our method that is the underlying architectural style
that defines the structures of service-based product lines as pro-
posed by our approach. Section 5 explains how the artifacts of each
process are put together to deliver a product to a customer by reus-
ing previously developed services. Section 6 demonstrates the ap-
proach by presenting a case study from the office domain, which
has been created under a research theme we call the virtual office
of the future. Section 7 concludes the paper by discussing what has
been achieved so far, as well as outlining the planned future work.
2. Feature analysis

In this section, activities of feature analysis, which includes fea-
ture modeling and feature binding analysis are introduced. For
illustrating the approach presented in this paper, we selected a
case study in the domain of the virtual office of the future (VOF).
The VOF product family consists of systems, which control and
manage collections of devices to provide any-time any-where of-
fice environments (VOF). In this paper, we limit ourselves to the
VOF features in Table 1.

Feature modeling is the activity of identifying externally visible
characteristics of products in a product line and organizing them
into a model called a feature model (Lee et al., 2002). (Fig. 2 is a fea-
ture model of the VOF product line.) The primary goal of feature
modeling is to identify commonalities and differences of products
in a product line and represent them in an exploitable form, i.e., a
feature model.

Table 1
Product features of VoF product line.

Product feature Description

Follow Me (FM) In the VOF product line, information on users’ (physical)
locations is important to provide context-relevant
services. This feature detects physical location of a user
by using various locating devices such as access points
(AP) of wireless LAN, personal ID cards and RFID. A user’s
location is updated when events from the user are
detected or at pre-determined intervals. One of the FM’s
optional features is Automatic Log-on, which allows a
user to access facilities (e.g., computers, printers, rooms,
etc.) of an office building without manual operations for
authentification. This feature must be bound at runtime
only if (1) FM is selected for the current product
configuration, (2) the requesting user’s job function is a
manager or a director, and (3) a RFID-based locating
device is available nearby

Virtual Printer
(VP)

This feature selects the nearest printer to a user with a
most appropriate printing quality at the moment when
the service is requested

Smart Business
Trip (SBT)

The smart business trip feature supports planning,
approving, preparing, and reporting a business trip. After
a traveling employee triggers this service, relevant tasks
for various stakeholders (e.g., a manager who has the
authority to approve the trip and a secretary who makes
reservations for hotels and transportations) are invoked
automatically. The system should recognize the context
of each stakeholder and configure/bind services to be
best fit into current situations. Suppose, for example, that
a user needs to print a file, then an appropriate printer is
selected automatically and its location is notified to the
user by using the Virtual Printer feature

Smart Fax (SF) A smart fax feature supports on-line fax send/receive
services. A user can send a fax on-line by providing a
destination fax number, recipient’s name and
organization, and preferred transmission time, after
preparing a fax document at her/his computer. When a
fax is received, this feature can also detect a recipient of
the fax by using an OCR function and send a notification
to its recipient via email or SMS

1126 J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136
Common features among different products in a product line
are modeled as mandatory features (e.g., Virtual Printer and Smart
Fax), while different features among them may be optional (e.g.,
Automatic Log-on) or alternative (e.g., AP-based or RFID-based User
Positioning Method). Optional features represent selectable features
for products of a given product line, and alternative features indi-
cate that no more than one feature can be selected for a product. In
a feature diagram, these features are organized by using three
types of relationships: composed-of, generalization/specialization,
and implemented-by. For example, Smart Fax is composed of On-line
Fax Send, Recipient Recognition, and Recipient Notification. Composi-
tion rules supplement the feature model with mutual dependency
and mutual exclusion relationships which are used to constrain the
selection from optional or alternative features. In the VOF product
line, Recipient Notification requires Recipient Recognition and they
should be selected together.

Once we have a feature model, it is further analyzed through
feature binding analysis. Feature binding analysis consists of two
activities: feature binding unit identification and feature binding
time determination. Feature binding unit identification starts with
identification of service features. A service feature represents a ma-
jor functionality of a system and may be added or removed as a
service unit. In VOF, Smart Fax and Smart Business Trip features
are examples of service features.

Because a feature binding unit contains a set of features that
need to be bound together into a product to provide a service cor-
rectly and share a same binding time, a product can be considered
as a composition of feature binding units. For instance, Smart Fax
and On-Line Fax Send should be incorporated into a product at
the same binding time (e.g., compile time, installation time, or run-
time) to provide the Smart Fax service properly.

Through the binding analysis, we could have the following
information on a service-based product line:

– candidate reusable services: a set of feature within a binding
unit should be together to provide a service and, therefore, this
feature group could be a right granularity for developing reus-
able services;

– dependency among services: the link between binding units
represents binding time dependency (i.e., a parent binding unit
must be bound beforehand for the binding of its descendent
binding units) and this should be consistent with their imple-
mentation; and

– variation points for runtime binding: through the binding time
analysis, we can make an early decision on which service should
be deployed and bound into a product at runtime. Such services
and their constituting features should be designed to support
the binding at runtime.
In the next section, it is explained how the identified candidate
services (i.e., feature binding units) are further classified and
refined.
3. Service analysis

Through the previous activities, we now have a feature model
and feature binding information, which provides an insight into a
targeting domain in terms of product features, basic units of bind-
ing, and their binding time. Then, the feature model is refined and
restructured by introducing two distinctive service characteristics:
behavioral (workflow) and computational (tasks) service
characteristics.

The primary objective of introducing these two different criteria
of the feature classification is to address the first difficulty that we
discussed: avoiding rapid population of similar services but captur-
ing reusable services of a service-based system. Based on our
observations on service-based systems, we identified two different
characteristics of services: a behavior oriented service, which is
very likely modified for each organization or user’s needs (e.g.,
workflow for a business trip process), and a computation oriented
service, which can be reused across multiple product configura-
tions (e.g., a user localization service).

