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I. Introduction

Consider two vehicles that crash as one drives through a red light and
the other a green light. Assume that the accident would not occur if
either driver took the subway instead of driving: hence, strictly speaking,
both cause the accident in full, even though only one is negligent. The
average accident cost of the two people’s driving is the damages to two
vehicles (2D) divided by the driving of two vehicles (i.e., D per driven
vehicle). But the marginal cost exceeds this. In fact, the marginal cost
of driving either vehicle is the damage to two vehicles (2D per driven
vehicle)—fully twice the average cost. Surprisingly, this observation
holds just as much for the nonnegligent driver as for the negligent one.

Drivers pay the average cost of accidents (on average, anyway), not
the marginal cost, so this example suggests that there is a substantial
accident externality to driving, an externality that the tort system is not
designed to address. The tort system is designed to allocate the damages
from an accident among the involved drivers according to a judgment
of their fault.

A damage allocation system can provide adequate incentives for care-
ful driving, but it will not provide people with adequate incentives at
the margin of deciding how much to drive or whether to become a
driver (Vickrey 1968; Green 1976; Shavell 1980; Cooter and Ulen 1988).
Indeed, contributory negligence, comparative negligence, and no-fault
systems all suffer this inadequacy because they are all simply different
rules for dividing the cost of accidents among involved drivers and their
insurers. Yet in many cases, from the vantage of causation, as distinct
from negligence, economic fault will sum to more than 100 percent.
Whenever it does, efficient driving incentives require that the drivers
in a given accident should in aggregate be made to bear more than the
total cost of the accident, with the balance going to a third party such
as the government.

Does this theory of an accident externality from driving hold up in
practice? Equivalently, as a new driver takes to the road, does she in-
crease the accident risk to others as well as assuming risk herself? If so,
then a 1 percent increase in aggregate driving increases aggregate ac-
cident costs by more than 1 percent. Such a positive connection between
traffic density and accident risk will seem intuitive to anyone who finds
herself concentrating more on a crowded highway and arriving home
tired and stressed. Yet, such a relationship need not hold in principle.
The riskiness of driving could decrease as aggregate driving increases
because increased driving could worsen congestion; and if people are
forced to drive at lower speeds, accidents could become less severe or
less frequent. Consequently, a 1 percent increase in driving could in-
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crease aggregate accident costs by less than 1 percent and could even
decrease those costs.

The stakes are large. During our sample period, auto accident insur-
ance in the United States cost over $100 billion each year, and total
accident costs could have exceeded $350 billion each year after costs
that were not insured are included (National Association of Insurance
Commissioners, various years; Miller, Rossman, and Viner 1991). Multi-
vehicle accidents, which are the source of potential accident external-
ities, dominate these figures, accounting for over 70 percent of auto
accidents. If we assume that exactly two vehicles are necessary for multi-
vehicle accidents to occur, then one might expect the marginal cost of
accidents to exceed the average cost by 70 percent. Put differently, one
would expect aggregate accident costs to rise by 1.7 percent for every
1 percent increase in aggregate driving, corresponding to an elasticity
of accident costs with respect to driving of 1.7.1

Compared to its economic significance, there is relatively little em-
pirical work gauging the size (and sign) of the accident externality from
driving. Vickrey (1968), who was the first to conceptualize clearly the
accident externality from the quantity of driving (as opposed to the
quality of driving), cites data on two groups of California highways and
finds that the group with higher traffic density has substantially higher
accident rates, suggesting an elasticity of the number of crashes with
respect to aggregate driving of 1.5.

A strand of transportation literature takes a similar cross-sectional
approach and concentrates on the relationship between accident rates
and traffic volume (average daily traffic). Although this literature does
not conceptualize the problem as one of an externality, that interpre-
tation is appropriate: Belmont (1953) and Lundy (1965), for example,
compared freeways with different average traffic volume and found that
accident rates increased with traffic volume; Belmont found that the
total number of accidents per vehicle mile increased linearly with traffic
until the traffic reached 650 vehicles per hour, after which it declined.
More recently, Turner and Thomas (1986) examined various freeways
in Britain and reported similar findings. This literature matches up
freeways that the authors considered similar (e.g., four-lane highways)
instead of doing panel analysis or using extensive controls.

Vickrey’s study and these cross-sectional transportation crash studies

1 Suppose that the chance that a driver causes an accident is p, that with probability .3p
she has a one-vehicle accident causing damage of D, and that with probability .7p she has
a two-vehicle accident causing damage of D to each vehicle. Since by assumption she is
the “but for” cause of each accident, the damages her driving causes are .3pD �

. This figure is also the marginal cost of driving per driver. The average2(.7pD) p 1.7pD
cost of accidents per driver, however, is just pD. The elasticity of accident costs with respect
to driving is the ratio of marginal to average cost.
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share limitations. Without knowledge of the inherent safety of the road-
ways (roadway-specific effects), these studies could lead to biased esti-
mates of how much traffic density increases accident rates on a given
roadway. If drivers are attracted to safer roads, then high-density roads
could end up with lower accident rates because the roads themselves
are inherently safer, not because traffic made them so. Likewise, if road
expenditures are rational, then roads with more traffic will be better
planned and better built in order to yield smoother traffic flow and
fewer accidents. This again suggests that a cross-sectional study could
considerably understate the rise in accident risk with density on a given
roadway; in fact our regressions will suggest just these effects. Another
difficulty is that these crash studies contain no measure of accident
severity: if congestion caused severity to decrease, then the accident
externality would be smaller than these studies imply; in contrast, if
severity increased with density (perhaps more vehicles per accident),
then Vickrey (and implicitly these other studies) could dramatically
understate the externalities. The “micro” nature of these studies is an-
other limitation for most plausible policies on the state or federal level,
where aggregate measures are required. One cannot, for example, know
the appropriate level of a second-best corrective gasoline tax from such
studies unless they are replicated across the full spectrum of roadway
types and they are combined with extensive micro-level data on driving
and traffic patterns (including a matrix of how drivers will shift driving
among roadway risks as density changes).

