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PREFACE

This book deals with the exploration and optimization of
response surfaces. This is a problem faced by
experimenters in many technical fields, where, in general,
the response variable of interest is y and there is a set of
predictor variables x1, x2, ..., xk. For example, y might be
the viscosity of a polymer and x1, x2, and x3 might be the
reaction time, the reactor temperature, and the catalyst feed
rate in the process. In some systems the nature of the
relationship between y and the x’s might be known
“exactly,” based on the underlying engineering, chemical,
or physical principles. Then we could write a model of the
form y = g(x1, x2, ..., xk) + & where ¢ represents the
“error” in the system. This type of relationship is often
called a mechanistic model. We consider the more
common situation where the underlying mechanism is not
fully understood, and the experimenter must approximate
the unknown function g with an appropriate empirical
model y = f(x1, x2, ..., xk) + €. Usually the function f'is a
first-order or second-order polynomial. This empirical
model is called a response surface model.

Identifying and fitting an appropriate response surface
model from experimental data requires some knowledge of
statistical experimental design fundamentals, regression
modeling techniques, and elementary optimization
methods. This book integrates all three of these topics into
what has been popularly called response surface
methodology (RSM).
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We assume that the reader has some previous exposure to
statistical methods and matrix algebra. Formal coursework
in basic principles of experimental design and regression
analysis would be helpful, but are not essential, because
the important elements of these topics are presented early
in the text. We have used this book in a graduate-level
course on RSM for statisticians, engineers, and chemical/
physical scientists. We have also used it in industrial short
courses and seminars for individuals with a wide variety of
technical backgrounds.

This third edition is a substantial revision of the book. We
have rewritten many sections to incorporate new material,
ideas, and examples, and to more fully explain some topics
that were only briefly mentioned in previous editions. We
have also woven the computer more tightly into the
presentation, relying on JMP 7 and Design-Expert Version
7 for much of the computing, but also continuing to
employ SAS for a few applications.

Chapters 1 through 4 contain the preliminary material
essential to studying RSM. Chapter 1 is an introduction to
the general field of RSM, describing typical applications
such as (a) finding the levels of process variables that
optimize a response of interest or (b) discovering what
levels of these process variables will result in a product
satisfying certain requirements or specifications on
responses such as yield, molecular weight, purity, or
viscosity. Chapter 2 is a summary of regression methods
useful in response surface work, focusing on the basic
ideas of least squares model fitting, diagnostic checking,
and inference for the linear regression model. Chapters 3
and 4 describe two-level factorial and fractional factorial
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designs. These designs are essential for factor screening or
identifying the correct set of process variables to use in the
RSM study. They are also basic building blocks for many
of the response surface designs discussed later in the text.
Chapter 5 presents the method of steepest ascent, a simple
but powerful optimization procedure used at the early
stages of RSM to move the process from a region of
relatively poor performance to one of greater potential.
Chapter 6 introduces the analysis and optimization of a
second-order response surface model. Both graphical and
numerical techniques are presented. This chapter also
includes techniques for the simultaneous optimization of
several responses, a common problem in the application of
RSM. Chapters 7 and 8 present detailed information on the
choice of experimental designs for fitting response surface
models. Chapter 7 is devoted to standard designs,
including the central composite and Box—Behnken designs,
and the important topic of blocking a response surface
design. Chapter 8 covers small response surface designs,
design optimality criteria, the use of computer-generated
designs in RSM, and methods for evaluation of the
prediction properties of response surface models
constructed from various designs. We focus on variance
dispersion graphs and fraction of design space plots, which
are very important ways to summarize prediction
properties. Chapter 9 contains more advanced RSM topics,
including the use of mean square error as a design
criterion, the effect of errors in controllable variables,
RSM experiments for computer models, neural networks
and RSM, split-plot type designs in a response surface
setting, and the use of generalized linear models in the
analysis of response surface experiments. Chapter 10
describes how the problem of robust parameter design
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originally proposed by Taguchi can be efficiently solved in
the RSM framework. We show how RSM not only makes
the original problem posed by Taguchi easier to solve, but
also provides much more information to the analyst about
process or system performance. This chapter also contains
much information on robust parameter design and process
robustness studies. Chapters 11 and 12 present techniques
for designing and analyzing experiments that involve
mixtures. A mixture experiment is a special type of
response surface experiment in which the design factors
are the components or ingredients of a mixture, and the
response depends on the proportions of the ingredients that
are present. Extensive sets of end-of-chapter problems are
provided, along with a reference section.

The previous two editions of the text were written to emphasize methods that
are useful in industry and that we have found useful in our own consulting
experience. We have continued that applied focus in this new edition, though
much new material has been added. We develop enough of the underlying
theory to allow the reader to gain an understanding of the assumptions and
conditions necessary to successfully apply RSM.

We are grateful to many individuals that have contributed
meaningfully to this book. In particular, Dr. Bradley Jones,
Mr. Pat Whitcomb, Dr. Geoff Vining, Dr. Soren Bisgaard,
Dr. Connie Borror, Dr. Scott Kowalski, Dr. Dennis Lin,
Dr. George Runger, and Dr. Enrique Del Castillo made
many useful suggestions. Dr. Matt Carlyle and Dr. Enrique
Del Castillo also provided some figures that were most
helpful. We also thank the many classes of graduate
students that have studied from the book and the
instructors that have used the book. They have made many
helpful comments and suggestions to improve the clarity
of the presentation. We have tried to incorporate many of
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their suggestions. We also thank John Wiley & Sons for
permission to use and adapt copyrighted material.

Blacksburg, Virginia RAYMOND H. MYERS

Tempe, Arizona DOUGLAS C. MONTGOMERY

Los Alamos, New Mexico CHRISTINE M. ANDERSON-COOK
March, 2008
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1
INTRODUCTION
1.1 RESPONSE SURFACE METHODOLOGY

Response surface methodology (RSM) is a collection of
statistical and mathematical techniques useful for
developing, improving, and optimizing processes. It also
has important applications in the design, development, and
formulation of new products, as well as in the
improvement of existing product designs.

The most extensive applications of RSM are in the
industrial world, particularly in situations where several
input variables potentially influence some performance
measure or quality characteristic of the product or process.
This performance measure or quality characteristic is
called the response. It is typically measured on a
continuous scale, although attribute responses, ranks, and
sensory responses are not unusual. Most real-world
applications of RSM will involve more than one response.
The input variables are sometimes called independent
variables, and they are subject to the control of the
engineer or scientist, at least for purposes of a test or an
experiment.

Figure 1.1 shows graphically the relationship between the
response variable yield (y) in a chemical process and the
two process variables (or independent variables) reaction
time (£1) and reaction temperature (£2). Note that for each
value of &1 and & there is a corresponding value of yield y,
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and that we may view these values of the response yield as
a surface lying above the time—temperature plane, as in
Fig. 1.1a. It is this graphical perspective of the problem
environment that has led to the term response surface
methodology. It is also convenient to view the response
surface in the two-dimensional time—temperature plane, as
in Fig. 1.1b. In this presentation we are looking down at
the time—temperature plane and connecting all points that
have the same yield to produce contour lines of constant
response. This type of display is called a contour plot.

Figure 1.1 (a) A theoretical response surface showing the
relationship between yield of a chemical process and the
process variables reaction time (1) and reaction
temperature (£2). (b) A contour plot of the theoretical
response surface.

£yftima, ey

Clearly, if we could easily construct the graphical displays
in Fig. 1.1, optimization of this process would be very
straightforward. By inspection of the plot, we note that
yield is maximized in the vicinity of time 1 = 4 hr and
temperature & = 525°C. Unfortunately, in most practical
situations, the true response function in Fig. 1.1 is
unknown. The field of response surface methodology
consists of the experimental strategy for exploring the
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space of the process or independent variables (here the
variables &1 and ¢&2), empirical statistical modeling to
develop an appropriate approximating relationship
between the yield and the process variables, and
optimization methods for finding the levels or values of the
process variables &1 and & that produce desirable values of
the responses (in this case that maximize yield).

1.1.1 Approximating Response Functions

In general, suppose that the scientist or engineer (whom
we will refer to as the experimenter) is concerned with a
product, process, or system involving a response y that
depends on the controllable input variables ¢1, ¢2,..., k.
The relationship is

Ay =f&. &, ..., E)+¢&

where the form of the true response function f'is unknown
and perhaps very complicated, and ¢ is a term that
represents other sources of variability not accounted for in
f- Thus ¢ includes effects such as measurement error on the
response, other sources of variation that are inherent in the
process or system (background noise, or common/special
cause variation in the language of statistical process
control), the effect of other (possibly unknown) variables,
and so on. We will treat ¢ as a statistical error, often
assuming it to have a normal distribution with mean zero
and variance ¢”. If the mean of ¢ is zero, then

E( .ﬂ mn= hllj’({f] ,Ej ----- f;.” + E(&)
(1.2) =f(& &as- vy &)
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The variables &1, &,..., & in Equation 1.2 are usually
called the natural variables, because they are expressed in
the natural units of measurement, such as degrees Celsius
(°C), pounds per square inch (psi), or grams per liter for
concentration. In much RSM work it is convenient to
transform the natural variables to coded variables xi,
X2,..., Xk, which are usually defined to be dimensionless
with mean zero and the same spread or standard deviation.
In terms of the coded variables, the true response function
(1.2) is now written as

1.3y n =S, %2, )

Because the form of the true response function f is
unknown, we must approximate it. In fact, successful use
of RSM is critically dependent upon the experimenter’s
ability to develop a suitable approximation for f. Usually, a
low-order polynomial in some relatively small region of
the independent variable space is appropriate. In many
cases, either a first-order or a second-order model is
used. For the case of two independent variables, the
first-order model in terms of the coded variables is

(1.4) 1 = By + Bix1 + Boxa

Figure 1.2 shows the three-dimensional response surface
and the two-dimensional contour plot for a particular case
of the first-order model, namely,

7 =50+ 8x; + 3x;
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Figure 1.2 (a) Response surface for the first-order model
resoesean-nioas = 50 4+ 8x1 + 3x2. (b) Contour plot for the
first-order model.
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In three dimensions, the response surface is a plane lying
above the x1, x2 space. The contour plot shows that the
first-order model can be represented as parallel straight
lines of constant response in the x1, x2 plane.

