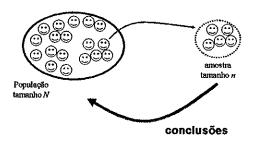
RPP5724 - Metodologia Científica

Testes de Hipóteses

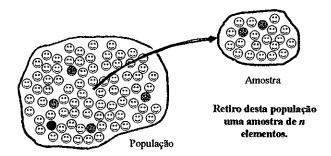
Testes de Hipóteses

O objetivo da inferência estatística é:
Obter conclusões sobre algumas
características de um conjunto de
interesse, denominado população, com
base na informação oriunda de um
conjunto de dados disponíveis,
denominado amostra.



Tais conclusões são basicamente obtidas por duas formas:

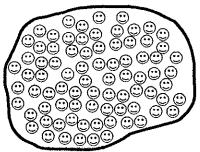
- 1-) Intervalos de confiança quando o objetivo é estimar um parâmetro, ou seja, uma característica numérica da população.
- 2-) Testes de hipóteses quando há hipóteses sobre características numéricas da população.



Uma hipótese é uma suposição sobre um parâmetro populacional desconhecido.

Exemplo:

- Em 1860, após analizar a temperatura da região axilar de aproximadamente 25 mil pessoas, Carl Wunderlich identificou a temperatura média de adultos saudáveis como 37,0° C ou 98,6° F.
- Determinou-se que 37,0° C ou 98,6° F seria uma "temperatura normal" para um indivíduo.
- Wunderlich também estabeleceu que uma temperatura superior a 38,0° C ou 100,4° F seria um "limite superior de normalidade" para a temperatura corporal, sendo que um indivíduo com temperatura maior que este limite seria classificado como portador de febre.



População População População População População geral dos adultos saudáveis.

média $\mu_X = 37.0$ °C

Foi assim estabelecido que na população de adultos saudáveis, a temperatura média na região axilar é 37,0°C.

Em 1992, Mackowiak, Wasserman e Levine perguntaram...

Será que a temperatura média de adultos saudáveis é mesmo 37,0°C?

Referência: JAMA, 268(12):1578-80,1992

A temperatura média de

adultos saudáveis é diferente de 37,0°C.

Pergunta: $\mu_X \neq 37.0^{\circ}\text{C}$???

Hipótese do pesquisador: média $\mu_X \neq 37.0^{\circ}$ C

Um teste estatístico de hipóteses é uma regra utilizada para decidir quando rejeitar uma hipótese. Esta regra é sempre baseada em uma amostra.

Com base nos resultados de uma amostra aleatória tamanho n, tomamos a decisão de rejeitar ou não rejeitar uma hipótese formulada sobre um parâmetro de interesse.

Na prática, consideramos duas hipóteses:

Hipótese alternativa (H_A):

é a "hipótese do pesquisador", aquilo que ele deseja verificar.

Na população de adultos saudáveis, a temperatura média na região axilar é diferente de 37,0℃

Hipótese nula (H₀): é o complemento da alternativa.

Na população de adultos saudáveis, a temperatura média na região axilar é 37,0°C

Hipótese alternativa (H_A) :

 $H_A: \mu_X \neq 37.0^{\circ}C$

Hipótese nula (H₀):

 H_0 : $\mu_X = 37.0$ °C

Agora uma definição mais completa...

Com base nos resultados de uma amostra aleatória tamanho n, tomamos a decisão de rejeitar ou não rejeitar a hipótese nula.

Estaremos assim sujeitos a dois tipos de erros...

A-) ERRO TIPO I : rejeito H₀, mas H₀ é verdadeira

B-) ERRO TIPO II : não rejeito Ho, mas Ho é falsa

Decisão	H₀ é verdadeira	H₀ é falsa
Rejeito H ₀	Erro tipo I	Sem erro
Não rejeito H₀	Sem erro	Erro tipo II

Exemplo:

Certa droga ("droga 1") vem sendo utilizada no tratamento de uma moléstia. Um pesquisador desenvolve uma nova droga ("droga 2"), que, se mais eficiente, substituirá a droga 1.

Hipótese do pesquisador:

A droga 2 é mais eficiente.

Hipóteses:

H₀: A droga 1 é mais eficiente ou tão eficiente quanto a droga 2. H_A: A droga 2 é mais eficiente.

Qual é o erro mais grave ?

RPP5724 - Metodologia Científica

Testes de Hipóteses

- A probabilidade de se cometer um erro tipo I é chamada nivel de significância do teste e é denotada por α .
- A probabilidade de se cometer um erro tipo II é denotada por β.
- Na área da saúde, a quantidade 1β é geralmente chamada poder (ou potência) do teste.
- O nivel de significância do teste (α) é fixado antes da coleta dos dados.
 Na área da saúde, é muito comum fixar α = 5%.
- A probabilidade de se cometer um erro tipo II (β) é geralmente usada para o cálculo do tamanho amostral.
 Escolhas comuns: β = 5%, 10% ou 20%.

Voltando ao exemplo...

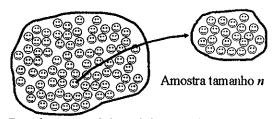
Antes de retirarmos a amostra da população, vamos fixar o <u>nível de significância</u> do teste. A maioria dos estudos da área da saúde adota $\alpha = 0.05$.