This study is an attempt to provide better estimates of the size (and
sign) of the aggregate accident externality from driving. To begin, we
choose a dependent variable, insurer costs, that is dollar-denominated
and captures both accident frequency and severity; we also analyze in-
surance premiums as a dependent variable. We are concerned with
aggregate effects across the full spectrum of driving in a given state.
Our central question is whether one person’s driving increases other
people’s accident costs.

Figures 1 and 2 show that insurance premiums and insurer costs both
tend to rise with a state’s traffic density if we consider a cross section
of states. These correlations suggest that there is an accident externality
from driving: an extra driver increases traffic density, and according to
the figures, that driver apparently increases the costs of every other
driver in addition to incurring her own costs. If costs rise linearly or
faster than linearly (as they appear to), this implies that the externality
is higher in high-density states.

Of course, the pattern in the scatter plot could result from differences
in road conditions in the high-density states. To address this we use
panel data from 1987–95 on insurer costs, insurance premiums, traffic
density, aggregate driving, and various control variables. Our basic strat-



Fig. 1.—Traffic density and insurance costs (1996 dollars)

Fig. 2.—Traffic density and insurance premiums (1996 dollars)
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egy is to estimate the extent to which an increase in traffic density in
a given state increases (or decreases) average insurer costs and insurance
premiums. Our regressions thereby provide a measure of the insurance
externality of driving. Increases in traffic density can be caused by in-
creases in the number of people who drive or by increases in the amount
of driving each person does. To the extent that the external costs differ
at these two margins, our results provide a weighted average of these
two costs.

We find that traffic density increases accident costs substantially
whether measured by insurer costs or insurance rates. This is robust to
all our specifications; it is robust to linear and quadratic models, to
instrumental variables (IV) and ordinary least squares (OLS) estimation,
and to cross-section or panel data. If congestion eventually reverses this
effect, it occurs only at traffic densities beyond those in our sample.
Indeed, our estimates suggest that a typical extra driver raises others’
insurance rates (by increasing traffic density) by the most in high–traffic
density states. In California, a very high-traffic state, we estimate that a
typical additional driver increases the total statewide insurance costs by
$1,725 � $817 to $3,239 � $1,068 each year, depending on the spec-
ification. In contrast, in North Dakota, a very low-traffic state, we estimate
that others’ insurance costs are increased only slightly (and statistically
insignificantly): $10 � $41 each year, as shown in specification 10 of
table 5 below. These estimates of accident externalities pertain only to
insured accident costs and do not include the cost of injuries that are
uncompensated or undercompensated by insurance, nor other accident
costs such as traffic delays after accidents.

The remainder of this paper is organized as follows. Section II pro-
vides a framework for determining the extent of accident externalities.
Section III discusses our data. Section IV reports our estimation results.
Section V presents a state-by-state analysis of accident externalities. Fi-
nally, Section VI discusses the policy implications of our results and
directions for future research.

II. The Framework

Two vehicles can have an accident only if they are in proximity, and the
probability of proximity will increase with traffic density. In particular,
let L equal the total number of lane miles, N be the number of drivers,
and M equal the aggregate number of miles driven by all N drivers in
some area. Consider the risk that a given driver i faces. With speed held
constant and under the assumption that drivers make independent de-
cisions about where to drive, the chance that another driver is in the
same location as i will be proportionate to the amount of driving that
these other drivers do (i.e., ) and inversely propor-M[(N � 1)/N ] ≈ M
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tional to the amount of roadway L over which this driving is distributed.
Hence, for large N the probability of colocation will be proportionate
to , which we will call the traffic density . Intuitively, theM/L D { M/L
more other cars are on the road, the greater the chance that they will
be near me when I drive. If we assume that the probability or severity
of accidents conditional on colocation does not depend on the traffic den-
sity, then the expected rate r at which a representative driver-vehicle
pair such as i bears accident costs would be affine in traffic density:

M
r p c � c p c � c D. (1)1 2 1 2L

The intercept, , represents the expected rate at which a driver incursc 1

a cost from one-vehicle accidents, and the second term, , representsc D2

the expected cost of two-vehicle accidents.2 Under the assumption that
a vehicle’s annual driving is not a function of traffic density, one can
interpret r as the annual insurance cost associated with a representative
vehicle. Some of our specifications do so. We will also estimate a model
that abandons the assumption that driving quantity is independent of
traffic density. To do so, we will normalize accident costs by vehicle miles
driven instead of by the number of vehicles.

If we extend the model of equation (1) to consider accidents in which
the proximity of three vehicles is required, we have

2r p c � c D � c D , (2)1 2 3

where the quadratic term accounts for the likelihood that two other
vehicles are in the same location at the same time. Equations (1) and
(2) are the two basic equations that we estimate.

The coefficients do not need to be interpreted as corresponding to
one- and two-vehicle accidents. Equations (1) and (2) can alternatively
be viewed as a reduced-form model of accidents that accounts for the
possibility that risk depends on traffic density. In principle, the coeffi-
cients c1, c2, and c3 need not be positive: as pointed out earlier, it is
possible that the probability/severity of a multivehicle accident could
begin to fall at high traffic densities because traffic will slow down.

An average person pays the average accident cost r either by paying

2 Levitt and Porter (2001), in a similar model, estimate the relative crash risk of drunk
drivers using data on two-car crashes. Their model predicts that the number of accidents
involving two drunk drivers increases quadratically in the number of drunk drivers, whereas
the number involving a drunk driver and a sober driver has a linear relationship with
both the number of drunk drivers and the number of sober drivers. In fact, it is this
nonlinearity that allows them to identify the relative crash risk separately from relative
risk exposure. The Levitt-Porter nonlinearity corresponds with and with a negativec 1 02

accident externality. If one multiplies eq. (1) by the number of drivers, , where¯N p M/m
is the miles driven per driver, one gets an equation for the total societal cost of accidentsm̄

that is quadratic in M or N much as in Levitt and Porter’s study.



938 journal of political economy

an insurance premium or by bearing accident risk. The accident ex-
ternality from driving results (if is assumed to be positive) because ac 2

driver increases traffic density and thereby increases accident risks and
costs for other drivers. Although the increase in D from a single driver
will affect r only minutely, when multiplied by all the drivers who must
pay r, the effect could be substantial. The driver does not pay under
any of the existing tort systems for exerting this externality.

