
Kitty Grammar 
 
Syntactically well-formed Kitty programs are those derivable from the grammar in Figures 1. Bold names stand 
for token types. Italicized annotations are comments and not part of the grammar. The grammar in Figure 1 is 
ambiguous. The ambiguities are removed by the following rules: 
Precedence: The precedence of operators from highest to lowest is as follows (operators on the same line have 
the same precedence): 
unary minus (negation) 
*, / 
+, - 
<, <=, =, <>, >=, > 
& 
| 
Associativity: The operators *, \, +, -, &, and | are all left-associative. E.g., 1 – 2 + 3 is parsed as if it were 
written (1 – 2) + 3. The relational <, <=, =, <>, >=, and > are all non-associative. E.g., 1 < 2 = 3 is not a legal 
expression, even though the explicitly grouped versions (1 < 2) = 3 and 1 < (2 = 3) are legal expressions. 
Dangling Else: The presence of both if-then and if-then-else expressions in a language introduces an ambiguity 
as to which if expression an else clause belongs. The Kitty convention (as in many other languages) is that 
an else clause belongs to the innermost if expression enclosing it. Thus, the expression 
if E1 then if E2 then E3 else E4 
is parsed as if it were written 
if E1 then (if E2 then E3 else E4) 
 
Exp derives Kitty expressions 
Exp → () the literal for “no value” 
Exp → intlit as specified by the lexical conventions for integer literals 
Exp → charlit as specified by the lexical conventions for character literals 
Exp → ident as specified by the lexical conventions for identifiers 
Exp → Const 
Exp → Nullop () the parentheses are required 
Exp → Unop (Exp) the parentheses are required 
Exp → -Exp unary minus operator 
Exp → writes(stringlit) 
Exp → Exp Binop Exp 
Exp → ident := Exp assignment 
Exp → if Exp then Exp else Exp 
Exp → if Exp then Exp 
Exp → let Decs in ExpSeq0 end 
Exp → while Exp do Exp 
Exp → for ident := Exp to Exp do Exp 
Exp → (ExpSeq2) sequence expression, parentheses required 
Exp → (Exp) grouping via optional parentheses 
 
ExpSeq0 derives expression sequences with 0 or more expressions 
ExpSeq0 → empty expression sequence 
ExpSeq0 → ExpSeq1 
 
ExpSeq1 derives expression 
sequences with 1 or more 
expressions 
ExpSeq1 → Exp 
ExpSeq1 → Exp ; ExpSeq1 
ExpSeq2 derives expression 
sequences with 2 or more 

expressions 
ExpSeq2 → Exp ; ExpSeq1 
Decs derives declaration 
sequences with 1 or more 
declarations 
Decs → Dec 
Decs → Dec;Decs 



Dec derives variable 
declarations 
Dec → var ident := Exp 
Const derives constants 
Const → minint 
Const → maxint 
Const → true 
Const → false 
Nullop derives nullary (zeroargument) 
operators 
Nullop -> readc 
Unop derives unary (oneargument) 
operators 
Unop -> not 
Unop -> readi 
Unop -> writec 
Unop -> writei 

Binop derives binary (twoargument) 
operators 
Arithmetic Binops 
Binop -> + 
Binop -> - 
Binop -> * 
Binop -> / integer division 
Binop -> % integer modulus 
Relational Binops 
Binop -> < 
Binop -> <= 
Binop -> = 
Binop -> <> not equals 
Binop -> >= 
Binop -> > 
Logical Binops 
Binop -> & short circuit and 
Binop -> | short circuit or 

 
Figure 1: Kitty Grammar 