A behavior oriented service is mainly to define a certain se-
quence of tasks, i.e., workflows. We call services in this category
as orchestrating services, as their main role is the composition of
other services in a harmonious way. A computation oriented ser-
vice is to provide computational outputs (i.e., a pre-defined task
to be conducted by an IT system or a person) in response to given
inputs. We call services in this category as molecular services, as
they are the basic building blocks and will be reused as-is by
orchestrating services. Details of services that belong to each cate-
gory are explained in the following sections. (See Fig. 3 for the re-
fined feature model with the two service layers.)

The following sections describe the details on orchestrating and
molecular services with examples.
3.1. Orchestrating service

An orchestrating service has the responsibility to reflect a
workflow, which a user of a system can conduct or trigger, and
the coordination of system functionalities. In the VOF product line,
an orchestrating service usually consists of a whole sequence of

Fig. 2. Feature model of VOF.

J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136 1127
interactions between one or more users and the coordination
among related molecular services.

3.1.1. Basics for the definition of orchestrating services
The basic constructs needed for defining orchestrating services

are the following: First, tasks are the basic building blocks of a
workflow. They can represent the interaction of the system with
a user, e.g. to collect information in a workflow, or they can repre-
sent triggering some computational function in form of another
service. Second, decisions are an important construct to allow for
the definition of a more complex control flow. The decisions can re-
fer to all data available in the workflow or particularly defined con-
text data. Third, parallelizing of the control threads is possible to
allow for the parallel execution of tasks. Forth, the concepts of
users and roles are important. A workflow can involve and coordi-
nate the work of multiple users. To be independent of individual
users, roles are defined. Then tasks can be assigned to appropriate
and available people, depending on the role definitions.

3.1.2. Extended support for reliability
For orchestrating services, correctness of their overall control

behavior is the foremost concern. For example, providing an expen-
sive color-printing service with proper authorization is critical in
the virtual office environment. Therefore, we extended the BPEL
(Juric et al., 2003) workflow definition language with pre/post-con-
ditions and invariants to enhance the reliability of specifications.

Fig. 4 shows a workflow specification example for the Smart
Business Trip service. Each orchestrating service has pre/post-con-
ditions and invariants. In this example, a user should be logged
in to trigger the service and the workflow is completed only after
the user submits a postmortem report about her/his business trip.
Also, the invariants (i.e., the user is employed and the business trip
is not cancelled) should hold through the whole workflow process.
(See the text box at the mid-left portion of Fig. 4.) Whenever the
invariants become invalid, the workflow is terminated with proper
notifications to relevant stakeholders or other behavior for the res-
olution of the problem situation can be defined.

Moreover, each task of the workflow can be specified with its
pre/post-conditions and invariants. That is, processing a single task
can involve several interactions between a user and the system and
thus it is valid to define invariants for tasks. For example, a secre-
tary should achieve the access right to organizational data such as
the charged project’s budget information and the traveler’s bank
account number to proceed with the ‘reservations’ task. These con-
ditions can be defined as the precondition of the reservation task
and checked when a secretary is assigned for the task. Also the con-
sistency of invariants between a workflow and its constituting
tasks should be checked when an orchestrating service is specified.

3.1.3. Extended support for mobility
Another important concern in today’s information systems is

the increasing mobility of users: users want to work with a system
at any time at any place. Although the coverage of wireless tech-
nology continuously increases, there are still many situations that
require working in disconnected mode. For working in a discon-
nected environment, the availability of services and the appropri-
ate data on the user’s device should be identified. This is the
second important aspect that we address at the level of orchestrat-
ing services. Therefore, the term locality is used. A task is called lo-
cal if all information needed by the responsible person is locally
available on this person’s computing device. A sequence of tasks
is called local if only one person is responsible for these tasks
(i.e. no switch between roles) and if all tasks in this sequence are
local.

The VOF product line particularly relies on this ability of mobile
and disconnected working. For example, a person on a business

Fig. 3. A refined feature model based on two service categories.

Fig. 4. An example of workflow specification for an orchestrating service: smart business trip.

1128 J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136
trip can process all its tasks belonging to a workflow as long as they
are local. That is, no global coordination with the overall system or
other users is necessary. After a reconnect to the other system
parts, the global coordination can go on and the results produced
locally can be shared with people to trigger them for further
processing.

Fig. 5. An example of molecular service specification.

J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136 1129
Next, the identification and specification of molecular services
are explained.

3.2. Molecular services

The identification of molecular services with right granularity is
the key factor to enhance reusability of the service-based system
development. Molecular services are the basic units for reuse and
orchestrating services should be able to compose them as-is
through their interfaces during development time or runtime.

3.2.1. Basic properties of molecular service
For their identification, feature binding units are analyzed and

refined with consideration of the following guidelines. A molecular
service should be:

– self-contained (local control and local computation);
– stateless from service user’s point of view;
– provided with pre/post-conditions; and
– representative of a domain-specific service.

The first three guidelines are to decouple service consumers
from providers. Based on these guidelines, a service consumer only
needs to know the service providers’ interfaces and their condi-
tions for use. This means that any changes (performance improve-
ments, bug patches, etc.) within an identified molecular service
should be encapsulated. The last guideline is the key factor to
determine the right granularity of a molecular service based on
the feature binding unit and time information, and domain experts’
professional judgment.

In our case study, for instance, the feature binding units related
to Follow Me and its descendent feature binding units are identified
and reorganized as the FOLLOW ME molecular service in Fig. 3. The
rationale for this determination is as follows:

– the Follow Me feature is a mandatory service for every user of the
VOF product line,

– each localizing device (e.g., RFID, access points of wireless net-
works, etc.) uses different localization techniques, but their
expected outputs are the same (e.g., a user’s physical location),

– the implementing algorithms for localization evolve rapidly to
improve their accuracy, and
– it is a computation oriented service without any workflows in it.