If there are N vehicle/driver pairs in the region under consideration
(a state in our data), then the external cost is

dr
external marginal cost per mile of driving p (N � 1) ( )dM

c M2p (N � 1) � 2c .3( )2L L

(3)

An average driver/vehicle pair drives miles per year, andm̄ p M/N
hence we have

dr
¯external marginal cost per vehicle ≈ m(N � 1)

dM
2≈ c D � 2c D . (4)2 3

The first approximation holds since any single driver contributes very
little to overall traffic density so that the marginal cost given by equation
(3) is a good approximation of the cost of each of the miles she drives;m̄
the second approximation holds when N is large because then

so that .¯N/(N � 1) ≈ 1 m(N � 1) ≈ M
The interpretation of these externalities is simple. If someone stops

driving or reduces her driving, then not only does she suffer lower
accident losses, but other drivers who would otherwise have gotten into
accidents with her suffer lower accident losses as well.

In this model of accident externalities, all drivers are equally profi-
cient. In reality, some people are no doubt more dangerous drivers than
others, and so the size of the externality will vary across drivers. Our
regression estimates pertain to the marginal external cost of a typical
or average driver. The main implication of driver heterogeneity is that
the potential benefit from a Pigouvian tax that accounts for this het-
erogeneity exceeds what one would derive from this paper’s estimates.

III. Data

We have constructed a panel data set with aggregate observations by
state (s) and by year (t) for 1987–95. Table 1 provides summary statistics.
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TABLE 1
Summary Statistics

Variable

1987 1995

Mean
Standard
Deviation Mean

Standard
Deviation

Insurance premiums, r
($/insured car-year) 522 139 619 161

Traffic density, D p M/L
(vehicle-miles/lane-mile-
year) 264,734 193,298 319,339 207,067

Estimated insurer costs, ($/r̃
car-year) 488 148 618 151

Malt alcohol beverages per
capita (gallons/person-year) 23.95 4.17 22.60 3.64

Real gross state product per
capita ($/person-year) 23,590 5,322 26,898 4,471

% young male population 8.1 n/a 7.2 n/a
Hospital cost ($/patient-day) 620 138 936 220
Precipitation (inches/year) 33.17 14.37 34.4 14.9
Snowfall (inches/year) 25.33 24.46 36.69 35.92
% no-fault 28 n/a 26 n/a
% add-on 18 n/a 18 n/a

Note.—All dollar values are real 1996 dollars deflated with the fixed-weighted gross domestic product deflator.

One of our measures for accident cost is the average state insurance
rates per vehicle, , for the sum of collision and liability coverages (werst

exclude comprehensive coverage for fire and theft). The National As-
sociation of Insurance Commissioners provides separately total statewide
dollar premiums and car-years for liability and collision coverages for
private passenger vehicles. We adjust these figures to account for com-
mercial premiums by multiplying by 1.14 (Insurance Information In-
stitute 1998, 22) and construct average liability and collision premiums.
Our measure, , is the sum of the average liability premium and therst

average collision premium in a state in a given year, after adjusting for
inflation. Our second accident cost measure is an insurer cost series
that we construct from loss cost data collected by the Insurance Research
Council. The loss cost data series, , represents the average amountLCst

of payouts per year per insured car for bodily injury, property damage,
and personal injury protection from claims paid by insurers to accident
victims. Loss costs are substantially smaller than average premiumLCst

for three reasons. First, nonpayout expenses such as salary expenserst

and returns to capital are excluded. Second, several types of coverage
categories such as collision, uninsured motorist, underinsured motorist,
and medical payments are excluded. Third, only the payouts of selected
companies that represent 60 percent of the industry are reported. De-
spite its lack of comprehensiveness, this loss cost data series has one
feature that is valuable for our study. It is a direct measure of accident
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costs, and therefore we would expect it to respond to changes in driving
and traffic density without the lags that insurance premiums might be
subject to, to the extent that such changes in traffic density were un-
predictable to the insurance companies. We therefore “gross up” loss
costs in order to make them comparable in magnitude to premiums by
constructing an insurer cost series as follows:

� rsii
r̃ p LC .st st � LCsii

This series roughly represents what premiums would have been had
companies known their loss costs in advance.

Both premium and insurer cost data have the advantage over crash
data that they are dollar-denominated and therefore reflect both crash
frequency and crash severity. This feature is important because the num-
ber of cars per accident (and hence crash severity) could increase as
people drive more and traffic density increases. The average cost for
both collision and liability insurance across all states in 1996 was $619
per vehicle, a substantial figure that represented roughly 2 percent of
gross product per capita. Average insurance rates vary substantially
among states: in New Jersey, for example, the average 1996 cost is $1,091
per insured car-year, whereas in North Dakota the cost is $363 per
insured car-year.

Our main explanatory variable is traffic density ( ), whereD p M /Lst st st

is the total vehicle miles traveled and is the total lane miles. DataM Lst st

on vehicle miles traveled and lane miles come from various years of
Highway Statistics, published by the U.S. Department of Transportation,
Federal Highway Administration. The units for traffic density are ve-
hicles per lane-year and can be understood as the number of vehicles
crossing a given point on a typical lane of road over a one-year period.
The vehicle miles traveled data are collected using methods that involve
both statistical sampling with road counters and driving models.

We are concerned that the mileage data may have measurement error
and that the year-to-year changes in M on which we base our estimates
could therefore have substantial measurement errors. To correct for
possible measurement errors, we instrument density in several specifi-
cations with the number of registered vehicles and with the number of
licensed drivers (both from Highway Statistics). Although these variables
may also have measurement error, vehicle mile data are based primarily
on road count data and gasoline consumption (not on registered ve-
hicles and licensed drivers), so it seems safe to assume that these errors
are orthogonal.

