
nondeterminism?
Observable

Yes No

More declarative Less declarative
Named stateUnnamed state (seq. or conc.)

(equality)
+ name

+ by−need synchronization

+ by−need
synchronization

+ thread

+ continuation

Lazy concurrent

object−oriented
Concurrent

programming

Shared−state
concurrent

programming

Software
transactional

memory (STM)

Sequential
object−oriented
programming

Stateful
functional

programming

programming
Imperative

Lazy
declarative
concurrent

programming

programming

Lazy
dataflow

Concurrent
constraint

programming

constraint
programming

Constraint (logic)
programming

Relational & logic
programming

Deterministic
logic programming

synchron.
+ by−need + thread

+ single assign.

Haskell

Lazy
functional

programming

Monotonic
dataflow

programming

Declarative
concurrent

programming

ADT
functional

programming

ADT
imperative

programming

Functional
programming

First−order
functional

programming

Descriptive
declarative

programming

Imperative
search

programming

Event−loop
programming

Multi−agent
programming

Message−passing
concurrent

programming

Data structures only

Turing equivalent

+ cell (state)

+ unification

Dataflow and

Oz, Alice, Curry Oz, Alice, Curry

CLU, OCaml, Oz

E in one vat

Continuation
programming

Logic and

constraints message passing Message passing Shared state

v1.08 © 2008 by Peter Van Roy

+ nondeterministic

(channel)

Oz, Alice, Curry, Excel,
AKL, FGHC, FCP

+ synch. on partial termination

FrTime, SL

+ instantaneous computation

Strong synchronous
programming

Esterel, Lustre, Signal

Functional reactive
programming (FRP)

Weak synchronous
programming

Pipes, MapReduce

Nondet. state

See "Concepts, Techniques, and Models of Computer Programming".

Explanations

Erlang, AKL

CSP, Occam,
E, Oz, Alice,

publish/subscribe,
tuple space (Linda)

choice

Nonmonotonic
dataflow

programming

Concurrent logic
programming

Oz, Alice, AKL

+ port

Multi−agent
dataflow

programming

The chart classifies programming paradigms according to their kernel

abstractions can be defined).  Kernel languages are ordered according to
the creative extension principle: a new concept is added when it cannot be
encoded with only local transformations.  Two languages that implement

programmer, because they make different choices about what
programming techniques and styles to facilitate.

the same paradigm can nevertheless have very different "flavors" for the

languages (the small core language in which all the paradigm’s

without interference from other paradigms.  It does not mean that there
is a perfect fit between the language and the paradigm.  It is not enough
that libraries have been written in the language to support the paradigm.
The language’s kernel language should support the paradigm.  When
there is a family of related languages, usually only one member of the 
family is mentioned to avoid clutter.  The absence of a language does
not imply any kind of value judgment.

When a language is mentioned under a paradigm, it means that part of
the language is intended (by its designers) to support the paradigm

Typing is not completely orthogonal: it has some effect on expressiveness. 
Axes orthogonal to this chart are typing, aspects, and domain−specificity. 

program’s specification.  A domain−specific language should be definable
in any paradigm (except when the domain needs a particular concept). 

Aspects should be completely orthogonal, since they are part of a

native fashion.  This flexibility is not shown in the chart. 
as Scheme, are flexible enough to implement many paradigms in almost
tinkering in particular are orthogonal to this chart.  Some languages, such
(introspection and reflection).  Syntactic extensibility and kernel language
protocols and generics), to full−fledged tinkering with the kernel language 
programming combined with syntactic support (e.g., meta−object 
programming, syntactic extensibility (e.g., macros), to higher−order 
language.  The term covers many different approaches, from higher−order 
Metaprogramming is another way to increase the expressiveness of a

sequence of values in time.  Its expressive power is strongly influenced by
the paradigm that contains it.  We distinguish four levels of expressiveness,

State is the ability to remember information, or more precisely, to store a

which differ in whether the state is unnamed or named, deterministic or
nondeterministic, and sequential or concurrent.  The least expressive is
functional programming (threaded state, e.g., DCGs and monads:
unnamed, deterministic, and sequential).  Adding concurrency gives
declarative concurrent programming (e.g., synchrocells: unnamed,
deterministic, and concurrent).  Adding nondeterministic choice gives
concurrent logic programming (which uses stream mergers: unnamed,

(e.g., client/server).  Named state is important for modularity.

nondeterministic, and concurrent).  Adding ports or cells, respectively,
gives message passing or shared state (both are named, nondeterministic,
and concurrent).  Nondeterminism is important for real−world interaction+ local cell

Active object
programming

Object−capability
programming

Java, OCaml

+ closure

embeddings

+ solver

LIFE, AKL

CLP, ILOG Solver

+ thread
+ single assignment

+ thread

Smalltalk, Oz,

+ thread

Java, Alice

+ log

+ cell
(state)

Functional

SQL embeddings

Prolog, SQL

+ search

record

XML,
S−expression

The principal programming paradigms
"More is not better (or worse) than less, just different."

Haskell, ML, E

(unforgeable constant)

+ cell

Scheme, ML

+ procedure

+ closure
Pascal, C

SNOBOL, Icon, Prolog

+ search

(channel)
+ port

Scheme, ML


