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Abstract—This work presents a sliding mode controller for the
speed control of a surface-mount permanent magnet synchronous
machine (PMSM) with non-ideal trapezoidal back-EMF, using
vectorial non-sinusoidal modeling. The calculus of vector-based
machine model considers an ideal trapezoidal back-EMF wave-
form, i.e., all control calculation is based on ideal back-EMF, but
they are applied to a machine with a real back-EMF waveform,
which can be considered a distorted trapezoid. For the sliding
controller, this paper shows the use of a sigmoidal function, the
hyperbolic tangent, instead of the signal function and uses a
proper sliding surface that presents combined integrative action
and anti-windup effect, which is applied to the vector-based model
of the non-sinusoidal machine. The final system consists in a
high performance controller, robust to machine parameters and
disturbances, and light in its design as shown by the results. The
chosen sliding surface with integrative control action, combined
to an anti-windup feature and the torque ripple free vector-based
model, give zero steady state speed error, minimizes the system
speed output overshoot and ripple.

Keywords—sliding mode control, vector PMSM control, motor
speed control, anti-windup.

I. INTRODUCTION

Basically, surface-mount permanent magnet synchronous
machines (PMSM) can be classified into two main categories,
which is related to its back-EMF waveform: sinusoidal ma-
chines and trapezoidal machines. As expected, there are no
absolute pure sinusoidal back-EMF waveforms and in the same
way, there are not purely trapezoidal back-EMF waveforms.
This work deals with trapezoidal machines, or better to say,
non-sinusoidal back-EMF machines. This term is used to
refer to a wide variety of back-EMF waveforms considered
trapezoidal [1].

It is useful to make a note about the term brushless DC
motor, which refers to the set composed by a non-sinusoidal
(or trapezoidal) surface-mount permanent magnet synchronous
machine and its electric power converter, commonly a three
phase machine with a three phase electric converter (a three
phase inverter) [2][1]. Considering an ideal trapezoidal back-
EMF waveform and an equally ideal 120◦ square wave stator
current, the machine produces an almost ripple free elec-
tromagnetic torque, as in Fig. 1. In this case the converter
operates in six-step mode where each inverter bridge switch
is active during 120◦ electrical, resulting in 2 switches on
simultaneously. However, there are no machines with pure
trapezoidal back-EMF waveforms and it is not possible to

produce ideal 120◦ square-wave currents, resulting in electro-
magnetic torque ripple, and its values can be high, depending
on the application [3].

Lately, in [4] is presented a vector control approach of the
BLDC to reduce the torque ripple.

In this work the vector model based control of surface-
mount permanent magnet synchronous machine with non-
sinusoidal back-EMF is implemented considering second order
sliding mode speed controller.
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Fig. 1. Brushless DC motor ideal electromagnetic torque generation (θe:
electrical position of the rotor).

II. MACHINE MODELING

The machine model is very studied in the literature and can
be easily found, as in [4]. Just for better reference is shown
here:
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where:

ea, eb and ec: induced voltage of stator phases
a, b and c, respectively, due to rotor magnets
movement, as in (2);

ia, ib and ic: stator phase currents a, b and c,
respectively;

Ls: stator phase self-inductance;
Ms: stator phases mutual inductances;
Rs: stator phase resistance;
va, vb and vc: a, b and c stator phases applied

voltages, respectively;
vn: stator neutral terminal voltage (this terminal is

usually not connected).

Considering Φra, Φrb and Φrc the linked magnetic fluxes
between rotor magnets and stator winding phases a, b and c,
respectively:
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where:

ωe: electrical rotor speed.

TEL = npp (Φ′raia + Φ′rbib + Φ′rcic) (3)

where:

TEL: machine-generated electromagnetic torque;
npp: number of machine’s pole pairs;

Since the magnets are mounted in rotor surface, inductance
variation due to rotor position can be neglected [2].

The phases back-EMFs are ideally trapezoidal, therefore
Φ′ra, Φ′rb and Φ′rc are also trapezoidal as shown in Fig. 2,
considering (2), where ΦM is their amplitudes and θe is the
rotor angle in electrical degrees.

Fig. 2. Waveforms for Φ′ra, Φ′rb and Φ′rc.

A. PMSM Vectorial Modeling

The vector-based model of this machine has the main
objective to obtain the electromagnetic torque equation pro-
portional to a stator current component, as in the vector-based

model for sinusoidal machines. In order to achieve that, a spe-
cial transformation is used additionally to the transformations
used for the sinusoidal one, i.e., αβ and dq transformations.
This transformation is referred here by dqx transformation [4]
and is applied following to the dq one, as shown in Fig. 3 and
is written as:

xαβ = axe
jθxejθexdqx (4)

where:

ax: dqx size of axes, relatively to dq axes, which are
considered equal to the unity;

θx: angle of dqx axes , relatively to dq axes.