Se, na população, a temperatura média na região axilar segue uma distribuição normal com média μ_X e variância σ_X^2 , ou seja, $X \sim N$ (μ_X ; σ_X^2), sabemos que $T = \frac{(\overline{X} - \mu_X)\sqrt{n}}{s_X}$ segue uma distribuição t

de Student com n-1 graus de liberdade.

Se a hipótese nula for verdadeira, $T_0 = \frac{(\overline{X} - 37)\sqrt{n}}{s_X}$ segue uma distribuição t de Student com

n-1 graus de liberdade.

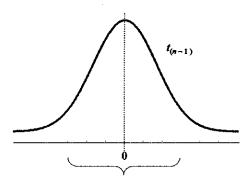


População geral dos adultos saudáveis.

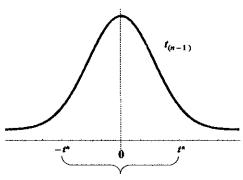
A partir de uma amostra tamanho n, vamos calcular

$$t_0 = \frac{\left(\overline{x} - 37\right)\sqrt{n}}{s_X}$$

Se a hipótese nula for verdadeira, este valor de t_0 calculado da amostra será o resultado de uma distribuição t de Student com n-1 gl.



Se a hipótese nula é verdadeira, é mais provável que encontremos em uma amostra tamanho n valores de f₀ situados nesta região "central" da curva, onde há maior densidade.



Assim, vamos rejeitar H_0 se encontrarmos em uma amostra tamanho n um valor de t_0 maior que t^* ou menor que $-t^*$, de forma que t^* é determinado da seguinte maneira...

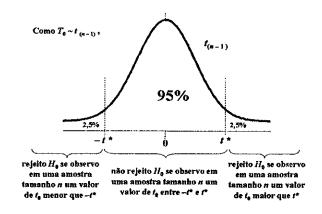
... se fixarmos o nível de significância em 5%, então

Nível de significância = P(erro tipo I) = P(rejeitar $H_0 \mid H_0$ é vordadeira) = 5%.

Decidimos rejeitar H_0 nas situações onde $T_0 > t^*$ e $T_0 < -t^*$.

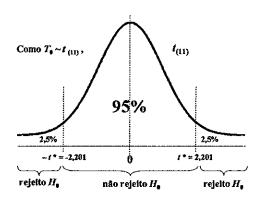
Assim, P(não rejeitar $H_0 \mid H_0$ é verdadeira) = 95%

$$P(-t^* < T_0 < t^*) = 95\%$$



 $-t^*$ e t^* são chamados valores críticos de T_0 .

Vamos retirar da população uma amostra tamanho n = 12.



Da tabela da distribuição t de Student, temos que $t^* = 2,201$.

RPP5724 - Metodologia Científica

Testes de Hipóteses

Na amostra tamanho n = 12, observamos as seguintes temperaturas (cm °C):

35,6	35,8	36,3	35,5	35,9	36,9
37,1	36,2	37,2	36,1	37,6	37,7

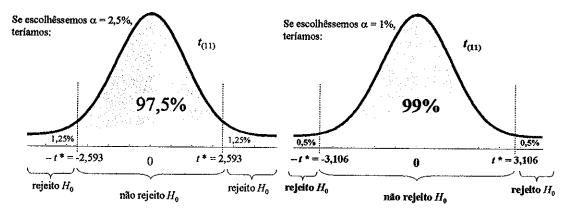
Temos então uma média amostral $\bar{x} = 36,5$ °C e um desvio padrão amostral $s_X = 0,775$ °C.

Assim,
$$t_0 = \frac{(\overline{x} - 37)\sqrt{n}}{s_X} = \frac{(36, 5 - 37)\sqrt{12}}{0,775} = -2,23.$$

Como $t_0 < -2,201$, rejeitamos H_0 ; ou seja, temos evidências de que a temperatura média na região axilar na população de adultos saudáveis é diferente de $37,0^{\circ}$ C.

Esta conclusão é valida para um nível de significância $\alpha = 5\%$.

Uma nota...



Como $t_0 = -2,23$, nós não rejeitariamos H_0 para $\alpha = 2,5\%$.

Como $t_0 = -2,23$, também não rejeitaríamos H_0 para $\alpha = 1\%$.

Temos $t_0 = -2.23$.

α	- 1*	<i>t</i> *	Decisão
0,05	-2,2010	2,2010	Rejeito H ₀
0,048	-2,2243	2,2243	Rejeito H_0
0,047	-2,2364	2,2364	Não rejeito H_0
0,04	-2,3281	2,3281	Não rejeito H_0
0,03	-2,4907	2,4907	Não rejeito H_0
0,025	-2,5931	2,5931	Não rejeito H_0
0,02	-2,7181	2,7181	Não rejeito H_0
0,01	-3,1058	3,1058	Não rejeito H_0

Nota-se que rejeitaríamos H_0 se escolhêssemos um valor maior ou igual a 0,048 para α .

O menor valor de a que nos levaria a rejeitar a hipótese nula é chamado "p valor".