The first-order model is likely to be appropriate when the
experimenter is interested in approximating the true
response surface over a relatively small region of the
independent variable space in a location where there is
little curvature in f. For example, consider a small region
around the point 4 in Fig. 1.1b; the first-order model
would likely be appropriate here.

The form of the first-order model in Equation 1.4 is
sometimes called a main effects model, because it
includes only the main effects of the two variables x1 and
x2. If there is an interaction between these variables, it can
be added to the model easily as follows:

(1.5) M = Bo + Bix1 + Baxa + Bpxixa
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This is the first-order model with interaction. Figure 1.3
shows the three-dimensional response surface and the
contour plot for the special case

Figure 1.3 (a) Response surface for the first-order model
with interaction »-s s« w-m-w-se = 50 + 8x1 + 3x2 — 4x1x2. (b)
Contour plot for the first-order model with interaction.

(a) (b}
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n= 50 + 8x + 3.1': — 4x1x

Notice that adding the interaction term — 4x1x2 introduces
curvature into the response function.

Often the curvature in the true response surface is strong
enough that the first-order model (even with the interaction
term included) is inadequate. A second-order model will
likely be required in these situations. For the case of two
variables, the second-order model is

(1.6) M= Po + Byxi + Byxa + Biix; + B + Bpaxixs

This model would likely be useful as an approximation to
the true response surface in a relatively small region
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around the point B in Fig. 1.1b, where there is substantial
curvature in the true response function f.

Figure 1.4 presents the response surface and contour plot
for the special case of the second-order model

n =50+ 8x; 4+ 3x; — ?.rf, - 3.1[%1 — 4x1x

Figure 1.4 (a) Response surface for the second-order
model =555 (b) Contour plot for the second-order
model.
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Notice the mound-shaped response surface and elliptical
contours generated by this model. Such a response surface
could arise in approximating a response such as yield,
where we would expect to be operating near a maximum
point on the surface.

The second-order model is widely used in response surface
methodology for several reasons. Among these are the

following:

1. The second-order model is very flexible. It can take on a
wide variety of functional forms, so it will often work well
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as an approximation to the true response surface. Figure
1.5 shows several different response surfaces and contour
plots that can be generated by a second-order model.

2. It is easy to estimate the parameters (the £’s) in the
second-order model. The method of least squares, which is
presented in Chapter 2, can be used for this purpose.

3. There is considerable practical experience indicating
that second-order models work well in solving real
response surface problems.

Figure 1.5 Some examples of types of surfaces defined by
the second-order model in two variables x1 and x2.
(Adapted with permission from Empirical Model Building
and Response Surfaces, G. E. P. Box and N. R. Draper,
John Wiley & Sons, New York, 1987.)
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In general, the first-order model is
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A7 M= Bo+Bixi + Baxa + -+ + By

and the second-order model is

K k k
n =B+ Z Bx; + z B J,-J,-.a‘f -+ Z z BiiXix;
=1 = i<j=2

(1.8)

In some situations, approximating polynomials of order
higher than two are used. The general motivation for a
polynomial approximation for the true response function f
is based on the Taylor series expansion around the point
X10, X20,..., xXk0. For example, the first-order model is
developed from the first-order Taylor series expansion

i ¥,
J = X0, %20, . .., Xio) + 5 (x; — x10)
x| |y,
of )
T3 Jlr (X = Xog) bour e }—{ (xp — Xp0)
(1.9) 0% | x=x, G -

where x refers to the vector of independent variables and
x0 is the vector of independent variables at the specific
point x10, x20,..., Xk0. In Equation 1.9 we have only
included the first-order terms in the expansion, so if we let
Bo = £ (x10, X20,..., Xk0), B1 = (If | IxDs-xsy..., Bic = (Ff =0
Xi)k-x, we have the first-order approximating model in
Equation 1.7. If we were to include second-order terms in
Equation 1.9, this would lead to the second-order
approximating model in Equation 1.8.
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Finally, note that there is a close connection between RSM
and linear regression analysis. For example, consider the
model

yv=B8+Bxi+Bxx+---+ B +te

The p’s are a set of unknown parameters. To estimate the
values of these parameters, we must collect data on the
system we are studying. Regression analysis is a branch of
statistical model building that uses these data to estimate
the 4’s. Because, in general, polynomial models are linear
functions of the unknown f’s, we refer to the technique as
linear regression analysis. We will also see that it is very
important to plan the data collection phase of a response
surface study carefully. In fact, special types of
experimental designs, called response surface designs,
are valuable in this regard. A substantial part of this book
is devoted to response surface designs.

1.1.2 The Sequential Nature of RSM

Most applications of RSM are sequential in nature. That
is, at first some ideas are generated concerning which
factors or variables are likely to be important in the
response surface study. This usually leads to an experiment
designed to investigate these factors with a view toward
eliminating the unimportant ones. This type of experiment
is usually called a screening experiment. Often at the
outset of a response surface study there is a rather long list
of variables that could be important in explaining the
response. The objective of factor screening is to reduce
this list of candidate variables to a relative few so that
subsequent experiments will be more efficient and require
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fewer runs or tests. We refer to a screening experiment as
phase zero of a response surface study. You should never
undertake a response surface analysis until a screening
experiment has been performed to identify the important
factors.

Once the important independent variables are identified,
phase one of the response surface study begins. In this
phase, the experimenter’s objective is to determine if the
current levels or settings of the independent variables
result in a value of the response that is near the optimum
(such as the point B in Fig. 1.1b), or if the process is
operating in some other region that is (possibly) remote
from the optimum (such as the point 4 in Fig. 1.1b). If the
current settings or levels of the independent variables are
not consistent with optimum performance, then the
experimenter must determine a set of adjustments to the
process variables that will move the process toward the
optimum. This phase of response surface methodology
makes considerable use of the first-order model and an
optimization technique called the method of steepest
ascent. These techniques will be discussed and illustrated
in Chapter 5.

Phase two of a response surface study begins when the
process is near the optimum. At this point the experimenter
usually wants a model that will accurately approximate the
true response function within a relatively small region
around the optimum. Because the true response surface
usually exhibits curvature near the optimum (refer to Fig.
1.1), a second-order model (or very occasionally some
higher-order polynomial) will be wused. Once an
appropriate approximating model has been obtained, this
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model may be analyzed to determine the optimum
conditions for the process. Chapter 6 will present
techniques for the analysis of the second-order model and
the determination of optimum conditions.

This sequential experimental process is usually performed
within some region of the independent variable space
called the operability region. For the chemical process
illustrated in Fig. 1.1, the operability region is 0 hr < &1 <7
hr and 100°C < & < 800°C. Suppose we are currently
operating at the levels {1 = 2.5 hr and £ = 500°C, shown
as point 4 in Fig. 1.6. Now it is unlikely that we would
want to explore the entire region of operability with a
single experiment. Instead, we usually define a smaller
region of interest or region of experimentation around
the point A4 within the larger region of operability.
Typically, this region of experimentation is either a
cuboidal region, as shown around the point 4 in Fig. 1.6,
or a spherical region, as shown around point B.

Figure 1.6 The region of operability and the region of
experimentation.
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The sequential nature of response surface methodology
allows the experimenter to learn about the process or
system under study as the investigation proceeds. This
ensures that over the course of the RSM application the
experimenter will learn the answers to questions such as
(1) the location of the region of the optimum, (2) the type
of approximating function required, (3) the proper choice
of experimental designs, (4) how much replication is
necessary, and (5) whether or not transformations on the
responses or any of the process variables are required. A
substantial portion of this book—Chapters 3, 4, 7, and
8—is devoted to designed experiments useful in RSM.

1.1.3 Objectives and Typical Applications of RSM
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Response surface methodology is useful in the solution of
many types of industrial problems. Generally, these
problems fall into three categories:

1. Mapping a Response Surface over a Particular Region
of Interest. Consider the chemical process in Fig. 1.1b.
Normally, this process would operate at a particular setting
of reaction time and reaction temperature. However, some
changes to these normal operating levels might
occasionally be necessary, perhaps to produce a product
that meets other specific customer requirement. If the true
unknown response function has been approximated over a
region around the current operating conditions with a
suitable fitted response surface (say a second-order
surface), then the process engineer can predict in advance
the changes in yield that will result from any readjustments
to time and temperature.