Traffic density, like premiums, varies substantially both among states
and over time. In addition to traffic density, we introduce several control
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variables that seem likely to affect insurance costs: state and time fixed
effects; state-liability fixed effects (tort, add-on, and no-fault);3 malt al-
cohol beverage consumption per capita; average cost of community
hospitals per patient per day; percentage of male population that is
between 15 and 24 years old; real gross state product per capita; yearly
rainfall; and yearly snowfall.4 All dollar figures are converted to 1996
real dollars.

We introduce real gross state product per capita as a control variable
because it is likely to both be correlated with density and directly affect
insurance premiums. More affluent people tend to drive more, which
will create a density correlation. And more affluent people can afford
safer cars (e.g., cars with air bags), which could reduce insurance pre-
miums; on the other hand, they may tend to buy more expensive cars
and have higher lost wages when injured, which would increase pre-
miums. If we do not control for this, then we could get a relationship
between traffic density and premiums that did not reflect a true driving
externality. We introduce malt alcohol consumption per capita because
accident risk might be sensitive to alcohol consumption: 57.3 percent
of accident fatalities in 1982 and 40.9 percent in 1996 were alcohol-
related. We include the percentage of 15–24-year-old males because the
accident involvement rate for male licensed drivers under 25 was 15
percent per year, whereas it was only 7 percent for older male drivers
(U.S. Department of Transportation 1996, tables 13, 59). We use hospital
costs as another control variable since higher hospital costs in certain
states would increase insurance costs and hence insurance premiums
there. Finally, we incorporate precipitation and snowfall since weather
conditions in a given state could affect accident risk and could correlate
with the driving decision.

IV. Estimation

Here, we estimate 11 specifications of equations (1) and (2) and report
them in tables 2 and 3. As a preliminary attempt to estimate the impact

3 Data come from Insurance Research Council (1995). In states with traditional tort
systems, accident victims can sue a negligent driver and recover damages. Injured parties
in no-fault jurisdictions depend primarily on first-party insurance coverage because these
jurisdictions limit the right to sue, usually requiring that either a monetary threshold or
a “verbal” threshold be surpassed before a suit is permitted. Add-on states require auto
insurers to offer first-party personal injury protection coverage, as in no-fault states, without
restricting the right to sue.

4 Data for these variables come from various years of the Brewer’s Almanac, published by
the U.S. Brewers’ Association; Statistical Abstract of the United States; Census of Population;
Regional Statistics from the Bureau of Economic Analysis; and Wood (1999). For measures
of precipitation and snowfall, we use data from the largest city/metropolitan area available
in each state.
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TABLE 2
Linear Insurance Rate Model, 1987–95

Regressor

Dependent Variable: Insurer
Costs per Vehicle, r̃

Dependent Variable:
Insurance Premiums

per Vehicle, r

OLS (1995
Only)

(1)
OLS
(2)

IV
(3)

OLS
(4)

IV
(5)

Traffic density, D .00042**
(.00009)

.00058**
(.00029)

.0019**
(.0009)

.00036**
(.00018)

.0014**
(.00067)

State dummy
variables

No Yes Yes Yes Yes

Time dummy
variables

No Yes Yes Yes Yes

Malt alcohol bever-
ages per capita

8.80*
(4.54)

�2.04
(5.63)

.43
(5.87)

.79
(2.44)

2.80
(2.99)

Real gross product
per capita

6,535.20*
(3,779.90)

5,373.50
(3,985.50)

2,224.50
(4,866.50)

2,463.41
(2,388.40)

�113.00
(3,245.50)

Hospital cost .16**
(.08)

�.30**
(.12)

�.40**
(.15)

.02
(.05)

�.05
(.07)

% young male
population

30.99
(27.83)

�4.98
(14.52)

�.75
(14.92)

8.18
(8.13)

11.64
(9.45)

Precipitation 1.90**
(.92)

.10
(.36)

.06
(.37)

�.49*
(.29)

�.53*
(.33)

Snowfall .32
(.41)

.01
(.22)

�.07
(.23)

�.12
(.12)

�.19
(.14)

No-fault 95.02**
(32.08)

150.11**
(17.04)

175.07**
(28.06)

95.87**
(8.80)

116.29**
(18.40)

Add-on �1.35
(37.59)

210.06**
(51.66)

251.52**
(58.46)

139.60**
(39.48)

173.52**
(43.74)

2R .73 .92 .91 .97 .96
Durbin-Wu-Haus-

man test x2(1) p 13.42 x2(1) p 24.96
H0: Traffic density is

exogenous
p-value p .00 p-value p .00

Hansen’s J-statistic
for overidentify-
ing restrictions

x2(1) p 1.17
p-value p .28

x2(1) p .16
p-valuep .69

Note.—Newey-West standard errors that account for heteroskedasticity and autocorrelation are reported in paren-
theses below coefficients. IV uses as instruments registered vehicles per lane mile, licensed drivers per lane mile, time
and state dummy variables, and all the control variables. The number of observations for the panel is 450.

* Significant at the 10 percent level.
** Significant at the 5 percent level.

of traffic density on insurance rates, motivated by figure 1, we run the
following cross-sectional regression with 1995 data:

r̃ p c � c D � b 7 x � e , (5)s 1 2 s s s

where represents our control variables. This regression yields an es-xs

timate of , as reported in column 1 of�04 �04ĉ p 4.2 # 10 � 0.9 # 102

table 2. (Throughout, we report point estimates followed by “�” one
standard deviation, where the standard errors are corrected for hetero-
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skedasticity and autocorrelation using the method of Newey and West
[1987].)

These cross-sectional results do not account for the potential corre-
lation of state-specific factors (such as road conditions) with traffic den-
sity. In particular, states with high accident costs would rationally spend
money to make roads safer. Since this effect will work to offset the impact
of traffic density, we would expect a cross-sectional regression to un-
derstate the effect of density holding other factors constant. Moreover,
downward biases result if states switch to liability systems that insure a
smaller percentage of losses in reaction to high insurance costs.