Fig. 3. dqx transformation represented by blocks.
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where:

xαβ : quantities written over αβ axes (complex num-
ber);

x0: zero component;
xa, xb and xc: quantities of a, b and c phases,

respectively.

Applying those transformations to machine electric and
torque equations, (1) and (3), and choosing ax and θx as:
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√
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(7)

θx = tan−1
−Φ′rα
Φ′rβ

− θe (8)

The electromagnetic torque equation in dqx axes is:

TEL = npp

√
3

2
Φmiqx (9)

And the electric equations:
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Fig. 4. Ideal trapezoidal back-EMF and measured back-EMF, of the real
machine, waveforms.
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The measured back-EMF waveform for one phase together
with an ideal trapezoidal back-EMF waveform are shown in
Fig. 4. The coefficients for those back-EMF waveforms are
shown in Figs. 5 and 6, for ax and θx respectively. For
the vector control, the coefficients for the trapezoidal back-
EMF are used, but the machine model employs the real back-
EMF waveform. This causes a difference in dqx currents, but
with minimal influence on electromagnetic torque, as seen in
Sec. IV.

III. SLIDING MODE CONTROL

A block diagram of the complete drive system is shown
in Fig. 7, where there are three controllers: the stator current
controllers, Cdx and Cqx , for direct and quadrature controllers;
and the rotor speed controller, Cω . As the time constant of
mechanical system is far greater than the time constant of
electrical system, rotor speed control loop are weakly coupled
to current control loops, which are strongly coupled to one

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 π
3

2π
3 π 4π

3
5π
3 2π

θe

real ax
trap. ax

Fig. 5. Coefficient ax for the measured back-EMF of the real machine and
for an ideal trapezoidal back-EMF.
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Fig. 6. Coefficient θx for the measured back-EMF of the real machine and
for an ideal trapezoidal back-EMF.

another. Thus, it is possible to make separate analysis for the
controllers of speed loop (Cω) and for current loops (Cdx and
Cqx ) [5].

The current controllers are first order sliding mode con-
trollers, as in [6], so their sliding mode variables are:

σdx = i∗dx − idx
σqx = i∗qx − iqx

(13)

where

i∗dx : stator line direct axis current reference,
i∗qx : stator line quadrature axis current reference,
idx : stator line current for direct axis, and
iqx : for quadrature axis.

And the stator current controller is:

Cdx : vdx = tanh kI ·σdx
Cqx : vqx = tanh kI ·σqx (14)

The reachability and the sliding mode conditions of the
current controller for the first order sliding mode controller
(14) are both shown in [6].

A. Rotor Speed Sliding Mode Controller

The used sliding variable for the speed control loop is [7]:

σ =

∫ (
λ(ε) +

d

dt

)r−1
ε dt (15)
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Fig. 7. System complete control block diagram (KT = 2nppΦM , Cω : rotor speed controller, Cdx : stator direct current controller, Cqx : stator quadrature
current controller).

where:

ε = x∗ − x;
r: is the degree of sliding surface;
x: vector of state variables;
x∗: references for state variables;

The sliding surface is defined as σ = 0 and one must
note that it differs from the commonly generic sliding variable
shown in [8].

Due to the use of the integral operator, λ must be a function
of x∗ − x. For this application, it is considered a sliding
surface of order 2 (r = 2). The function λ must be chosen
according to the application in order to satisfy the reachability
and attractability criteria. Therefore, the speed loop controller
is a sliding mode of order 2, and its sliding surface is:

σω =

∫
λ(εω)εωdt+ εω = 0 (16)

where:

σω: sliding variable for rotor speed control loop
(Cω);

εω = ω∗ − ω: shaft speed error;
ω∗: rotor speed reference;
ω: measured rotor speed.

The dynamic mechanical load equation is:

dω

dt
= ω̇ = −B

J
ω − 1

J
TL +

1

J
TEL (17)

where:

B: equivalent frictional coefficient, composed by
rotor shaft bearings and load frictional losses;

J : combined inertia momentum of machine rotor and
load;

TL: load torque;

B. System convergence

A general non-linear system can be written as:

ẋ = f(x) + g(x)U

y = h(x)
(18)

where:

U : system input;
f , g, h: linear or non-linear functions, characterizing

the system;
y: system output.

The system input function U can be written as a sum of a
continuous function and a switching function:

U = Ueq + Uc (19)

where:

Ueq: is a continuous function and is referred as
“equivalent control”, representing the operation
point where the sliding regime occurs [9];

Uc: is the switching control, representing the variable
structure of the system, responsible to the attrac-
tiveness of the system to the sliding regime.

A well accepted method to prove the convergence of that
system to the operation point is by the definition of an energy
Lyapunov function and giving the conditions to be satisfied,
the final inequality is [7]:

∂σ

∂x
g(x) < 0 for σ 6= 0 (20)



The use of a sigmoidal function does not alter the inequal-
ity (20) as well.