Based on this decision, the FOLLOW ME molecular service is de-
signed and implemented to provide the user localization service to
the orchestrating services, if they abide by the pre/post-conditions
of FOLLOW ME.

A molecular service may have QoS parameters, which are iden-
tified during the feature binding analysis in terms of optional or
alternative features. That is, by using different functionality with
different properties, the overall services can exhibit different QoS
levels. For example, the User Position Method feature has two alter-
natives (e.g., Access Point based Method and RFID-based Method) and
their levels of accuracy are different (e.g., the error range of the
RFID-based method is less than 1 meter, whereas the error range
of AP-based method is less than 10 m). Depending on available de-
vices near a user, one of the alternative positioning methods is se-
lected and used.

3.2.2. Specification of molecular services
In our approach, each molecular service is specified by using a

text-based specification template and Fig. 5 shows the specifica-
tion of FOLLOW ME. (The characters in the bold font are reserved
words for the specification.) The FOLLOW ME service is for the cur-
rent employees, who passed the authentification and logged in.
Also, the Automatic Log-on, which is optional for higher quality of
the service, is only available at runtime when the requesting user’s
job function is director or managers, and a RFID device is available
near by. (See the lines 9–13 for the specification of optional feature
Automatic Log-on.)

In this section, concepts and guidelines for analyzing and spec-
ifying molecular services are explained. The next section intro-
duces context analysis and specification for the control of
runtime variation.

3.3. Context analysis and specification

The context awareness is one of the important capabilities for
dynamic service/product reconfiguration (Hallsteinsen et al.,
2006; Bencomo et al., 2008). The context analysis of this paper
is adopted from Lee and Muthig (2008), which starts with identi-
fying contextual parameters of a product line. A contextual param-
eter is defined as an environmental element that has a piece of

Table 2
Contextual parameter definition

Contextual
parameters

Attributes

Type Sampling
rate

Validity (a valid range of
value or a set of valid values)

Privilege Level (P) String Log-in
time

P = ‘‘Director” _ ‘‘D-Head” _
‘‘Manager” _ ‘‘Scientist” _ ‘‘Visitor” _
‘‘Administrator”

Available User
Localizer (AL)

String 60 s AL = ‘‘RFID” _ ‘‘AP”

Device (D) String Log-in
time

D = ‘‘Desktop” _ ‘‘notebook” _ ‘‘PDA”
_ ‘‘PHONE”

1130 J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136
information about a system’s context (e.g., current location of a
user, battery remaining time, etc.). Once contextual parameters
are identified, we refine them by defining attributes of each param-
eter. The attributes may include data type, sampling rates, and
validity conditions. (See Table 2 for a part of contextual parameter
definitions for VOF.) In the Type column, the types of contextual
parameter values are defined. The Sampling Rate defines how often
the contextual parameters should be checked. A contextual param-
eter may be valid only if its value is within a pre-defined range or a
set of values: such conditions are defined in the Validity column.
The validity conditions of each contextual parameter should be
satisfied before a contextual parameter is used to detect contextual
changes.

Then, each situation is specified as a logical expression of con-
textual parameters. When a situation is recognized, it triggers a dy-
namic reconfiguration. For instance, a Automatic Log-on Allowed
situation is true when Privilege Level (P) is Director and the Available
User Localizer (AL) is RFID. For this situation, the Automatic Log-on
can be bound and activated. This means that a higher quality of
FOLLOW ME molecular service (i.e., FOLLOW ME with Automatic
Log-on enabled) is provided, when the user is Director and
equipped with RFID device.

The next section introduces an architecture model for the devel-
opment of these services.

4. A Heterogeneous style based architecture model

A software architectural style (or a style in short) captures a
recurring form and its variations of software system design (Cle-
ments et al., 2002). A style comes along with a set of constraints
that it satisfies and this information is essential for software
designers to make a right architectural decision. Also, style specific
tools and implementations may be available for developing a sys-
tem that uses the style. It should be also noticed that a system sel-
dom comprises a single style, but rather a set of styles for different
parts of the system design. Therefore, it is important to apply styles
based on explicit rationale (i.e., design goals) and maintain consis-
tency among them.

For the development of the VOF system, we propose a HEtero-
geneous style based ARchiTecture (HEART) model, which consists
of three decomposition levels. In the following sections, we explain
the design goals, meta-models of architectural styles used at each
decomposition level to achieve the goals, and an instance of the
meta-model for the VOF system.

4.1. Design goals

While we explored various design issues for developing systems
for future office environments, we identified the quality attributes
flexibility and scalability as very important. The following main de-
sign goals concretize the quality attributes in our context and serve
as input for the construction of the architectural model:
1. Support for late binding of networked services to their consum-
ers: this is to achieve the runtime flexibility, which is one of the
main ideas of SO. By networked services we mean any entities
that can be developed and deployed independently but their
binding to their consumers occurs at runtime when the con-
sumers request. In the VOF product line, shared business
peripherals (e.g., printers, fax machines, etc.), a workflow
engine that processes the global transaction are the examples.
Also, the system scope should be able to scale up through the
Internet.

2. Support for mobile products: In the future office environments,
people may use mobile devices and these devices may not have
a continuous connection to central infrastructures. Neverthe-
less, the devices should provide as much functionality as
possible.

3. Support for four main functionalities of a service consumer: a
service consumer should be able to maintain connectivity to
the system domain, recognize current context, interact with a
user, and manage multiple active services at a certain moment.
Moreover, the priorities among services may vary depending on
users’ current situations. This implies that a developer should
be able to define multiple concurrent processes as well as their
priorities.

4. Support for our notion of service classification: we analyzed
two distinct service characteristics (i.e., orchestrating and
molecular services) to identify services with right granularity
and clarify their interactions. The architecture design should
facilitate these concerns for identifying and deploying architec-
tural components.