To address this possibility we identify density effects from within-state
changes in density, using panel data to estimate the following model:

r̃ p a � g � c � c D � b 7 x � e . (6)st s t 1 2 st s st

This specification includes state fixed effects as and time fixed effects
gt, so that our identification of the estimated effect of increases in traffic
density comes from comparing changes in traffic density to changes in
aggregate insurer cost in a given state, controlling for overall time
trends. Including time fixed effects controls for technological change
such as the introduction of air bags or other shocks that hit states
relatively equally. As expected and as reported in column 2 of table 2,
this specification yields larger estimates than the pure cross-sectional
regressions in specification 1. Specification 2 has a density coefficient
of compared with�04 �04 �04 �045.8 # 10 � 2.9 # 10 4.2 # 10 � 0.9 # 10
in specification 1.

Measurement errors in the vehicle miles traveled variable M could
bias the traffic density coefficient toward zero in both specifications 1
and 2. Therefore, we also perform IV estimation using licensed drivers
per lane mile and registered vehicles per lane mile as instruments for
traffic density. As justified above in Section III, we assume that any
measurement error in these variables is uncorrelated with errors in
measuring traffic density. These variables do not enter our accident
model directly because licensed drivers and vehicles by themselves get
into (almost) no accidents. A licensed driver can increase the accident
rate of others only to the extent that she drives, and vehicles, only to
the extent that they are driven; hence only through M. On the other
hand, these variables seem likely to be highly correlated with traffic
density; in fact they are both positively correlated and jointly and in-
dividually highly significant as seen in column 1 of table 4, which gives
our first-stage regressions. Column 1 in table 4 reports the first-stage
regression for our linear model represented in equation (1). We reject
the null hypothesis that the instruments are jointly statistically insignif-
icant with a p-value of 0.00.



944

TABLE 3
Quadratic Insurance Rate Model, 1987–95

Regressor

Dependent Variable: In-
surer Costs per Vehicle, r̃

Dependent Variable: Insur-
ance Premiums per Vehicle,

r

Dependent
Variable:
Insurer

Costs per
Mile Driven

Dependent
Variable:
Insurance

Premiums per
Mile Driven

OLS
(6)

IV
(7)

OLS
(8)

IV
(9)

IV
(10)

IV
(11)

Traffic density, D �.00040
(.0006)

�.00098
(.0009)

�.00057
(.0004)

�.0011**
(.0005)

�1.09E�07
(7.39E�08)

�3.81E�08
(5.65E�08)

D2 1.05E�09*
(6.49E�10)

2.51E�09**
(7.38E�10)

9.94E�10**
(4.24E�10)

2.19E�09**
(6.13E�10)

2.22E�13**
(8.39E�14)

1.79E�13**
(6.18E�14)

State dummy variables Yes Yes Yes Yes Yes Yes
Time dummy variables Yes Yes Yes Yes Yes Yes
Malt alcohol beverage per capita �1.84

(5.88)
�.06
(6.43)

.97
(2.60)

2.40
(3.30)

.00016
(.0004)

.00057*
(.0003)
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Real gross product per capita 5,907*
(3,504)

4,713
(3,588)

2,968
(2,064)

2,037
(2,101)

�.19
(.31)

�.43*
(.26)

Hospital cost �.30*
(.12)

�.35**
(.15)

.03
(.05)

�.009
(.07)

�1E�05
(.00001)

�3E�6
(6.78E�6)

% young male population 10.62
(17.42)

34.84*
(19.96)

22.93**
(9.25)

42.68**
(12.7)

.0025
(.0016)

.0026**
(.0012)

Precipitation .12
(.3)

.11
(.33)

�.48*
(.28)

�.48*
(.29)

�4E�05
(3E�05)

�5E�05*
(3E�05)

Snowfall �.02
(.22)

�.11
(.23)

�.15
(.12)

�.23*
(.14)

�7E�06
(2E�05)

�3E�05**
(1E�05)

No-fault 140.85**
(19.38)

143.35**
(22.37)

87.11**
(7.30)

88.79**
(9.96)

.008**
(.002)

.007**
(.001)

Add-on 198.23**
(48.66)

207.29**
(55.32)

128.40**
(38.70)

135.22**
(38.70)

.018**
(.004)

.011
(.003)

2R .92 .92 .97 .97 .91 .95
Durbin-Wu-Hausman test 23.59 44.78 53.30 119.70
H0: Traffic density is exogenous p p .00 p p .00 p p .00 p p .00
Hansen’s J-statistic for overidentifying

restrictions
2

p p .37
.11

p p .95
.10

p p .95
1.10

p p .58

Note.—Newey-West standard errors that account for heteroskedasticity and autocorrelation are reported in parentheses below coefficients. IV uses as instruments registered vehicles
per lane mile, licensed drivers per lane mile, time and state dummy variables, and all the control variables. The number of observations for the panel is 450.

* Significant at the 10 percent level.
** Significant at the 5 percent level.
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TABLE 4
First-Stage Regressions, 1987–95

Dependent Variable

Linear Model Quadratic Model

Regressor
Traffic Density, D

(1)
D

(2)

2D
(3)

State dummy variables Yes Yes Yes
Time dummy variables Yes Yes Yes
Malt alcohol beverage

per capita
�1,338
(940)

�1,058
(958)

�2.03E�09*
(1.10E�09)

Real gross product per
capita ($millions)

2.80**
(.92)

3.07**
(.96)

1.39E�06*
(8.03E�05)

Hospital cost 50.94**
(16.74)

48.49**
(17.39)

4.13E�07**
(1.91E�07)

% young male
population

�3,882
(3,264)

�5,992*
(3,464)

�1.23E�10**
(3.77E�09)

Precipitation 57.81
(85.35)

39.96
(83.10)

8.73E�07
(7.44E�07)

Snowfall 83.04**
(39.42)

85.49**
(40.19)

9.96E�07**
(4.45E�07)

No-fault �17,701**
(7,030)

�16,415**
(7,011)

�1.13E�10**
(4.13E�09)

Add-on �25,716**
(8,275)

�24,505**
(8,326)

�1.43E�10**
(5.41E�09)

Registered vehicles per
lane mile

1,778**
(671)

2,509**
(1,274)

�1.95E�09
(1.46E�09)

Licensed drivers per lane
mile

3,354**
(679)

5,068**
(1,563)

1.92E�09
(1.67E�09)

(Registered vehicles per
lane mile)2

�8.52
(14.33)

4.79E�07**
(2.00E�07)

(Licensed drivers per
lane mile)2

�15.22
(15.57)

1.07E�07
(2.04E�07)

2R .9975 .9975 .9962
H0: IV jointly have zero

coefficient
F(2, 382) p 17.23

p-value p .00
F(4, 380) p 10.87

p-value p .00
F(4, 380) p 9.99

p-value p .00

Note.—Newey-West standard errors that account for heteroskedasticity and autocorrelation are reported in paren-
theses below coefficients. The number of observations for the panel is 450.