2. Optimization of the Response. In the industrial world, a
very important problem is determining the conditions that
optimize the process. In the chemical process of Fig. 1.1b,
this implies determining the levels of time and temperature
that result in maximum yield. An RSM study that began
near point 4 in Fig. 1.1b would eventually lead the
experimenter to the region near point B. A second-order
model could then be used to approximate the yield
response in a narrow region around point B, and from
examination of this approximating response surface the
optimum levels or condition for time and temperature
could be chosen.

3. Selection of Operating Conditions to Achieve
Specifications or Customer Requirements. In most
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response surface problems there are several responses that
must in some sense be simultaneously considered. For
example, in the chemical process of Fig. 1.1, suppose that
in addition to yield, there are two other responses: cost and
concentration. We would like to maintain yield above
70%, while simultaneously keeping the cost below $34/
pound; however, the customer has imposed specifications
for concentration such that this important physical property
must be 65 + 3 g/liter.

One way that we could solve this problem is to obtain
response surfaces for all three responses—yield, cost, and
concentration—and then superimpose the contours for
these responses in the time—temperature plane, as
illustrated in Fig. 1.7. In this figure we have shown the
contours for yield = 70%, cost = $34/pound, concentration
= 62 g/liter, and concentration = 68 g/liter. The unshaded
region in this figure represents the region containing
operating conditions that simultaneously satisfy all
requirements on the process.

Figure 1.7 The unshaded region showing the conditions

for which yield >70%, cost <$34/pound, and 62 g/liter <
concentration < 68 g/liter.
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In practice, complex process optimization problems such
as this can often be solved by superimposing appropriate
response surface contours. However, it is not unusual to
encounter problems with more than two process variables
and more complex response requirements to satisfy. In
such problems, other optimization methods that are more
effective than overlaying contour plots will be necessary.
We will discuss methodology for solving these types of
problems in Chapter 6.

1.1.4 RSM and the Philosophy of Quality Improvement

During the last few decades, industrial organizations in the
United States and Europe have become keenly interested
in quality and process improvement. Statistical methods,
including statistical process control (SPC) and design of
experiments, play a key role in this activity. Quality
improvement is most effective when it occurs early in the
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product and process development cycle. It is very difficult
and often expensive to manufacture a poorly designed
product. Industries such as semiconductors and electronics,
aerospace, automotive, biotechnology and
pharmaceuticals, medical devices, chemical, and process
industries are all examples where experimental design
methodology has resulted in shorter design and
development time for new products, as well as products
that are easier to manufacture, have higher reliability, have
enhanced field performance, and meet or exceed customer
requirements.

RSM is an important branch of experimental design in this
regard. RSM is a critical technology in developing new
processes, optimizing their performance, and improving
the design and/or formulation of new products. It is often
an important concurrent engineering tool, in that product
design, process development, quality, manufacturing
engineering, and operations personnel often work together
in a team environment to apply RSM. The objectives of
quality improvement, including reduction of variability
and improved product and process performance, can often
be accomplished directly using RSM.

1.2 PRODUCT DESIGN AND FORMULATION
(MIXTURE PROBLEMS)

Many product design and development activities involve
formulation problems, in which two or more ingredients
are mixed together. For example, suppose we are
developing a new household cleaning product. This
product is formulated by mixing several chemical
surfactants together. The product engineer or scientist
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would like to find an appropriate blend of the ingredients
so that the grease-cutting capability of the cleaner is good,
and so that it generates an appropriate level of foam when
in use. In this situation the response variables—namely,
grease-cutting ability and amount of foam—depend on the
percentages or proportions of the individual chemical
surfactants (the ingredients) that are present in the product
formulation.

There are many industrial problems where the response
variables of interest in the product are a function of the
proportions of the different ingredients used in its
formulation. This is a special type of response surface
problem called a mixture problem.

While we traditionally think of mixture problems in the
product design or formulation environment, they occur in
many other settings. Consider plasma etching of silicon
wafers, a common manufacturing process in the
semiconductor industry. Etching is usually accomplished
by introducing a blend of gases inside a chamber
containing the wafers. The measured responses include the
etch rate, the uniformity of the etch, and the selectivity (a
measure of the relative etch rates of the different materials
on the wafer). All of these responses are a function of the
proportions of the different ingredients blended together in
the etching chamber.

There are special experimental design techniques and

model-building methods for mixture problems. These
techniques are discussed in Chapters 11 and 12.
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1.3 ROBUST DESIGN AND PROCESS ROBUSTNESS
STUDIES

It is well known that variation in key performance
characteristics can result in poor product and process
quality. During the 1980s, considerable attention was
given to this problem, and methodology was developed for
using experimental design, specifically for the following:

1. For designing products or processes so that they are
robust to environment conditions.

2. For designing or developing products so that they are
robust to component variation.

3. For minimizing variability in the output response of a
product around a target value.

By robust, we mean that the product or process performs
consistently on target and is relatively insensitive to factors
that are difficult to control.

Professor Genichi Taguchi wused the term robust
parameter design (or RPD) to describe his approach to
this important class of industrial problems. Essentially,
robust parameter design methodology strives to reduce
product or process variation by choosing levels of
controllable factors (or parameters) that make the system
insensitive (or robust) to changes in a set of uncontrollable
factors that represent most of the sources of variability.
Taguchi referred to these uncontrollable factors as noise
factors. These are the environmental factors such as
humidity levels, changes in raw material properties,
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product aging, and component variability referred to in 1
and 2 above. We usually assume that these noise factors
are uncontrollable in the field, but can be controlled during
product or process development for purposes of a designed
experiment.

Considerable attention has been focused on the
methodology advocated by Taguchi, and a number of
flaws in his approach have been discovered. However,
there are many useful concepts in his philosophy, and it is
relatively easy to incorporate these within the framework
of response surface methodology. In Chapter 10 we will
present the response surface approach to robust design and
process robustness studies.

1.4 USEFUL REFERENCES ON RSM

The origin of RSM is the seminal paper by Box and
Wilson (1951). They also describe the application of RSM
to chemical processes. This paper had a profound impact
on industrial applications of experimental design, and was
the motivation of much of the research in the field. Many
of the key research and applications papers are cited in this
book.

There have also been four review papers published on
RSM: Hill and Hunter (1966), Mead and Pike (1975),
Myers et al. (1989) and Myers et al. (2004). The paper by
Myers (1999) on future directions in RSM offers a view of
research needs in the field. There are also two other
full-length books on the subject: Box and Draper (1987)
and Khuri and Cornell (1996). A second edition of the Box
and Draper book was published in 2007 with a slightly

38



different title [Box and Draper (2007)]. The monograph by
Myers (1976) was the first book devoted exclusively to
RSM.
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2
BUILDING EMPIRICAL MODELS
2.1 LINEAR REGRESSION MODELS

The practical application of response surface methodology
(RSM) requires developing an approximating model for
the true response surface. The underlying true response
surface is typically driven by some unknown physical
mechanism. The approximating model is based on
observed data from the process or system and is an
empirical model. Multiple regression is a collection of
statistical techniques useful for building the types of
empirical models required in RSM.

As an example, suppose that we wish to develop an
empirical model relating the effective life of a cutting tool
to the cutting speed and the tool angle. A first-order
response surface model that might describe this
relationship is

2.1)Y=Bo+ Bixi + Bx2 + g

where y represents the tool life, x1 represents the cutting
speed, and x2 represents the tool angle. This is a multiple
linear regression model with two independent variables.
We often call the independent variables predictor
variables or regressors. The term “linear” is used because
Equation 2.1 is a linear function of the unknown
parameters S0, f1, and f2. The model describes a plane in
the two-dimensional x1, x2 space. The parameter Bo fixes
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the intercept of the plane. We sometimes call 1 and /2
partial regression coefficients, because f; measures the
expected change in y per unit change in x1 when x2 is held
constant, and 2 measures the expected change in y per
unit change in x2 when x1 is held constant.

In general, the response variable y may be related to &
regressor variables. The model

22)Y = By + .IBI.'."-I. + ﬁ:."-': + -+ -BR'H' +

is called a multiple linear regression model with k
regressor variables. The parameters 5, j =0, 1, ... , k, are
called the regression coefficients. This model describes a
hyperplane in the k-dimensional space of the regressor
variables {xj}. The parameter fj represents the expected
change in response y per unit change in x; when all the
remaining independent variables x; (i # j) are held
constant.

Models that are more complex in appearance than
Equation 2.2 may often still be analyzed by multiple linear
regression techniques. For example, considering adding an
interaction term to the first-order model in two variables,
say

23)Y = By + Bixi + Boxa + Bpxixa + &

If we let x3 = x1x2 and 3 = f12, then Equation 2.3 can be
written as

(2.4)Y = Bo+Bixi+Bxa+Bixite
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which is a standard multiple linear regression model with
three regressors. As another example, consider the
second-order response surface model in two variables:

(2.5)
¥ = By + Bixi + Boxz ++ Buixi + By + Biaxixa + &

If we let 1= . X =23, Xs = xyx2, fa=Bi1. Ba=Boa and fs5 =
[12, then this becomes

(2.6) Y = Bo + Bixi + Baxa + Byxs + Byxa + Bsxs + &

which is a linear regression model. In general, any
regression model that is linear in the parameters (the
f-values) is a linear regression model, regardless of the
shape of the response surface that it generates.