5. Support for dynamic reconfiguration: a product should be able
to reconfigure and parameterize its services depending on rec-
ognized situations and available resources at the moment.

6. Support for product line variation control: we should be able to
control the variation of each product so that each user can have
her/his own product configuration.

7. In the following section, we explain our proposed architecture
model and how these design goals are achieved.
4.2. The HEART model

The HEART model consists of three decomposition levels and
each level addresses specific design goals listed above by adopting
architecture styles. The top level supports the first and second de-
sign goals by adopting the service-oriented style (Michlmayr et al.,
2007). (The upper portion of Fig. 6 shows the meta-model of the
style.)

Service providers and consumers can join and leave the system
scope (i.e., domain) independently and the information broker
takes care of their authentification, registration, retrieval. Also,
the trust relationship can be established between information bro-
kers so that the service consumers can join the trusted domain and
access services in that domain. Note that we did not impose any
constrains on service providers, as long as they abide by the inter-
faces with the information broker and service consumers.

The lower portion of Fig. 6 shows an instance of the service-ori-
ented style. In this example, three printing service providers are
deployed: Guest Printer, Color Printer, and Default Printer. Each ser-
vice provider has its unique profile, such as supported paper sizes
and color-printing capability, and it registers this information to
the A Domain information broker when it is ready to provide the
printing service. Also, three service consumers are deployed: Direc-
tor, Scientist, and Guest. Each name represents its role and its acces-
sibility to the service providers are decided by the role. For
example, Director can access all printer services, while Guest can
only access the Guest Printer service provider. This information is
maintained by the information broker.

Fig. 6. A service-oriented style meta-model and its VOF instance.

J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136 1131
The next decomposition level supports the third design goal by
adapting the communicating process style. (See the upper portion
of Fig. 7 for its meta-model.) The style consists of concurrent pro-
cesses and their communication paths, which can be implemented
independently. Obviously, each concurrent process can have its
own time schedule and interact with each other via connectors.
This style also benefits that the scheduling among concurrent pro-
cesses can be defined in various ways (e.g., preemptability, priority,
timing parameters) as needed (Clements et al., 2002).

As for its instance, we indentified four process components:
Consumer Agent, User Interface, Context Analyzer, and Service Man-
ager. (See the lower portion of Fig. 7.) The Consumer Agent is in
charge of maintaining connectivity to the information broker and
service providers. Whenever a service provider fails, it negotiates
with the information broker and gets another available service pro-
vider. The User Interface process implements user specific hard-
ware (e.g., PC, PDA) and operating system (e.g., Linux) relevant
interfaces. The Context Analyzer process recognizes currently avail-
able resources (e.g., available user localization devices) and situa-
tions of a user. The Service Manager contains the main
functionalities of a service consumer and activates relevant service
features based on the information gathered from User Interface and
Context Analyzer.

The next decomposition level supports the fourth, fifth, and
sixth design goals by adapting C2 style4 (Medvidovic et al., 1999).
The UML based presentation of C2 style proposed in Robbins et al.
(1997) is extended to include two different types of bricks: workflow
brick and molecular service brick types. (The upper portion of Fig. 8
shows the adapted meta-model.) The workflow brick is for deploying
Fig. 7. A communicating process style meta-model and its VOF instance.

4 The C2 style provides flexibility through its layered structure and modular
components, which are called ‘‘bricks”. A brick can have its own thread and can send/
receive messages to/from other bricks through its top and bottom ports, and bus-style
connectors connecting ports.

Fig. 8. A C2 Style meta-model and its VOF instance. (Adapted from Robbins et al.
(1997))

1132 J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136
orchestrating services and the molecular service brick is for deploy-
ing molecular services. For molecular services, it is possible to either
deploy a real service or a proxy to an external service as a brick.
Additionally, the configurator component manages reconfiguration
of deployed product at runtime.

The lower portion of Fig. 8 shows a C2 style based configuration
of the Service Manager process. The Master Configurator collects
information from Context Analyzer to detect contextual changes.
If a contextual change that requires product reconfiguration is de-
tected, it triggers a reconfiguration to accommodate the change.
For example, if Context Analyzer reports that a RFID device for the
user localization is detected, it dynamically binds a corresponding
Follow Me brick, which is capable of processing the new device.
Also, when a new orchestrating service is requested and it is avail-
able, it can be deployed and bound to current configuration at
runtime.

An orchestrating service brick transacts its orchestrating service
locally if possible (e.g., Virtual Printer can be transacted locally
without connecting to other users). When it requires a global coor-
dination (e.g., an approval of deciding staff for a business trip), a
global workflow engine is connected through Global Workflow
Proxy for a global workflow transaction.

For the deployment of a molecular service brick, we can use two
different strategies depending on its characteristics. If it should be
dedicated to a certain user, a user specific brick is deployed locally.
For instance, the Follow Me molecular service is dependent to a
user’s role and must be deployed individually. On the other hand,
if it should be shared among service consumers, it is deployed as
a service provider at the top level of the architecture model and
a proxy brick is deployed locally. Global Workflow Proxy is such
examples. (See the bottom layer of Service Manager in Fig. 8.)

In this section, we explained the HEART model for the system-
atic deployment and management of the system configuration
with the VOF system example. In the next section, the product
engineering is explained.
5. Product engineering: putting them together

Product engineering is a process of developing a specific applica-
tion making use of the core assets obtained during product line
asset engineering. Product engineering first analyzes user’s require-
ments and selects appropriate and valid product features from the
feature model. Then, the architecture model and components are
configured for a product. Finally, a product specific service configu-
ration is specified and allocated to the Master Configurator.

5.1. Product requirements analysis

As indicated above, product engineering starts with a feature
selection specification. This is done by first analyzing user’s
requirements for the target product, and finding a matching set
of features from the feature model. The feature model not only lists
user selectable characteristics of the system, but also includes their
interrelationships and selection criteria (e.g., rationale).