* Significant at the 10 percent level.
** Significant at the 5 percent level.

The instruments substantially increase our estimate of , as one wouldc 2

expect if errors in variables were a problem for OLS. The IV estimate
in specification 3 of table 2 is , roughly three�04 �0419 # 10 � 9 # 10
times larger than in specification 2. As reported in table 2, the Durbin-
Wu-Hausman test rejects the hypothesis that both OLS and IV are con-
sistent ( , p-value p 0.000). Hansen’s J-test does not reject2x (1) p 13.42
the overidentifying restriction ( , p-value p 0.28). Specifi-2x (1) p 1.17
cations 4 and 5 in table 2 use insurance premiums per vehicle as the
dependent variable. Both these OLS and IV estimates yield coefficients
similar to specifications with insurer costs per vehicle as the dependent
variable; and, again, the Durbin-Wu-Hausman test rejects the hypothesis
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that both OLS and IV are consistent, and Hansen’s J-test does not reject
the overidentifying restriction. The consistency of results across these
two models provides added confidence in our findings.

Specifications 6 and 7 in table 3 give OLS and IV estimates of our
quadratic density model (eq. [2]) using insurer costs per vehicle as the
dependent variable. Specifications 8 and 9 use insurance premiums per
vehicle as the dependent variable.

Both the OLS and IV specifications in table 3 reveal the same pattern.
In particular, the density coefficient becomes negative (mostly insignif-
icant) and the density squared coefficient positive and significant. These
two effects balance to make the effect of increases in density on insur-
ance rates small and of indeterminate sign in low-traffic states. The effect
is positive, substantial, and statistically significant in high-traffic states,
since the quadratic term dominates.

Taken together, our regressions provide strong evidence that traffic
density increases the risk of driving. All our specifications indicate that
high–traffic density states have very high accident costs and commen-
surately large external marginal costs not borne by the driver or his
insurance carrier. The quadratic specifications imply that the effects of
density increase at higher density. Congestion may eventually lower the
external marginal accident costs, but any such effect appears to be at
higher density levels than observed in our sample. Belmont (1953) in-
dicates that crash rates fall only when roads have more than 650 vehicles
per lane per hour, which corresponds to nearly 6 million vehicles per
lane per year, a figure well above the highest average traffic density in
our sample; hence it is not surprising that we have a positive coefficient
on density squared.

The framework thus far, whether using insurer cost or premiums,
could still suffer, however, from potential biases. These biases flow from
normalizing insurance costs on a per vehicle basis. Although that is the
way prices are quoted in the market place, accident cost per vehicle will
depend on the amount the average vehicle is driven: the more it is
driven, the higher the costs will be. If miles per vehicle in a state rise,
this could drive up both traffic density and insurance premiums per
vehicle without any externality effect. Hence, if we seek to interpret the
density term as reflecting an externality, our externality estimates might
be biased up. On the other hand, if traffic density rises because more
people become drivers, then each person will find driving less attractive
and drive less, reducing her risk exposure. This would bias our exter-
nality estimate down and could lead to a low-density coefficient estimate
even though the externality is large. Instead of simply assuming that
these two biases perfectly offset each other, we can remove both biases
with a new specification.

To remove the above biases, we normalize aggregate statewide pre-
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miums by vehicle miles traveled in the state (M) instead of by the num-
ber of insured vehicles. Accordingly, columns 10 and 11 report estimates
of a variant of equation (2) in which we have insurer costs per vehicle
mile traveled and premiums per vehicle mile traveled as our dependent
variables. This is our preferred specification because it removes the
potential biases from variations in miles traveled per vehicle. As with
our other estimates, we have a positive and significant coefficient on
density squared; the estimates are naturally much smaller in absolute
value because once normalized by miles traveled, the left-hand-side var-
iable is roughly 10�4 smaller than in the other regressions. As we see in
the next section, this specification leads to the largest estimates of the
externality effect. This suggests that the largest bias in specification 7
is the downward bias from more drivers leading to less driving per driver.

V. The External Costs of Accidents

Here we compute the extent to which the typical marginal driver in-
creases others’ insurance premiums or insurers’ costs in a state. For
specifications 3 and 7, equation (4) gives the externality on a per vehicle
basis. We convert this figure to a per licensed driver basis by multiplying
by the ratio of registered vehicles to licensed drivers in a given state.
The resulting figure implicitly assumes a self-insurance cost borne by
uninsured drivers equal to the insurance cost of insured drivers.

We report results for three high-traffic states, three moderate-traffic
states, and three low-traffic states in table 5. Extra driving imposes large
accident costs on others in states with high traffic density such as New
Jersey, Hawaii, and California, according to our estimates. In California,
for example, our estimates range from $1,725 � $817 per driver per
year in the linear model using insurer costs per vehicle as the dependent
variable to $3,239 � $1,068 per driver in the quadratic model using
insurer costs per mile as the dependent variable. This external marginal
cost is in addition to the already substantial internalized cost of $744
in premiums that an average driver paid in 1996 for liability and collision
coverage in California.