In this chapter we will present and illustrate methods for
estimating the parameters in multiple linear regression
models. This is often called model fitting. We will also
discuss methods for testing hypotheses and constructing
confidence intervals for these models, as well as for
checking the adequacy of the model fit. Our focus is
primarily on those aspects of regression analysis useful in
RSM. For more complete presentations of regression, refer
to Montgomery, Peck, and Vining (2006) and Myers
(1990).

2.2 ESTIMATION OF THE PARAMETERS IN LINEAR
REGRESSION MODELS

The method of least squares is typically used to estimate
the regression coefficients in a multiple linear regression
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model. Suppose that n > k observations on the response
variable are available, say y1, )2, ..., yn. Along with each
observed response yi, we will have an observation on each
regressor variable, and let x;; denote the ith observation or
level of variable xj. Table 2.1 shows the data layout. We
assume that the error term 1 in the model has E(¢) = 0 and
Var(e) = and that the {&;} are uncorrelated random
variables.

TABLE 2.1 Data for Multiple Linear Regression

¥ Xml . - Kok

We may write the model equation (Eq. 2.2) in terms of the
observations in Table 2.1 as

Yi = By + Bixin + Baxa + - + Byxik + &

k
=ﬁu+2ﬁ;—‘~'ﬂ+£;‘- =1,2vs04n
(2.7) j=1

The method of least squares chooses the f’s in Equation

2.7 so that the sum of the squares of the errors, ¢;, are
minimized. The least squares function is
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L:iaf

i=1
n k 2
= E Yi— Bo — E I,:B_;'Ie;r'
(2.8) i=1 j=1

The function L is to be minimized with respect to fo, fi,
..., Pk. The least squares estimators, say bo, b1, ..., bk,
must satisfy

IL - 2
o = _EZ (.‘i'i — by — Z bf"‘h‘) =0
i=] j=1

(293) aﬁ“i-lrm.ﬁh....hl

and

(2.9b)

t‘?f_. 1 k

9B, = —2; (}'r' — by — Zlbj-’t}';)-‘:{j = 0,
by, by, by > Fi

where j =1, 2, ..., k. Simplifying Equation 2.9, we obtain
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(2.10)

n N n n
nby + by Z,r“ + by Z.\',‘] 4o Iy Z.m = Z}'f
i=1 i=] i=1 i=1

n

n n n n
3
by E Xit + by E Xy + b E Xnxg+ -+ by E XiXip = E Xi1¥i
=1 i=1 i=l i=1

i=1
.;J JJl !I- Jl‘ "'
5
by E X+ by E Xaxi + ba E XpXp 4+ o+ by E X, = E XiVi
i=1 i=1 i=1 i=1 i=1

These equations are called the least squares normal
equations. Note that there are p = k£ +1 normal equations,
one for each of the unknown regression coefficients. The
solution to the normal equations will be the least squares
estimators of the regression coefficients bo, b1, ..., bk.

It is simpler to solve the normal equations if they are
expressed in matrix notation. We now give a matrix
development of the normal equations that parallels the
development of Equation 2.10. The model in terms of the
observations, Equation 2.7, may be written in matrix
notation as

y=Xp+e
where
i L xn xi2 oo+ Xnk Bo £
» I xy x2 - X B &2
¥y=|.|« X=1], . ; - B=] |, and =
¥n | BT = L A ,85 &,
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In general, y is an n X 1 vector of the observations, X is an
n % p model matrix consisting of the levels of the
independent variables expanded to model form, B is a p x1
vector of the regression coefficients, and € is an n X 1
vector of random errors. Notice the columns of X consist
of the independent variables from Table 2.1 plus an
additional column of 1s to account for the intercept term in
the model.

We wish to find the vector of least squares estimators, b,
that minimizes

L:Zef =¢e'e =(y - XB)(y — XB)
=1

Note that L may be expressed as

L=yy—-pXy-yXp+pXXp
2.11) =¥y-2pXy+pBXXp

since B'X'Y is a 1x1 matrix, or a scalar, and its transpose
(F'X'y =¥XP is the same scalar. The least squares
estimators must satisfy

‘:’I—L =-2Xy+2X'Xb=10
‘}B-:I:I-

which simplifies to

(2.12) X'Xb = X'y
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Equation 2.12 is the set of least squares normal equations
in matrix form. It is identical to Equation 2.10. To solve
the normal equations, multiply both sides of Equation 2.12
by the inverse of X'X. Thus, the least squares estimator of

B is
2.13)b = (X'X)"'X'y
It is easy to see that the matrix form of the normal

equations is identical to the scalar form. Writing out
Equation 2.12 in detail, we obtain

i - -1 " =

n " n
n I xn Yoxm e P X by ¥ ¥i
= £ o -
n a oo a n
Y Y YTxaxe o x| | B 3 XY
= i=l =l i=1 -l

i n n f n
- - 3 =
Li=1 i=1 i=1 i=1 Li=1 4

If the indicated matrix multiplication is performed, the
scalar form of the normal equations (i.e., Eq. 2.10) will
result. In this form it is easy to see that X'X is a pxp
symmetric matrix and X'y is a px1 column vector. Note
the special structure of the matrix X'X. The diagonal
elements of X'X are the sums of squares of the elements in
the columns of X, and the offdiagonal elements are the
sums of cross-products of the elements in the columns of
X. Furthermore, note that the elements of X'y are the sums
of cross-products of the columns of X and the observations

fyi}.
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The fitted regression model is
2.14)¥ = Xb

In scalar notation, the fitted model is

The difference between the observation yi and the fitted
value ¥; is a residual, say ¢ = ¥ ~ ¥ The nxlvector of
residuals is denoted by

(2.15)€=Y — ¥

Example 2.1 The Transistor Gain Data The transistor
gain in an integrated circuit device between emitter and
collector (AFE) is related to two variables that can be
controlled at the deposition process, emitter drive-in time
(&1, in minutes), and emitter dose (&2, units of 1014 ions).
Fourteen samples were observed following deposition, and
the resulting data are shown in Table 2.2. We will fit a
linear regression model using gain as the response and
emitter drive-in time and emitter dose as the regressor
variables.

TABLE 2.2 Data on Transistor Gain ( y) for Example
2.1
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£ (drive-in & (dose,

Observation time, minutes) 10" jons) x X3 ¥ (gain or kFE)
1 195 4.0 -1 -1 1004
2 255 4.00 1 -1 1636
3 195 4.60 -1 0.6667 B52
4 255 4.60 1 0.6667 1506
3 225 4.20 0 —0.4444 1272
[ 225 4.10 0 -0,7222 1270
T 225 4.60 4] 1.6667 1269
b 195 4.30 =1 — (. 1667 903
9 255 4.30 1 —10.1667 1555
1] 225 4.00 0 1 1260
11 225 4,70 0 10,9444 1146
12 225 4.30 0 —{.1667 1276
13 225 4.72 0 | 1225
14 230 4.30 0. 1667 —0.1667 1321

Columns 2 and 3 of Table 2.2 show the actual or natural
unit values of &1 and &, while columns 4 and 5 contain
values of the corresponding coded variables x1 and x2,
where

£ — [max(§,) + min(§;,)1/2 _ & — (255 +195)/2 _ & —225

S T max(g,) —min&)l/2 | (255-195/2 30
o £ — [max(§p) + min(&,)]/2 _ & — (472 + 4.00)/2 —fp—436
X [max(£,) — min(€,)]/2 (4.72 — 4.00)/2 0.36

This coding scheme is widely used in fitting linear
regression models, and it results in all the values of x1 and
x2 falling between -1 and +1 as shown in Table 2.2.

We will fit the model

y=PBo+Bixi + B2+ &

using the coded variables. The model matrix X and vector
y are
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B -1 -1 i 1004
1 I —1 1636
1 -1 0.6667 852
1 1 0.6667 1506
| 0 —0.4444 1272
1 0 —0.7222 1270
X — 1 0 0.6667 jis 1269
1 —1 —0.1667 |’ 903
1 1 —0.1667 1555
1 0 -1 1260
1 0 0.9444 1146
1 0 —0.1667 1276
1 0 1 1225
(1 0.1667 —0.1667 | 1321 |
The matrix X'X is
) T 1
XX=|[-1 1 0.1667 ,
1 =1 - —0.1667]|° : '
" I 0.1667 —0.1667

14 0.1667 —0.8889
= | 0.1667 6.027789 -0.02779
—0.88890 —0.02779 7.055578

and the vector X'y is

50



, 10047
, Fob o I 1636
Xy=|-I | R 0.1667 :
-1 -1 ... =0.1667 )
B | 1321 |
17,495
= 2158.211
| —1499.74
The least squares estimate of B is
b=(X'X)"'X'y
or
0.072027 -0.00195 0.009067 17,495
b= | —0.00195 0.165954  0.000408 2158.211
0.009067 0.000408 0.142876 —1499.74
1242.3057
= 323.4366
| —54.7691

The least squares fit with the regression coefficients
reported to one decimal place is

¥ =1242.3 4+ 323.4x; — 54.8x,

This can be converted into an equation using the natural
variables &1 and & by substituting the relationships
between x1 and &1 and x2 and & as follows:
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2 & — 225 & —4.36
y = 12 15 el = o e il
§=1242.3 4 323.4( % ) 54.3( 036 )

or

¥=—520.1 4+ 10.781§, — 152.15¢&,

Table 2.3 shows the observed values of yi, the
corresponding fitted values y 7, and the residuals from this
model. There are several other quantities given in this table
that will be defined and discussed later. Figure 2.1 shows
the fitted response surface and the contour plot for this
model. The response surface for gain is a plane lying
above the time—dose space.