In order to prove the sliding mode of the system, the
equivalent control must conform to systems limits and in order
to prove the reachability condition, so (20) must be satisfied.
Using (17), the equivalent control of the system input (TEL)
is:

TELeq = Bω + TL (21)

Considering the bounding limits of operation, in the maxi-
mum desired speed, maximum machine electromagnetic torque
must equals the product of maximum speed and shaft friction
coefficient plus maximum load torque.

In order to prove that the system stays in the adopted
sliding surface, considering g(x) = 1/J in (16), (20) leads
to:

λ(εω)εω
ω̇

− 1 < 0⇒ λ(εω)εω
ω̇

< 1⇒ (22)
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and i, which gives maximum allowed TEL:
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(24)

That results in a hyperbole depending on ω∗. When εω <
0, TEL < 0 and considering TEL the preponderant factor of
the equation, then the hyperbole is always positive. So λ(εω)
must be inscribed in that hyperbole in order to satisfy the
reachability condition (Fig.8).
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Fig. 8. Hyperbole delimiting reachability condition.

IV. RESULTS

The used machine and its load has the parameters shown
in Table I. The load torque (TL) is 2.2Nm for this machine.

Simulation results are shown in Figs. 9 to 10. In the figures,
the load torque is varied abruptly from 0 to its maximum

TABLE I. BLDC MOTOR AND MECHANICAL LOAD PARAMETERS USED
IN SIMULATIONS.

Motor Load
Rs = 2.3Ω J = 4.2 · 10−3kg m2

(Ls −Ms) = 12.5mH B = 3.032 · 10−3kg m2/s
npp = 3

Φm = 0.12Wb

value (2.2Nm) and to its maximum in the opposite direction
(-2.2Nm). Fig. 9 shows the machine accelerating and reaching
1000rpm of rotor speed. The details of machine speed is shown
in Fig. 10, where it decreases when torque load increases and
vice-versa.

Fig. 11 shows details of electromagnetic torque and its
reference for the quadrature current component. It can be seen
that produced torque is almost free of ripple, even considering
a different back-EMF waveform, as the coefficients ax and θx
where evaluated using a pure trapezoidal waveform, which is
different from that of the machine under test.

-5A

ia 0

5A
-40V

ea 0

40V

0

1000rpm

0

2Nm

4Nm

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

t(s)

ω

ω∗

Te

TL

Fig. 9. Machine operation at 1000rpm, with control using ax and θx
coefficients evaluated for an ideal trapezoidal back-EMF waveform but applied
in a real back-EMF machine used.
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Fig. 10. Machine operation at 1000rpm, detail of speed during load torque
transients.

Fig. 12 shows the machine accelerating from 1000rpm
and reaching 2000rpm. During this interval, load torque is
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Fig. 11. Machine operation at 1000rpm, detail of reference torque chattering.

applied against machine motion (positive value) and favoring
its motion (negative value). Those load torque changes causes
some transients in machine speed. After machine achieves its
set point speed, it occurs a little overshoot due to load torque
favoring its motion (Fig. 13). In t = 0.35s, load torque is
released, so machine speed falls but integrative action of the
controller put it back to its set point. In t = 0.4s, a load torque
against its motion is applied, so machine speed falls again, but
due to integrative action, it reaches its set point after 50ms.
When this load is released, machine accelerates but it is back
to its set point again.

V. CONCLUSIONS

Considering the results, the ripple in speed is practically
nonexistent due to almost absence of torque ripple, even
considering an ideal trapezoidal back-EMF for the controller
and a real back-EMF (distorted trapezoidal waveform) for the
machine. As the back-EMF waveform of the machine has
minor variation in its normal region of operation, the control
presents a good performance.

This work combines a sliding surface and non-sinusoidal
vector-based model in order to minimize electromagnetic
torque ripple and eliminate the steady state error of the
system which is introduced by the use of analog functions
as switching functions, instead of the signal function. The use
of an analog function, as the hyperbolic tangent function, can
reduce significantly system chattering, but it is not properly a
sliding mode control and causes non-zero steady state error, as
pointed out by the literature. The anti-windup effect achieved
by the proposed surface is similar to the conventional method
called conditional integration, but with the difference that the
integrative portion is gradually activated as the error decreases,
so the integrator is active even for large error values. This is
a good feature once the conventional method can fail if the
error does not fall into a range.

The combination of the vector-based model plus the sliding
mode control shows excellent results for the control of machine
rotor speed, i. e., fast speed response, no steady state error,
minimum rotor speed overshoot, low torque ripple and no
chattering.
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Fig. 12. Machine operation at 2000rpm, with control using ax and θx
coefficients evaluated for an ideal trapezoidal back-EMF waveform but applied
in a real back-EMF machine used.
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