We find that high–traffic density states such as California have large
economically and statistically significant externalities across all specifi-
cations whether using OLS or IV, whether controlling for serial corre-
lation or not controlling, whether using insurer costs or premiums as
a measure, whether normalizing by vehicle miles traveled or by number
of vehicles, whether using panel or cross-sectional data, and whether
using linear or quadratic costs. In contrast, low–traffic density states
have small economically insignificant and generally statistically insig-
nificant externalities in our estimation: in South Dakota, for example,



TABLE 5
Yearly External Accident Cost of Marginal Driver for Select States, 1996

State

Traffic
Density
(1996)

(1)

Insurance
Premium, r

($/Insured Car-Year)
(2)

Linear Insurer
Costs per Vehicle
Model (Based on
Specification 3)

(3)

Quadratic Insurer
Costs per Vehicle
Model (Based on
Specification 7)

(4)

Quadratic Insurer
Costs per Vehicle

Mile Model
(Based on

Specification 10)
(5)

Quadratic Insurance
Premiums per
Vehicle Mile

Model (Based on
Specification 11)

(6)

Low-Density States

North Dakota 38,355 363 110 (52) �46 (50) 10 (41) �14 (31)
South Dakota 46,276 413 127 (60) �50 (57) 14 (49) �15 (37)
Montana 66,304 451 214 (101) �73 (94) 32 (75) �16 (56)

Moderate-Density States

Maine 277,816 463 579 (274) 126 (215) 502 (263) 250 (161)
Kentucky 280,899 604 561 (266) 127 (208) 581 (302) 291 (184)
South Carolina 295,083 595 608 (288) 160 (224) 598 (298) 598 (179)

High-Density States

California 728,974 744 1,725 (817) 2,432 (764) 3,239 (1,068) 2,231 (628)
New Jersey 802,828 1,091 1,619 (767) 2,599 (775) 3,250 (1,065) 2,273 (639)
Hawaii 899,518 990 1,831 (867) 3,408 (973) 3,933 (1,287) 2,796 (791)

Note.—Entries for external accident cost in cols. 3–6 are in dollars per driver. Standard errors are in parentheses. External marginal cost of additional driver is calculated from the
cost per mile assuming that a driver drives the average number of miles in the state.
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a state with roughly one-fifteenth the traffic density of California, our
externality estimates range from �$50 � $57 to $127 � $60.

As a comparative matter, external marginal costs in high–traffic den-
sity states are much larger than either insurance costs or gasoline ex-
penditures. The point estimates of the external costs are quite large
even in moderate-density states such as Kentucky, especially in the linear
model, where the estimate in Kentucky, for example, is $561 � $266.

Although our external cost estimates are large in high-density states
such as New Jersey, California, and Hawaii, they are not unreasonably
so. Consider that, nationally, there are nearly three drivers involved per
crash on average. According to the accident model in Section II, this
would suggest that the marginal accident cost of driving would typically
be three times the average and that the external marginal cost would
be twice the average. Hence, we might expect that a 1 percent increase
in driving could raise costs by 3 percent.5 In California, a 1 percent
increase in driving raises insurer costs by roughly 3.3 percent according
to specification 3, our linear model, and by 5.4 percent according to
specification 10. The linear model suggests that in almost all states a 1
percent increase in driving raises accident costs by substantially more
than 1 percent.

Although we chose insurance loss costs and premiums because they
implicitly include both crash frequency and crash severity effects, it is
interesting to decompose these two effects. When we do so, our point
estimates suggest that increases in traffic density appear to consistently
increase accident frequency, but not severity. The severity of accidents
may fall somewhat with increases in density in low-density states and rise
in high-density states. However, both the severity externality and the
frequency externality are statistically insignificant, and it is only when
the two externalities are combined (as they should be) that we uncover
statistically significant externalities.6

VI. Implications

We find substantial negative accident externalities in almost all speci-
fications, even in states with only moderate traffic density such as Ken-
tucky or South Carolina; and in all specifications, the externalities are
at least somewhat negative for states of moderate or higher traffic den-

5 If accidents require the coincidence of three cars in the same place at the same time,
then and external marginal costs equal . Internalized marginal costs are2 2r p c D 2c D3 3

, so that total marginal cost is . If there were no external marginal costs, then a2 2c D 3c D3 3

1 percent increase in driving would increase costs by 1 percent (the internalized figure).
6 For details on this decomposition, see Edlin and Karaca-Mandic (2003). There, we

also studied the fatalities externality, which is largely uninsured. As with the measures of
insured costs studied here, our point estimates suggest that in high-density states increases
in density raise fatality rates; however, this effect is not statistically significant.
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sity. By way of comparison, our point estimates exceeded existing taxes
on gasoline in such states; externalities appear to dwarf existing taxes
in states with high traffic density such as California in all specifications.
The failure to charge for accident externalities provides the incentive
for too much driving and too many accidents, at least from the stand-
point of economic efficiency.

The true extent of accident externalities probably substantially ex-
ceeds our estimates because we neglected two important categories of
losses. In particular, we did not include the costs of traffic delays fol-
lowing accidents, nor did we include damages in accidents when these
losses are not covered by insurance. Both omissions could be quite
substantial. According to one fairly comprehensive study by the Urban
Institute (Miller et al. 1991), the total cost of accidents (excluding con-
gestion) exceeded $350 billion per year, substantially more than the
roughly $100 billion per year of insured accident costs during our sam-
ple period. If these uninsured accident costs behave like the insured
costs we have studied, then accident externalities could be 3.5 times as
large as we have estimated here. Externalities for California might ex-
ceed $10,000 per driver per year.

One potential solution would be to engage in a massive road-building
campaign to lower traffic density. Road building is unlikely to be the
answer, however. California, for example, would need to more than
double its road infrastructure to get its density down to Kentucky levels,
and it would still have substantial externalities. Moreover, if the new
roads lead to more driving, even less would be gained.

The straightforward way to address large external marginal costs is
to levy a substantial Pigouvian charge, either per mile, per driver, or
per gallon, so that people pay something closer to the true social costs
that they impose when they drive.7 An alternative tax base is insurance
premiums (coupled with getting very serious about requirements to be
fully insured).