TABLE 2.3 Observations, Fitted Values, Residuals, and
Other Summary Information for Example 2.1

Observation ¥ ¥y & hy " I; D,

1 [ILIERI) 973.7 30.3 0.367 1.092 1.103 0.23]
2 1636.0 1620.5 15.5 0.358 0.553 (L535 0.057
3 B52.0 BR2.4 304 0317 1.052 1057 0.171
4 1506.0 1529.2 =232 0.310 — {1,801 —{L787 (.096
5 1272.0 1266.7 5.3 0,092 0,160 0.153 (0,00
4] 1270.0 1281.9 -9 0.133 =0.365 0,350 0.007
T 1269.0 1205.8 63.2 0.148 1.960 2316 0.222
B 903.0 928.0 —25.0 0.243 —(,823 — (L5810 0.072
9 1555.0 15749 =199 0.235 =1,651 =633 (.043
10 1260.0 1297.1 —-37.1 0197 = 1185 - 1.209 (115
11 1146.0 1 19106 —44.6 0.217 —1.442 - 1.527 0.192
12 1276.0 1251.4 246 0.073 0,730 0714 0014
13 1225.0 1187.5 375 0.233 1.225 1.256 0.152
14 1321.0 1305.3 15.7 0.077 0,466 0.449 0.006

Figure 2.1 (a) Response surface for gain, Example 2.1. (b)
The gain contour plot.
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Computing Statistics software is usually employed to fit
regression models. Table 2.4 and Fig. 2.2 present some of
the output for the transistor gain data in Example 2.1 from
JMP, a widely-used software package that supports
regression, experimental design, and RSM. This model
was fit to the coded variables in Table 2.2. The first
portion of the display is a plot of the values of the
observed response y versus the predicted values ¥; (see Fig.
2.2a). The pairs (v;, ¥;) lie closely along a straight line (the
straight line in the graph is a result of a least squares fit).
This is usually a good indication that the model is a
satisfactory fit to the data. We will discuss other checks of
model adequacy later in this chapter. Notice that the
estimates of the regression coefficients closely match those
that we have computed manually (it is not unusual to find
minor differences between manual and computer software
regression calculations because of round-off). In
subsequent sections we will show how some of the other
quantities in the output are obtained and how to interpret
them.

TABLE 2.4 Regression Output From JMP

53



Summary of Fit

R-Square 0979835
R-Square Adj 0976168
Root Mean Square Error 34 92553
Mean of Response 1249.643
Observations (or Sum Weis) 14

Analvsis of Variance

Mean
Source DF Sum of Squares Square F-Ratio
Maodel 2 65196949 325985 267.2460
Error 11 13417.72 1220 Prob > F
C. Toul 13 665387.21 <0,0001
Parameter Estimates
Term Estimate Std Error +-Ratio Prob = ||
Intercept 1242.3181 9373196 132.54 <0.0001
xl 3234253 1422778 22.73 < 0.0001
a2 ~54.77165 13.2001 -4.15 0.0016

Figure 2.2 Regression output from JMP. (a) Response y
whole model, actual by predicted plot. (b) Residual by
predicted plot.
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2.3 PROPERTIES OF THE LEAST SQUARES
ESTIMATORS AND ESTIMATION OF ¢°

The method of least squares produces an unbiased

estimator of the parameter P in the multiple linear
regression model. This property may be easily

54



demonstrated by finding the expected value of b as
follows:

E(b) = E[(X'X)"'X'y]
= E[(X'X)"'X'(XB + )]
= E[(X'X)"'X'XB + (X'X) 'X'g]
=B

because E(g) = 0 and (X'X)'1 XX = I. Thus b is an
unbiased estimator of P. The variance property of b is
expressed by the covariance matrix

Cov(b) = E{[b — E(b)][b — Eb)]'}

The covariance matrix of b is a p X p symmetric matrix
whose (j, j)th element is the variance of b; and whose (i,
J)th element is the covariance between b; and b;. The
covariance matrix of b is

(2.16) Cov(b) = aA(X'X)"!
It is also usually necessary to estimate 5. To develop an

estimator of this parameter consider the sum of squares of
the residuals, say
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n

SSg = (-3

Substituting e =y - ¥ =y - Xb, we have

SSg = (y — Xb)'(y — Xb)
=yy—b'X'y —¥Xb+b'X'Xb
=y'y—-2b'X'y + bX'Xb

Because X'Xb = X'y, this last equation becomes
2.17) 88 =¥y = b'X'y

Equation 2.17 is called the error or residual sum of
squares, and it has n - p degrees of freedom associated
with it. It can be shown that

E(55c) = a*(n—p)

so an unbiased estimator of 6” is given by

., S5
o =
(2.18)

=
Example 2.2 The Transistor Gain Data We will estimate

o° for the regression model for the transistor gain data
from Example 2.1. Because
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Yy=Y ¥ =22527,889.0

and
17,495

bX'y =[1242.3 3234 —54.8]| 2158211 | =22,514,467.9
—1499.74

the residual sum of squares is

SSe=v¥y-b'Xy
= 22,527.889.0 — 22,514,467 .9
= 13,421.1

Therefore, the estimate of o is computed from Equation
2.18 as follows:

&

o =

n-=p 14-=-3

: ;13421
2 58 _ 13211 _ .0

Notice that the JMP output in Table 2.4 computes the
residual sum of squares (look under the analysis of
variance section of the output) as 13,417.72. The
difference between the two values is round-off. Both the
manual calculations and JMP produce virtually identical
estimates of 6°.

The estimate of o7 produced by Equation 2.18 is
model-dependent. That is, it depends on the form of the
model that is fit to the data. To illustrate this point,
suppose that we fit a quadratic model to the gain data, say
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v = By + Bixi + Boxa + BT + Bxs + Baxixa + &

In this model it can be shown that SSg = 12,479.8. Because
the number of model parameters, p, equals 6, the estimate
of 6> based on this model is

&t = 12,479.8 — 1559.975
14—6

This estimate of o7 is actually larger than the estimate
obtained from the first-order model, suggesting that the
first-order model is superior to the quadratic in that there is
less unexplained variability resulting from the first-order
fit. If replicate runs are available (that is, more than one
observation on y at the same x-levels), then a
model-independent estimate of o can be obtained. We
will show how to do this in Section 2.7.4.

24 HYPOTHESIS TESTING IN MULTIPLE
REGRESSION

In multiple linear regression problems, certain tests of
hypotheses about the model parameters are helpful in
measuring the usefulness of the model. In this section, we
describe several important hypothesis-testing procedures.
These procedures require that the errors €; in the model be
normally and independently distributed with mean zero
and variance 62, abbreviated &~ NID(0. o”).. As a result of
this assumption, the observations y; are normally and

independently distributed with mean #o S5 B and

variance ¢°.
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2.4.1 Test for Significance of Regression

The test for significance of regression is a test to determine
if there is a linear relationship between the response
variable y and a subset of the regressor variables x1, x2, ...,
xk. The appropriate hypotheses are

H|]f -BI ='8:,= =.IBR =,|:|,
2.19) 1= B; # 0 for at least one

Rejection of Hp in Equation 2.19 implies that at least one
of the regressor variables x1, x2, ..., xi contributes
significantly to the model. The test procedure involves
partitioning the total sum of squares S = 2ui-1 (3 =3 jnto
a sum of squares due to the model (or to regression) and a

sum of squares due to residual (or error), say
(2.20) SS7 = SSg + S8k

Now if the null hypothesis Ho: f1 = f2 = == pr =0 is
true, then SSR/GZ is distributed as Xi- where the number of
degrees of freedom for XZ is equal to the number of
regressor variables in the model. Also, we can show that
SSE/c? is distributed as X7« 1 and that SSg and SSg are
independent. The test procedure for Ho: B1 - B2 = =Pk =
0 is to compute

a1y | SSefn—k—1) MSg

and to reject Ho if Fp exceeds Fairn-1-1- Alternatively, one
could use the P-value approach to hypothesis testing and,
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thus, reject HO if the P-value for the statistic Fp is less than
a. The test is usually summarized in a table such as Table
2.5. This test procedure is called an analysis of variance
(ANOVA) because it is based on a decomposition of the
total variability in the response variable y.