Selecting a set of features from the feature model can generate a
configuration of a product. Since mandatory features will automat-
ically be included in all products, selection should be made for op-
tional and alternative features. In addition, some feature may need
to be refined with product specific requirements. For instance, de-
tailed behavior of the Smart Business Trip should be specified to
meet customer specific (e.g., a guest, manager, or director) needs
by using workflows.

Though some features may be physically included in a product,
their availabilities still can be controlled at runtime depending on
the current context. Obviously, if these features are determined not
to be included in a product (e.g., a configuration for a guest user),
they cannot be made available at runtime. If these features are in-
cluded in a product, however, their availabilities should be deter-
mined by a user input or an operational contextual change at
runtime. Therefore, a product specific context, which decides when
to make these features available, should be also identified and then
specified as described in Section 3.3. For example, a product for a
director may make the Automatic Log-on service feature available
automatically when its required sensors and actuators could be
found through the information broker at runtime, while a product
for a guest may not aware of such services due to its product
configuration.

As feature selection decisions are made, the product architec-
ture components are configured.

5.2. Configuring product architecture and components

After the feature selection process described above, a corre-
sponding product architecture model is first configured through

Fig. 9. Deployment of orchestrating/molecular services for a product configuration.

J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136 1133
the mapping relation between features, services, and architectural
components. Once product architecture is configured, reusable
components are integrated into each bricks by following the spec-
ifications described in the components (e.g., selection of pre-coded
components, filling in skeletons, or instantiation of parameterized
templates).

Fig. 9 shows an example of product architecture at the last
decomposition level (i.e., the C2 style), which is configured for a
director. The selected components should be processed by using
appropriate techniques depending on the binding time. For exam-
ple, components and program segments related to the Automatic
Log-on feature is managed within the Follow Me brick based on
the context information gathered by the Context Analyzer in the
upper layer (see Fig. 7) and passed through the Master Configurator.
Fig. 9 also shows the mapping fromOrchestrating/Molecular Services
to Workflow/Molecular Bricks.

Note that the configuration of this layer explicitly shows a prod-
uct configuration of a specific user. That is, the product variation
control for a specific user is achieved by determining the deploy-
ment of bricks based on the feature selection specification for the
user.

To demonstrate the feasibility of the proposed method, we
developed a prototype of the VOF system. In the next section, we
describe the implemented prototype in detail.
Fig. 10. Architecture visualization – service requests.
6. Case study: office system

Our case study realizes large parts of the concepts described in
the previous sections. Thereby, both, the architectural concepts
and the features of the office domain are realized. Additionally,
the prototype was extended with an architecture visualization,
which shows the nested levels and the instantiated components
of the architectural styles. The main purpose of this architecture
visualization is to show how messages and service requests are
transported and how dynamic reconfiguration of the system
according to recognized context and failure situations happens.

Fig. 10 shows the top-level architectural style, depicting service
providers (respectively the services), the information broker medi-
ating the service requests and a single service consumer, which is a
client application. The lines drawn in the visualization represent
the dynamic behavior, therefore they are drawn in the moment
when a service request happens, after a short amount of time they
disappear again. This makes it easy to represent actual situations
and the particular behavior of the system.

Fig. 11 shows the internals of an application following the lower
two levels of architectural styles. The main point in this part of the
architecture visualization is the dynamic reconfiguration of the dif-
ferent types of service bricks. As described, the reconfiguration is
controlled by the current context of the system. To simulate this,
we simply provide a selection box, which offers a number of
choices. The selection of one of the choices in the visualization is
forwarded to the context manager and then leads to the reconfig-
uration of the services, which is visually represented by reducing
the speed of the processing and highlighting the removed or intro-
duced bricks by colored blinking.

Fig. 11. Architecture visualization – service consumer’s internals.

1134 J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136
Section 6.1 describes the technical realization of the prototype,
then Section 6.2 outlines the application scenarios particularly
supported by the architecture and pointed out by the architectural
visualization.

6.1. Technical realization

The architecture visualization is not an integral part of the
architectural style. It is an external application that made some
adjustments of the overall system necessary in order to gather
the information necessary for the visualization. Mainly that means
that notifications about events like requesting services and trigger-
ing reconfigurations are forwarded to the visualization application.

From the top level perspective, the overall system consists of at
least three independent building blocks: At least one global service
provider, the information broker, and at least one client applica-
tion. These building blocks can be independently deployed at arbi-
trary places, since the communication among them is completely
based on Web Services Technology for remote communication.

In the current scenario, one service provider is in place, which is
realized as an Apache Tomcat web server. The global services
themselves are realized as Web Services based on Apache Axis.
Consequently, independent services can be deployed on our service
provider.

The information broker is also provided as a Web Service. It of-
fers the possibility to register services with simple Quality of Ser-
vice (QoS) attributes. Besides the functionality of simply querying
for the address of a certain service, it also provides the possibility
to automatically call the service that fits the service query best.
Then it returns the result to the service requesting client
application.

The client applications are based on a common infrastructure fol-
lowing the two lower level architectural styles as described above.
They are Java applications instantiating different threads running
the GUI, the context recognition, the consumer agent and the ser-
vice management.

The GUI is not to be mistaken with the GUI for the architecture
visualization. The GUI of the client applications provides access to
the workflows and services offered by an application. For example,
workflows can be started, tasks can be processed, and the current
workflow state is shown.

In the service manager component, all workflows and services
(that is, the orchestrating and the molecular services) are managed
in two levels of the C2 style as independent bricks. Communication
among these bricks is done via messages. The direction of the com-
munication is prescribed by the C2 style: workflows are allowed to
request molecular services, but not vice versa. By means of the C2
style, the reconfiguration of the system is pretty easy. Since bricks
are only loosely coupled to each other with uniform interfaces,
they can be dynamically exchanged. This reconfiguration is based
on information collected in the context analyzer. In the current
implementation, there is no sophisticated system behind it, con-
text information is simply simulated.