Pigouvian taxes could rectify the externality problem and raise sig-
nificant funds. If each state charged our estimated external marginal
cost as a Pigouvian tax for each mile driven or each new driver, the
total national revenue would be $220 billion per year at the end of our
sample, 1996, according to the estimates in specification 10, and ne-
glecting the resulting reductions in driving. This figure exceeds the $163
billion collected in 1996 by all states combined for corporate and in-
dividual income taxes. In California alone, revenues would be $66 bil-
lion, more than the $57 billion for all California state tax collections.
New Jersey, another high-traffic state, could likewise gather more rev-

7 In principle, accident charges should vary by roadway and time of day to account for
changes in traffic density.
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enue from an appropriate accident externality tax than it does from all
its state taxes: $18 billion compared to $14 billion in 1996.8 If uninsured
externality costs are in fact 3.5 times insurance costs, as suggested by
the Urban Institute study, then an appropriate Pigouvian tax might raise
$770 billion per year before accounting for what would in fact be enor-
mous driving reductions. That quantity is a shockingly large figure, but
one that reflects the magnitude of the problem. Of course, the number
of drivers and the amount of driving would decline significantly with
such a tax, and that would be the point of the tax, because less driving
would result in fewer accidents.

The most administratively expedient Pigouvian tax would be a gas-
oline tax since states already have such taxes. And, importantly, gas taxes
would bring the uninsured into the payment system. On the negative
side, such taxes take inadequate account of heterogeneity. Good and
bad drivers are charged the same amount, even though the accident
frequency and hence the accident externality of bad drivers could be
considerably higher. In addition, fuel-efficient vehicles would pay lower
accident externality fees, even if they impose comparable accident costs.

In principle, the most efficient way to address the accident externality
would probably be to levy a large tax on insurance premiums. A tax on
insurance premiums, unlike a gas tax, would take into account hetero-
geneity because insurance premiums already do so. In California, a
Pigouvian tax might be roughly 200–400 percent, as revealed in table
5. A practical difficulty with taxing insurance is that it would drive people
to become uninsured unless states simultaneously cracked down seri-
ously on uninsured driving.

To an economist, raising significant funds with Pigouvian taxes on
externalities is a dream come true. Many political watchers will doubt,
though, that Americans will accept any policy that substantially raises
the cost of driving. Gasoline taxes, for example, remain quite low in
the United States compared with Europe.

Surprisingly, there is a potential second-best compromise, which is to
shift a fixed cost to the margin, so as to leave overall driving costs
comparable, but increase the marginal cost and thereby decrease the
quantity of driving. The body politic has accepted mandatory insurance,
so why not also require insurance companies to quote premiums by the
mile instead of per car per year? Insurance premiums are surprisingly

8 Tax figures are available from the Census Bureau, 1996 State Government Tax Collections
(http://www.census.gov/govs/www/statetax96.html).
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invariant to the amount a given individual drives,9 and as a result, once
one buys a car and insurance, the price of gasoline alone becomes the
limiting factor on quantity of driving.

Why not instead have “per mile premiums,” much as William Vickrey
(1968) once suggested, in which insurance charges rise linearly with an
individual’s driving. This simple change in pricing structure could re-
duce driving substantially by moving a fixed cost to the margin without
raising the overall cost of driving. Litman (1997) and Edlin (2003)
provide more extensive discussions of this possibility.10 People could
then choose to save substantial amounts on insurance by reducing their
driving. As driving distributions are skewed, most people drive less than
the average (and so would save money under per mile premiums). This
fact makes the political prospects of such a change seem more promising
than a tax that would raise overall driving costs. The National Orga-
nization for Women, Butler, Butler, and Williams (1988), and Butler
(1990) have argued forcefully that such a policy would be more fair as
well, pointing out that women drive roughly half what men do, have
half the accidents, but still pay comparable premiums (see also Ayres
and Nalebuff 2003).

An extremely valuable aspect of a requirement of per mile premiums
is that it takes advantage of the fact that current insurance premiums
account for heterogeneity in risk. As a result, those in highly dense areas
and those with poor driving records would face the highest per mile
rates and would reduce driving the most, creating a doubly large re-
duction in accidents—exactly as a social planner would wish.

Edlin (2003) estimated that the accident savings net of lost driving
benefits from per mile premiums would be $12.7 billion per year na-
tionwide. Those estimates were, however, based on a simulation model
of accident externalities that assumed a much lower accident externality
than the one estimated here, suggesting that the actual gains would be
considerably larger.

9 For example, State Farm, the largest U.S. insurer, distinguishes in most states on the
basis of whether a driver predicts driving under or over 7,500 miles annually and grants
15 percent discounts to drivers who drive under 7,500 miles. This discount is modest given
that those who drive under 7,500 miles per year average 3,600 miles compared to 13,000
for those who drive over 7,500 according to our calculations from the 1994 Residential
Transportation Energy Survey of the Department of Energy Information Administration.
The implied elasticity of accident costs with respect to miles is 0.05, an order of magnitude
below what the evidence suggests is the private elasticity of accident costs with respect to
driving. The link between driving quantity and premiums may be attenuated in part
because there is significant noise in self-reported estimates of future mileage, estimates
whose accuracy does not affect insurance payouts.

10 Several firms, such as Norwich-Union, a British insurer, have begun experimenting
with various types of “pay as you drive insurance.” See http://news.bbc.co.uk/hi/english
business/newsid-1831000/1831181.stm and http://www.norwich-union.co.uk for infor-
mation on Norwich-Union.
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One reason that insurers do not adopt per mile premium policies on
their own is that so much of the gains are external and the monitoring
costs are internal. Currently a firm that quotes such premium schedules
bears all the costs of monitoring mileage but gleans only a fraction of
the benefits: as its insureds cut back their driving, others avoid accidents
(with them), and these others and their insurance companies benefit
considerably. This externality, which is exactly what we have estimated,
is what suggests that regulatory intervention could be warranted. Some
have suggested that insurers might band together to adopt per mile
premiums without regulation, but there is little incentive to do that
(even if it were not illegal price fixing) since they would compete away
any gains.

To conclude, substantially more research on accident externalities
from driving seems appropriate, particularly given the apparent size of
the external costs. There is substantial heterogeneity within states in
traffic density, so more refined data (such as county-level data or time-
of-day data) would yield more accurate estimates of the effect of traffic
density and correspondingly of external marginal costs. In principle, it
would also be instructive to disaggregate traffic density into its com-
ponents by the age of the driver and by vehicle type. Likewise, it would
be instructive to study micro-level data correlating the number of ve-
hicles involved in the average accident with accident costs and frequency.
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