TABLE 2.5 Analysis of Variance for Significance of
Regression in Multiple Regression

Source of Sum of Degrees of Mean

Variation Squares Freedom Sqquan: Fa
Regression 55q k M5y MEg/ MSg
Ermor or residual 585 n—=k=—1 M5;

Total 55 n—1

A computational formula for SSg may be found easily. We
have derived a computational formula for SSE in Equation
2.17—that is,

SSe =¥y —bXy

Now because
SSr=2 - (L) m=yy-(ZLx) /n  we may
rewrite the foregoing equation as
v
L =
(z -.TI)
i=|

SSe =¥y — b'X'y —

n n
or
SSi =SS5 — S
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Therefore, the regression sum of squares is

o)

oy SR =Py ==

and the error sum of squares is
(2.23) S8 = ¥y — b'X'y

and the total sum of squares is

(&)
SSr =yy - ~——~

(2.24) n

Example 2.3 The Transistor Gain Data We will test for
significance of regression using the model fit to the
transistor gain data for Example 2.1. Note that

55, = =5
r=YY¥ 12

(17.495)

= 22,527,889.0 —
22,527,889.0 A

= 665,387.2
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SSR — haxa}r ., 1

14
= 225144679 — 21,862.501.8
= 651,966.1
and
S8k = 8517 — S5k
= 665,387.2 — 651.966.1
= 13.421.1

The analysis of variance is shown in Table 2.6. If we select
a = 0.05, then we reject Ho: f1 = p2 = 0 because Fop =
267.2>F0.05,2,11 = 3.98. Also, note that the P-value for F0
(shown in Table 2.6) is considerably smaller than o = 0.05.
Finally, compare the ANOVA in Table 2.6 to the one in
the JMP output in Table 2.4. There is a small difference in
the “regression sum of squares” in the two tables. This is
due to round-off again.

TABLE 2.6 Test for Significance of Regression,
Example 2.3

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fa P-Value
Regression 651,996.1 2z 3259830 2672 474 <107
Ermor 13,421.1 11 1220.1

Total 065,387.2 13

The coefficient of multiple determination R? is defined as
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2 _ S5k SSE

225  SS¢r 8§

R is a measure of the amount of reduction in the
Variability of y obtained by using the regressor variables
X1, X2, ..., Xk in the model. From inspection of the analysis
of the variance identity equation (Eq. 2.20) we see that 0 <
RP<1. However, a large value of R? does not necessarily
imply that the regression model is good one Adding a
variable to the model will always increase R? , regardless of
whether the additional variable is statistically significant or
not. Thus it is possible for models that have large values of
R to yield poor predictions of new observations or
estimates of the mean response.

To illustrate, consider the first-order model for the
transistor gain data. The value of R? for this model is

, S85g 651,966.1
R = = = (.9798
88t 665,387.2

That is, the first-order model explains about 97.98% of the
variability observed in the gain. Now if we add quadratlc
terms to this model, we can show that the value of R*
increases to 0.9812. This increase in R is relatively small,
suggesting that the quadratic terms do not really i 1mpr0ve
the model. The JMP output in Table 2.4 reports the R®
statistic.

Because R’ always increases as we add terms to the model,

some regression model builders prefer to use an adjusted
R statistic defined as
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, SSe/(n — 1 .
Ri;=1- _‘ffLLf} i s (1 - R

(226) SSr/(n—1) n—p

In general, the adjusted R? statistic will not always
increase as variables are added to the model. In fact, if

unnecessary terms are added, the value of R will often
decrease.

For exam Ele consider the transistor gain data. The

adjusted R” for the first-order model is
=1 >
Ry=1-—(1-FR)
=
13
=] - ﬁ“ —0.9798)
= (0.9762

which is very close to the ordinary R2 for the first-order
model (JMP reports the adjusted R? statistic—refer to
Table 2.4). When R% and R differ dramatically, there is a
good chance that nonsignificant terms have been included
in the model. Now when the quadratic terms are added to
the first-order model, we can show that Ris = 0.9695: that is,
the adjusted R? actually decreases when the quadratic
terms are included in the model. This is a strong indication
that the quadratic terms are unnecessary.

2.4.2 Tests on Individual Regression Coefficients and
Groups of Coefficients
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Individual Regression Coefficients We are frequently
interested in testing hypotheses on the individual
regression coefficients. Such tests would be useful in
determining the value of each of the regressor variables in
the regression model. For example, the model might be
more effective with the inclusion of additional variables, or
perhaps with the deletion of one or more of the variables
already in the model.

Adding a variable to the regression model always causes
the sum of squares for regression to increase and the error
sum of squares to decrease. We must decide whether the
increase in the regression sum of squares is sufficient to
warrant using the additional variable in the model.
Furthermore, adding an unimportant variable to the model
can actually increase the mean square error, thereby
decreasing the usefulness of the model.

The hypotheses for testing the significance of any
individual regression coefficient, say f;, are

Hy: -Sj =0
H 1+ -Bj # 0
If Ho: B; = 0 is not rejected, then this indicates that x; can

be deleted from the model. The test statistic for this
hypothesis is

f?f
I =

227y VoG

65



where Cjj is the diagonal element of (X'X)'1 corresponding
to bj. The null hypothesis Ho: fj = 0 is rejected if
tol=1ta/2n-1-1- A P-value approach could also be used. See
Montgomery et al. (2006) for more details. Note that this is
really a partial or marginal test, because the regression
coefficient b; depends on all the other regressor variables
xi (i #) that are in the model.

The denominator of Equation 2.27, v*"Ci is often called
the standard error of the regression coefficient b;. That is,

o} e
2.28) @) = /o7y

Therefore, an equivalent way to write the test statistic in
Equation 2.27 is

b

In =
29) selb))

Example 2.4 Tests on Individual Regression
Coefficients for the Transistor Gain Data Consider the
regression model for the transistor gain data. We will
construct the #-statistic for the hypotheses Ho: f1 = 0 and
Ho: p» = 0. The main diagonal elements of (X'X)'1
corresponding to f1 and S are C11 = 0.165954 and C22 =
0.142876, respectively, so the two ¢-statistics are computed
as follows:
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b 2

For Hy: ,8| =) b= ﬁ
_ 3234 y 3234 — 2273
Vv (1220.1)(0.165954) 14.2
fra —54.8
For Hy: B, =0: 1y =— \J: =
VaiCyn  +/(1220.1)(0.142876)
—34.8
- =415
13.2

The absolute values of these z-statistics are compared with
10.025,11 = 2.201 (assuming that we select a = 0.05). Both
magnitudes of the #-statistics are larger than this criterion.
Consequently we conclude that 1 # 0, which implies that
x1 contributes significantly to the model given that x2 is
included, and that f2 # 0 , which implies that x2
contributes significantly to the model given that xi is
included. JMP (refer to Table 2.4) provides the #-statistics
for each regression coefficient. A P-value approach is used
for statistical testing. The P-values for the two test
statistics reported above are small (less than 0.05, say)
indicating that both variables contribute significantly to the
model.

Tests as Groups of Coefficients We may also directly
examine the contribution to the regression sum of squares
for a particular variable, say x;, given that other variables x;
(i#j) are included in the model. The procedure used to do
this is called the extra sum of squares method. This
procedure can also be used to investigate the contribution
of a subset of the regressor variables to the model.
Consider the regression model with & regressor variables:
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yv=Xp+e

whereyisn x 1, Xisn x p, pis px1,eisnxl,and p = k
+1. We would like to determine if the subset of regressor
variables x1, x2, ..., xr (r < k) contribute significantly to the
regression model. Let the vector of regression coefficients
be partitioned as follows:

B ]
B2
where B1 is » x 1, and P2 is (p-r)xl. We wish to test the
hypotheses

B=

.f".fu: B| =0
230) Hi: By #0

The model may be written as
e3nY=XB+e=X\B; +XoB, + ¢

where X represents the columns of X associated with B,
and X? represents the columns of X associated with B2.

For the full model (including both B1 and B2), we know
that b = (X'X)'1 X'y. Also, the regression sum of squares

for all variables including the intercept is

SSk(B,) = bSX5y  (p — r degrees of freedom)

and
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Yy — b'X'y
n—p

MSg =

SSR(P) is called the regression sum of squares due to B. To
find the contribution of the terms in B1 to the regression, fit
the model assuming the null hypothesis Hp: 1 = 0 to be
true. The reduced model is found from Equation 2.31 with
B1=0:

232)Y =XoP, + £

! I =
The least squares estimator of P2 is b, = (X5X5) ~ Xoy,
and

(2.33) SSk(B2) = B3X0y  (p — r degrees of freedom)

The regression sum of squares due to B1 given that B2 is
already in the model is

(2.34) SSk(B1|B2) = SSr(B) — SSk(B>)

This sum of squares has r degrees of freedom. It is often
called the extra sum of squares due to bl. Note that
SSR(B1] B2) is the increase in the regression sum of squares
due to including the variables x1, x2, ..., x» in the model.
Now SSr(B1| B2) is independent of MSE, and the null
hypothesis 1 = 0 may be tested by the statistic

Fo — S5x(By1B2)/r
P e
(2.35) MSg
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If Fo >Fa,rn-p, we reject Ho, concluding that at least one of
the parameters in B1 is not zero and, consequently, at least
one of the variables x1, x2, ..., x» in X] contributes
significantly to the regression model (one could also use
the P-value approach). Some authors call the test in
Equation 2.35 a partial F-test.