A central infrastructure component in our realization of a client
application is the workflow execution system. However, it is not
part of the architectural style, since workflows could be realized
in other ways. Parallel to the workflow execution system at the
global level, we also chose jBPM (JBoss jBPM) for workflow man-
agement at the local level of the client. This makes the exchange-
ability of workflow descriptions much easier. With jBPM comes
the workflow description language jPDL (JBoss jBPM 2.0 jPdl).

We extended this workflow definition language with our con-
cepts of pre-conditions, post-conditions, and invariants. Both, the
overall process and the concrete building blocks, the nodes in the
workflow, had to be extended. The condition can be formulated
in Java code with the possibility to access all objects available in
the context of the workflow. Consequently, the workflow engine it-
self had to be extended too, to be able to check the conditions. In
case of violated conditions, different actions are possible: The user
can be asked how to proceed, the workflow can be stopped and all
involved users are notified, or the violation is simply logged for la-
ter analysis.

At the client site (e.g. a mobile device), the local workflow exe-
cution system can execute a workflow as long as the characteristic
of locality applies, that is, no other person has to be involved. If the
coordination with other persons is necessary, the global workflow
execution system becomes involved by sending the control over a
workflow to it. Principally, all communication is triggered by client

J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136 1135
applications. That is, only if a client application requests the global
workflow state, it becomes aware of it. To overcome that, we added
beyond the style a notification message from the global workflow
execution system to the local ones. Among client applications,
there is principally no communication.

As described in Section 4.2, services can be deployed locally or
globally. In our prototype, a print service is a candidate that can
be deployed locally or globally. In the local case, a printer that is
directly connected to the device, on which the application is run-
ning, can be used exclusively by the applications on that device.
In the global case, a printer is a central infrastructure device, which
can be remotely used by all authorized applications on distributed
devices. For workflows consuming services, the location of the ser-
vice provision is fully transparent. In case of globally available ser-
vices, a proxy brick is configured, which externally looks identical
to the real service. This proxy brick redirects the service request via
the consumer agent to the external service.

The architectural principles of the client applications strongly
support the idea of producing these applications in a product line.
Different persons have different interests regarding their office
applications. These diverging interests and needs can be expressed
(at least to a certain degree) by means of adapted or different work-
flows and services. The architectural framework allows the easy
production of applications according to a user’s needs. Therefore,
the workflows and services can be tailored and easily integrated.

6.2. Application scenarios

Several application scenarios were already mentioned in the
previous sections. They served on the one hand as a motivation
for the construction and particular design decisions. On the other
hand, they were used to illustrate how a concrete system could
work. In this section, we provide more substance with respect to
three scenarios by explaining in detail how a scenario works and
how it is supported by the architecture. These application scenar-
ios are realized in our prototype.

6.2.1. Context-dependent reconfiguration of services
Situation: A client application is in operation and has a certain

configuration of available services and workflows. The workflows
and services are presented to the user via the GUI.

Trigger: The context analyzer recognizes a change in the contex-
tual environment of the client application. Therefore, different
types of sensors can be used, the data of which is processed for
the recognition of context. A potential trigger is that the user en-
ters the area of a wireless network, which can be used for localiza-
tion purposes.

System response: The context analyzer generates an event that
the context changed. This event is sent to the configurator of the
service manager. The configurator is prepared with a set of rules
that align contextual parameters and the system’s response in
terms of available services and workflows. Consequently, the con-
figurator initiates that a service is deployed; this service can pro-
cess information from a wireless access-point in order to
calculate the device’s position.

For the reconfiguration, it is important to maintain consistency
properties of the client application. That is, it has to be avoided that
a service is undeployed, while it is currently being used. Thus, the
reconfiguration might take some time to be safe. Finally, a notifica-
tion about the new configuration can be sent to all current bricks.
This allows other bricks to use the services according the new
configuration.

6.2.2. Distributed workflow processing with violated invariant
Situation: In a company, an automated business process for the

application for leave is in place. This workflow can be provided for
all employees of the company. An employee can start the workflow
and then it has to be processed first by the line manager for official
acceptance and then by a secretary for administrative work. In the
description of the workflow, there is the invariant that at no time
of the workflow processing the vacation period may conflict with
official vacation bans in the company.

Trigger: An employee applies for vacation. Therefore, he uses his
office application and enters all the data that is necessary to initi-
ate the application for vacation. Then, he submits the request.
Since the official acceptance has to be given by the line manager,
a global coordination becomes necessary. The employee’s device
transfers the instance of the actual workflow over the respective
proxy to the global workflow execution system.

This system recognizes that the next step has to be done by the
line manager and looks up who is responsible. This might involve
searching for a deputy in case the regular manager is not available.
Then, a task is generated for the manager identified. In the follow-
ing, this manager receives the workflow instance on its own office
device and can process the next workflow step, the official accep-
tance. After that, the workflow instance is transferred back to the
global workflow execution system. Now it is assumed that the
administration of the company comes up with a vacation ban for
all employees in exactly the time for which our employee has ap-
plied for vacation.

System response: The global workflow execution system is still
aware of the workflow instance, since it is assigned to the secretary
for finishing. Since the vacation ban leads to a violated invariant of
the workflow for application for vacation, the consequence is that
the workflow instance is cancelled and all involved persons are
appropriately notified. That is, the employee, the manager, and
the secretary are informed that the workflow was cancelled due
to the vacation ban.
6.2.3. Global service call with fallback on failure
Situation: A client’s application uses a global printing service.

That is, the print can be initiated on the user’s device and the pro-
cessing is done according to the configuration of the service. As-
sume that there are multiple printing services available, each
with different quality attributes (e.g. concerning color, resolution,
etc.). These services are registered with the information broker.