The partial F-test is very useful. We can use it to measure
the contribution of x; as if it were the last variable added to
the model by computing

Ssﬁ{ﬁﬂﬁw Bis: s 13; |=1'3,'! B s By

This is the increase in the regression sum of squares due to
adding xj to a model that already includes x1, ..., xj-1, xj+1,
..., Xk Note that the partial F-test on a single variable xj
is equivalent to the #-test in Equation 2.27. However, the
partial F-test is a more general procedure in that we can
measure the effect of sets of variables. This procedure is
used often in response surface work. For example, suppose
that we are considering fitting the secondorder model

y=By+ Bix + Boxa + Bn-"i + 3:3-‘% + Baxix: + &

and we wish to test the contribution of the second-order
terms over and above the contribution from the first-order
model. Therefore, the hypotheses of interest are

Hy: By = By = P12 =0
Hy: B, #0 and/or By # 0 and/or B, # 0
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In the notation of this section, Bi=I[Bi: B Bzl and
B> = [Bu. Bi. B2l and the columns of Xj and Xy are the
columns of the original X matrix associated with the
quadratic and linear terms in the model, respectively.

Example 2.5 Partial F-tests for the Transistor Gain
Data Consider the transistor gain data in Example 2.1.
Suppose that we wish to investigate the contribution of the
variable x2 (dose) to the model. That is, the hypotheses we
wish to test are

Ho: B, =0
Hi:By # 0

This will require the extra sum of squares due to /52, or

SSR{BHB]- ﬁlr} = SSR'{JBm .B|- ﬁ:]' = 55#'[:81#.- JBI]'
= SSr(By. B:|Bo) — SSr(B,|By)

Now from Example 2.3 where we tested for significance of
regression, we have (from Table 2.6)

SSk(By. Ba| By) = 651,966.1

This sum of squares has two degrees of freedom. The
reduced model is

y=By+Bx1+¢

The least squares fit for this model is

§ = 1245.8 + 323.6x,
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and the regression sum of squares for this model (with one
degree of freedom) is

SSk(B,|By) = 630,967.9

Therefore,

SSk(Ba|Bo. By) = 651,966.1 — 630,967.9
= 20,998.2

with 2-1 = 1 degree of freedom. This is the increase in the
regression sum of squares that results from adding x2 to a
model already containing x1 (or the extra sum of squares
that results from adding x2 to a model containing x1). To
test Ho: 2 = 0, from the test statistic we obtain

_ 58r(Ba|By. By)/ 1 _ 20,998.2/1

F, =
¥ MSE 1220.1

= 17.21

Note that MSE from the full model (Table 2.6) is used in
the denominator of Fo. Now because F0.05,1,11 = 4.84, we
reject Hp: 2 = 0 and conclude that x2 (dose) contributes
significantly to the model.

Because this partial F-test involves only a single regressor,
it is equivalent to the #-test introduced earlier, because the
square of a t random variable with v degrees of freedom is
an F random variable with 1 and v degrees of freedom. To
see this, recall that the t-statistic for Hp: 2 = 0 resulted in
t0 = -4.15 and that 16 = (—4.15)" = 17.22=F,
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2.5 CONFIDENCE INTERVALS IN MULTIPLE
REGRESSION

It is often beneficial to construct confidence interval
estimates for the regression coefficients {fj} and for other
quantities of interest from the regression model. The
development of a procedure for obtaining these confidence
intervals requires that we assume the errors {&i} to be
normally and independently distributed with mean zero
and variance 02, the same assumption made in the section
on hypothesis testing (Section 2.4).

2.5.1 Confidence Intervals on the Individual Regression
Coefficients f3

Because the least squares estimator b is a linear
combination of the observations, it follows that b is
normally dlstrlbuted with mean vector B and covariance
matrix o (X'X) . Then each of the statistics

bj — B;
2.36) V O*Cj

J=0,1,....k

is distributed as ¢ with n - p degrees of freedom where Cjj
is the (j, j )th element of the matrix (X’X) and & is the
estimate of the error variance, obtained from Equation
2.18. Therefore, a 100(1-a)% confidence interval for the
regression coefficient B, j = 0,1, ..., k, is

—_—

(237) ;3_.1- = E;r_,-l_.lr P 1;":(}:(:‘_;} 45: ,GJ. .;_-: I;JJ- . I”._.E_”_ o 1;;}:rﬂ

Note that this confidence interval can also be written as
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j’f — Ia/2n ---p-""’”’_r] E .IG_;' c—: h_.' + 'rrr_:l.u -;J""{J“}J‘}

because 3¢(b) = /o~ C.

Example 2.6 The Transistor Gain Data We will
construct a 95% confidence interval for the parameter £1 in
Example 2.1. Now b1 % 323.4, and because & = 1220.1
and C11 = 0.165954, we find that

by —topas.1 VEIC1 < By < by +tgsy V020

323.4 — 2.2014/(1220.1)(0.165954)

< B, £3234 4 2.201 \/{ 1220.1)0.165954)
323.4 — 2.201(14.2) < B, € 323.4 + 2.201(14.2)

and the 95% confidence interval on f1 is

292.1 < B, <3547

2.52 A Joint Confidence Region on the Regression
Coefficients f3

The confidence intervals in the previous subsection should
be thought of as one-at-a-time intervals; that is, the
confidence coefficient 1-a applies only to one such
interval. Some problems require that several confidence
intervals be constructed from the same data. In such cases,
the analyst is usually interested in specifying a confidence
coefficient that applies to the entire set of confidence
intervals. Such intervals are called simultaneous
confidence intervals.
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It is relatively easy to specify a joint confidence region
for the parameters § in a multiple regression model. We
may show that

(b - BYX'X(b - B)
pMSE

has an F-distribution with p numerator and n-p
denominator degrees of freedom, and this implies that

P?h—mX¥m_EL£ﬁww}=l -
I’M'SI'.'

Consequently a 100(1-a)% point confidence region for all
the parameters in B is

G-BEXE-0 cp.. .
(2.38) PMSE

This inequality describes an elliptically shaped region,
Montgomery, Peck, and Vining (2006) and Myers (1990)
demonstrate the construction of this region for p = 2. When
there are only two parameters, finding this region is
relatively simple; however, when more than two
parameters are involved, the construction problem is
considerably harder.

There are other methods for finding joint or simultaneous
intervals on regression coefficients, Montgomery, Peck,
and Vining (2006) and Myers (1990) discuss and illustrate
many of these methods. They also present methods for
finding several other types of interval estimates.
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2.5.3 Confidence Interval on the Mean Response

We may also obtain a confidence interval on the mean
response at a particular point, say, x01, x02, ..., X0k. Define
the vector

B
Aol

. | Xo2
Xy = 02

L Xk
The mean response at this point is

Ky = Bo + BiXor + Baxoz + -+ + Brxor = X

The estimated mean response at this point is

(2.39) ¥(X0) = Xgh

This estimator 1S unbiased, because
ELyi(X0)] = E(Xob) = XoB = tyx,» and the variance of
vilxgh ig

(2.40) Var[#(x)] = o*x,(X'X) 'xy

Therefore, a 100(1-a)% confidence interval on the mean
response at the point xo1, x02, ..., X0k 1S
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¥(X0) — taj2.0—p \”"fﬂ'a x,(X'X) '%p

(241) = ,u-}. % = ‘I.{xn} -+ f”_,-'ln e El/i}jx;]{xrx;‘_lxu

Example 2.7 The Transistor Gain Data Suppose that we
wish to find a 95% confidence interval on the mean
response for the transistor gain problem for the point &1 =
225 min and & = 4.36 x10'* jons. In terms of the coded
variables x1 and x2, this point corresponds to

I
Xn = (0
0

because xpo1 = 0 and xp2 = 0. The estimate of the mean
response at this point is computed from Equation 2.39 as

1242.3
¥(xp) =xgb =[1,0,0]| 3234 | =12423
—54.8

Now from Equation 2.40, we find Var[¥(x0)] as

Var[ ¥ (x0)] = o°x,(X'X) " 'xo

0.072027 —0.00195 0.0090677 [1
= ?[1,0,0] | —0.00195 0.165954 0.000408 | | 0
0.009067  0.000408 0.142876 | | 0

= ¢2(0.072027)

Using = MSE = 1220.1 and Equation 2.41, we find the
confidence interval as
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.'Iﬁ 4 Il =
j'{.xﬂ,} - r(r,-"ln--p'l‘/lfrx:]{x x}l Exﬂ‘ E .ru'_-.-lx,, i _""{xli,]

¥ taanp\ PXXX) " x01242.3

— 2.201,/1220.1(0.072027) < By, < 12423

+2.201,/1220.1(0.072027)1242.3
— 206 < juy, < 12423 +20.6

or

1221.7 < p,p,, < 12629

2.6 PREDICTION OF NEW RESPONSE
OBSERVATIONS

A regression model can be used to predict future
observations on the response y corresponding to particular
values of the regressor variables, say x01, x02, ..., X0k If
Xo=[1. %1 Xpa ... %, then a point estimate for the future
observation y¢ at the point xo1, x02, ..., X0k 1S computed
from Equation 2.39:

Mxp) = X:_,h

A 100(1-a)% prediction interval for this future
observation is
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(2.42)
.'l,L -~ F )
$(%0) — tajz.n-py/ (1 + x(X"X) "' x0)

: [ 2
= Yo < WXo) + tap2n-p/ a2(1 + x,(X'X)  'xp)

The additional &* term under the square root sign is due to
variability of observations around the predicted mean at
that location.