Trigger: A user is processing a workflow that requires printing.
Since no local printer is installed, a global print service is to be
used.

System response: The request is sent via a proxy brick to the con-
sumer agent, which contacts the information broker to get an
appropriate service. Such a service is returned and the consumer
agent requests the service. Assume that the service suddenly
becomes unavailable and thus the consumer agent receives a
time-out. Then, the consumer agent automatically sends another
request to the information broker, including the information that
the service retrieved before is unavailable. The information broker
delivers the next best choice and the consumer agent can access
this service. Finally, the result of a successfully finished printing is
returned via the proxy brick to the requesting workflow. Conse-
quently, the problems with service availability are totally transpar-
ent for service users, at least as long as an alternative service can be
found.
7. Conclusion

We transfer product line technology into industry since 1998
and we experienced in nearly all cases a quick increase of the num-
ber features, as well as required variants. Hence, the management
of features and their variations becomes soon one of the major
challenges in maintaining and evolving viable reuse infrastruc-

1136 J. Lee et al. / The Journal of Systems and Software 83 (2010) 1123–1136
tures. The environment and context of service-based systems is
typically very dynamic and always distributed. Our experience
with such service-based product lines has shown that the chal-
lenge of managing variations and keeping services reusable and
useful over a long period of time is even bigger than for other
systems.

In this paper, we presented an approach that alleviates this dif-
ficulty through the grouping of features into feature binding units
of the same binding time, as well as by interpreting these units as
key drivers for identifying reusable services, that is, molecular ser-
vices. By clearly defining the transition from feature analysis to
service analysis, we made use of the established approach of fea-
ture analysis for the systematic derivation of services. It has been
shown, that sound analogies can be found that allow combining
the best of both paradigms for the construction of flexible systems
and product lines.

The practical applications of our approach in our lab infrastruc-
ture demonstrated that product line technology can significantly
help in mastering this challenge. The key properties of the ap-
proach are its support for identifying reusable services at the right
level of granularity abstraction and for deploying them at the
HEART model-based system execution environment.

Currently, we are establishing a demonstration facility within
our institute to execute real scenarios of a virtual office of the fu-
ture. The infrastructure of this demonstration facility has been de-
fined by following our approach, which has already provided useful
conceptual insights and lessons learned from a practitioner’s per-
spective. The case study described in this paper exemplarily de-
scribes scenarios we already support. It shows the feasibility of
the overall approach. Following the approach, we constructed
step-by-step the prototype.

References

Apel, S., Kaestner, C., Lengauer, C., 2008. Research challenges in the tension between
features and services. In: SDSOA’08: Proceedings of the 2nd International
Workshop on Systems Development in SOA Environments. ACM, New York, NY,
USA, pp. 53–58.

Arsanjani, A., 2004. Service-oriented modeling and architecture – how to identify,
specify, and realize services for your SOA. <http://www.ibm.com/
developerworks/libr>.

Arsanjani, A., Allam, A., 2006. Service-oriented modeling and architecture for
realization of an SOA. In: Proceedings of the IEEE International Conference on
Services Computing. IEEE Computer Society, p. 521.

Arsanjani, A., Zhang, Liang-Jie, Ellis, M., Allam, A., Channabasavaiah, K., 2007a. S3: a
service-oriented reference architecture. IT Professional 9.

Arsanjani, A., Zhang, L., Ellis, M., Allam, A., Channabasavaiah, K., 2007b. Design a
SOA solution using reference architecture. IBM.

Bencomo, N., Sawyer, P., Blair, G., Grace, P., 2008. Dynamically adaptive systems are
product lines too: using model-driven techniques to capture dynamic
variability of adaptive systems. In: 2nd International Workshop on Dynamic
Software Product Lines (DSPL 2008), Limerick, Ireland

Chen, F., Li, S., Chu, W.C.-C., 2005. Feature analysis for service-oriented
reengineering. In: Proceedings of the 12th Asia-Pacific Software Engineering
Conference (APSEC’05). IEEE Computer Society, pp. 201–208.

Clements, P., Northrop, L., 2002. Software Product Lines: Practices and Pattern.
Addison Wesley, Upper Saddle River, NJ.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.,
2002. Documenting Software Architectures – Views and Beyond. Addison
Wesley.

Dan, A., Johnson, R.D., Carrato, T., 2008. SOA Service Reuse by Design. In: SDSOA’08,
Leipzig, Germany.

Durvasula, S. et al., 2007. SOA Practitioners’ Guide Part 2: SOA Reference
Architecture. <www.soablueprint.com/whitepapers/SOAPGPart2.htm>.

Erl, T., 2008. SOA: Principles of Service Design. Prentice-Hall.
Georgantas, N., Mokhtar, S.B., Bromberg, Y., et al., 2005. The amigo service

architecture for the open networked home environment. In: Proceedings of
5th Working IEEE/IFIP Conference on Software Architecture (WICSA), 2005.

Hallsteinsen, S., Stav, E., Solberg, A.J., 2006. Using product line techniques to build
adaptive systems. In: The Proceedings of the 10th International on Software
Product Line Conference. IEEE Computer Society, Washington, DC, USA, pp.
141–150.
Helferich, A., Herzwurm, G., Jesse, S., Mikusz, M., 2007. Software product lines,
service-oriented architecture and frameworks: Worlds apart or ideal partners?
In: Trends in Enterprise Application Architecture. Lecture Notes in Computer
Science, vol. 4473. Springer, pp. 187–201.

JBoss jBPM. <http://www.jboss.com/products/jbpm>.
JBoss jBPM 2.0 jPdl Reference Manual. <http://www.jboss.com/products/jbpm/

docs/jpdl>.
Juric, M.B. et al., 2003. Business Process Execution Language for Web Services. Packt

Publishing.
Kang, K., Lee, J., Donohoe, P., 2002. Feature-oriented product line engineering. IEEE

Software 19 (4), 58–65.
Krafzig, D., Banke, K., Slama, D., 2005. Enterprise SOA – Service-Oriented

Architecture and Best Practices. Prentice-Hall.
Lee, J., Kang, K., 2004. Feature binding analysis for product line component

development. In: van der Linden, F. (Ed.), Software Product Family Engineering
Lecture Notes in Computer Science, vol. 3014. Springer-Verlag, Berlin
Heidelberg, pp. 266–276.

Lee, J., Kang, K., 2006. A feature-oriented approach for developing dynamically
reconfigurable products in product line engineering. In: Proceedings of the 10th
International Software Product Line Conference. IEEE CS Press, Los Alamitos, CA,
pp. 131–140.

Lee, J., Muthig, D., 2006. Feature-oriented variability management in product line
engineering. Communications of ACM (December).

Lee, J., Muthig, D., 2008. Feature-oriented analysis and specification of dynamic
product reconfiguration. In: Proceedings of the 10th International Conference
on Software Reuse (ICSR 2008), Beijing, China, May 25–29, 2008, pp. 154–165.

Lee, K., Kang, K., Lee, J., 2002. Concepts and guidelines of feature modeling for
product line software engineering. In: Gacek, C. (Ed.), Software Reuse: Methods,
Techniques, and Tools, vol. 2319. Springer-Verlag, Berlin, Heidelberg, pp. 62–77.

Lee, J., Muthig, D., Naab, M., 2008. An approach for developing service oriented
product lines. In: Proceedings of the 12th International Software Product Line
Conference (SPLC 2008), Limerick, Ireland, September 8–12, pp. 275–284.

Medvidovic, N., Rosenblum, D.S., Taylor, R.N., 1999. A language and environment for
architecture-based software development and evolution. In: Proceedings of the
21st International Conference on Software Engineering. ACM Press, New York,
NY, pp. 44–53.

Meyer, B., 1991. Design by contract. In: Meyer, B., Mandroli, D. (Eds.), Advances in
Object-Oriented Software Engineering. Prentice-Hall.

Michlmayr, A. et al., 2007. Towards recovering the broken SOA triangle – a software
engineering perspective. In: 2nd International Workshop on Service Oriented
Software Engineering, September, Dubrovnik, Croatia.

OASIS Reference Architecture. <http://wiki.oasis-open.org/soa-rm/TheArchitecture>.
Pohl, K., Böckle, G., van der Linden, F., 2005. Software Product Line Engineering:

Foundations, Principles and Techniques. Springer.
Robbins, Jason E., Redmiles, David F., Rosenblum, David S., 1997. Integrating C2 with

the unified modeling language. In: Proceedings of the 1997 California Software
Symposium (Irvine, CA), UCI Irvine Research Unit in Software, Irvine, CA,
November 7, pp. 11–18.

International Union of Pure and Applied Chemistry, 1994. ‘‘Molecule”, Compendium
of Chemical Terminology Internet Edition.

Competence Center for ‘‘Virtual Office of the Future.” <http://www.iese.
fraunhofer.de/research/vof/vof.jsp>.

Zhu, H., 2005. Building reusable components with service-oriented architectures.
In: Presented at IEEE International Conference on Information Reuse and
Integration.

Jaejoon Lee is a Lecturer in the School of Computing and Communications at
Lancaster University. His research interests include software product line engi-
neering, software architecture, and service-based software engineering. Lee has a
Ph.D. in Computer Science and Engineering from POSTECH in South Korea.

Dirk Muthig is Chief Platform Architect in the domain of passenger services at
Lufthansa Systems, Germany. In his current role, Dirk is responsible for architecture
management, which includes methodology and processes, with a strong focus on
productivity and quality. Before joining Lufthansa Systems, Dirk managed the
Software Development division at the Fraunhofer Institute for Experimental Soft-
ware Engineering (IESE). He was with IESE for more than 10 years His research has
been driven by the idea of product line engineering since the late 90s. Since then, he
is an active member of the product line community: Dirk was the General Chair of
the Software Product Line Conference (SPLC) in 2010, as well as has taught product
line and architecture course at university for several years. Dirk Muthig holds a
master’s degree, as well as a Ph.D., in computer science, which he both received
from the Technical University of Kaiserslautern.

Matthias Naab is a researcher at the Fraunhofer Institute for Experimental Software
Engineering (IESE). His main research interests are the in areas of software archi-
tecture for large-scale information systems and software product lines. The main
focus of his work is on applied research and technology transfer into industry,
covering various application domains. Matthias Naab received a diploma in com-
puter science from the Technical University of Kaiserslautern in 2005.

http://www.ibm.com/developerworks/libr
http://www.ibm.com/developerworks/libr
http://www.soablueprint.com/whitepapers/SOAPGPart2
http://www.jboss.com/products/jbpm
http://www.jboss.com/products/jbpm/docs/jpdl
http://www.jboss.com/products/jbpm/docs/jpdl
http://wiki.oasis-open.org/soa-rm/TheArchitecture
http://www.iese.fraunhofer.de/research/vof/vof.jsp
http://www.iese.fraunhofer.de/research/vof/vof.jsp

	A feature-oriented approach for developing reusable product line assets of service-based systems
	Introduction
	Related work
	Approach overview
	Outline

	Feature analysis
	Service analysis
	Orchestrating service
	Basics for the definition of orchestrating services
	Extended support for reliability
	Extended support for mobility

	Molecular services
	Basic properties of molecular service
	Specification of molecular services

	Context analysis and specification

	A Heterogeneous style based architecture model
	Design goals
	The HEART model

	Product engineering: putting them together
	Product requirements analysis
	Configuring product architecture and components

	Case study: office system
	Technical realization
	Application scenarios
	Context-dependent reconfiguration of services
	Distributed workflow processing with violated invariant
	Global service call with fallback on failure

	Conclusion
	References