In predicting new observations and in estimating the mean
response at a given point x01, x02, ..., X0k, one must be
careful about extrapolating beyond the region containing
the original observations. It is very possible that a model
that fits well in the region of the original data will no
longer fit well outside of that region. In multiple regression
it is often easy to inadvertently extrapolate, since the levels
of the variables (x;1, xi2, ..., xik), i = 1, 2, ..., n, jointly
define the region containing the data. As an example,
consider Fig. 2.3, which illustrates the region containing
the observations for a two-variable regression model. Note
that the point (xo1, x02) lies within the ranges of both
regressor variables x1 and x2, but it is outside the region of
the original observations. Thus, either predicting the value
of a new observation or estimating the mean response at
this point is an extrapolation of the original regression
model.

Figure 2.3 An example of extrapolation in multiple
regression.
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Example 2.8 A Prediction Interval for the Transistor
Gain Data Suppose that we wish to find a 95% prediction
interval on the next observation on the transistor gain at
the point &1 = 225 min and & = 4.36x10' ions. In the
coded variables, this point is xo1 = 0 and xo2 = 0, so that, as
in Example 2.7, xo=[1, 0, 0l., and the predicted value of
the gain at this point is ¥i{%o)=xib=12423.  From
Example 2.7 we know that

x,(X'X) 'xp = 0.072027

Therefore, using Equation 2.42 we can find the 95%
prediction interval on yo as follows:
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_{{K{J} = 'rr:..-':.n-lu 'qrf'llf-rz“ =1 xEJ{XI’X} IX[]J < Yo < .‘I-'{'.'fﬂ]

+ tajnp\ (1 + XG(X'X) " 'x0)1242.3

— 2.2014/1220.1(1 4+ 0.072027) < y < 1242.3

+2.201,/1220.1(1 + 0.072027)1242.3
~79.6 < yp < 12423 +79.6

or

If we compare the width of the prediction interval at this
point with the width of the confidence interval on the mean
gain at the same point from Example 2.7, we observe that
the prediction interval is much wider. This reflects the fact
that there is more uncertainty in our prediction of an
individual future value of a random variable than to
estimate the mean of the probability distribution from
which that future observation will be drawn.

2.7 MODEL ADEQUACY CHECKING

It is always necessary to (a) examine the fitted model to
ensure that it provides an adequate approximation to the
true system and (b) verify that none of the least squares
regression assumptions are violated. Proceeding with
exploration and optimization of a fitted response surface
will likely give poor or misleading results unless the model
provides an adequate fit. In this section we present several
techniques for checking model adequacy.
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2.7.1 Residual Analysis

The residuals from the least squares fit, defined by e; = y; -
Yi,i=1,2, ..., n, play an important role in judging model
adequacy. The residuals from the transistor gain regression
model of Example 2.1 are shown in column 3 of Table 2.3.

A check of the normality assumption may be made by
constructing a normal probability plot of the residuals, as
in Fig. 2.4. If the residuals plot approximately along a
straight line, then the normality assumption is satisfied.
Figure 2.4 reveals no apparent problem with normality.
The straight line in this normal probability plot was
determined by eye, concentrating on the central portion of
the data. When this plot indicates problems with the
normality assumption, we often transform the response
variable as a remedial measure. For more details, see
Montgomery, Peck, and Vining (2006) and Myers (1990).

Figure 2.4 Normal probability plot of residuals, Example
2.1.
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Figure 2.5 presents a plot of residuals e; versus the
predicted response *; (this plot is also shown in the JMP
output in Table 2.4). The general impression is that the
residuals scatter randomly on the display, suggesting that
the variance of the original observations is constant for all
values of y. If the variance of the response depends on the
mean level of p, then this plot will often exhibit a
funnel-shaped pattern. This is also suggestive of the need
for transformation of the response variable y.

Figure 2.5 Plot of residuals versus predicted response ;,
Example 2.1.
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It is also useful to plot the residuals in time or run order
and versus each of the individual regressors. Nonrandom
patterns on these plots would indicate model inadequacy.
In some cases, transformations may stabilize the situation.
See Montgomery, Peck, and Vining (2006) and Myers
(1990) and Section 2.9 for more details.

2.7.2 Scaling Residuals

Standardized and Studentized Residuals Many response
surface analysts prefer to work with scaled residuals, as
these scaled residuals often convey more information than

do the ordinary least squares residuals.

One type of scaled residual is the standardized residual:

04)%=%
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where we generally use @=vMS: in the computation.
These standardized residuals have mean zero and
approximately unit variance; consequently, they are useful
in looking for outliers. Most of the standardized residuals
should lie in the interval -3 <d; < 3, and any observation
with a standardized residual outside of this interval is
potentially unusual with respect to its observed response.
These outliers should be carefully examined, because they
may represent something as simple as a data recording
error or something of more serious concern, such as a
region of the regressor variable space where the fitted
model is a poor approximation to the true response surface.

The standardizing process in Equation 2.43 scales the
residuals by dividing them by their average standard
deviation. In some data sets, residuals may have standard
deviations that differ greatly. We now present a scaling
that takes this into account.

The vector of fitted values Y; corresponding to the
observed values y; is

y = Xb
= XX'X) X'y
(2.44) = Hy

The nxn matrix H = X(X 'X)'IX' is usually called the hat
matrix because it maps the vector of observed values into a
vector of fitted values. The hat matrix and its properties
play a central role in regression analysis.
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The residuals from the fitted model may be conveniently
written in matrix notation as

(245 €=y ¥

There are several other ways to express the vector of
residuals e that will prove useful, including

e=vyv—Xb
=y —Hy
(2.46) = (1 —H)y
The hat matrix has several useful properties. It is
symmetric (Ho = H) and idempotent (HH = H). Similarly

the matrix I - H is symmetric and idempotent.

The covariance matrix of the residuals is

Var(e) = Var[(I — H)y]
= (I — H)Var(y)(1 — HY
(2.47) = o*(1-H)
because Var(y) = o’T and T - H is symmetric and
idempotent. The matrix I - H is generally not diagonal, so
the residuals are correlated and have different variances.

The variance of the ith residual is

(2.48) Var(e;) = a2(1 — hy)
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where 4;; is the ith diagonal element of H. Because 0 < 4;;
< 1, using the residual mean square MSE to estimate the
variance of the residuals actually overestimates Var(e;).
Furthermore, because /;; is a measure of the location of the
ith point in x-space, the variance of e; depends upon where
the point x; lies. Generally, residuals near the center of the
x-space have larger variance than do residuals at more
remote locations. Violations of model assumptions are
more likely at remote points, and these violations may be
hard to detect from inspection of e; (or d;) because their
residuals will usually be smaller.

We recommend taking this inequality of variance into
account when scaling the residuals. We suggest plotting
the studentized residuals:

€ :
= i= Lphvaay n

Qaoy VU —hi)

with @ = MSE instead of e; (or d;). The studentized
residuals have constant variance Var(r;) = 1 regardless of
the location of x; when the form of the model is correct. In
many situations the variance of the residuals stabilizes,
particularly for large data sets. In these cases there may be
little difference between the standardized and studentized
residuals. Thus standardized and studentized residuals
often convey equivalent information. However, because
any point with a large residual and a large 4;; is potentially
highly influential on the least squares fit, examination of
the studentized residuals is generally recommended.
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PRESS Residuals The prediction error sum of squares
(PRESS) proposed by Allen (1971, 1974) provides a useful
residual scaling. To calculate PRESS, select an
observation—for example, i. Fit the regression model to
the remaining n-1 observations and use this equation to
predict the withheld observation y;. Denoting this predicted
value by ¥(j), we may find the prediction error for point i as
e(i) = yi - ¥(i)- The prediction error is often called the ith
PRESS residual. This procedure is repeated for each
observation i = 1, 2, ..., n, producing a set of » PRESS
residuals e(1), e(2), ..., e(n). Then the PRESS statistic is
defined as the sum of squares of the » PRESS residuals as
in

PRESS = i{’ﬁ, = i [¥r— _‘;'u'll:
=1

(2.50) i=1

Thus PRESS uses each possible subset of n-1 observations
as an estimation data set, and every observation in turn is
used to form a prediction data set.

It would initially seem that calculating PRESS requires
fitting n different regressions. However, it is possible to
calculate PRESS from the results of a single least squares
fit to all n observations. It turns out that the ith PRESS
residual is

€

€ =

(251) I — hl'l'

Thus, because PRESS is just the sum of the squares of the
PRESS residuals, a simple computing formula is
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el

PRESS :Z(I = )
= Rij

(2.52) i=1

From Equation 2.51 it is easy to see that the PRESS
residual is just the ordinary residual weighted according to
the diagonal elements of the hat matrix /4;;. Data points for
which #;; are large will have large PRESS residuals. These
observations will generally be high influence points.
Generally, a large difference between the ordinary residual
and the PRESS residual will indicate a point where the
model fits the data well, but a model built without that
point predicts poorly. In the next section we will discuss
some other measures of influence.

The variance of the ith PRESS residual is

Varle;] = Var L
1 — h;;

I )
= ——g“{l — hy)
(1 — hy)

o”

(2.53) 1 —hy
so that standardized PRESS residual is

€ify € .-"rlr I -‘l J

\//ﬁﬂ{ﬁnl \/,_ {] — hu

€

v/ (1 — hy)
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which, if we use MSE to estimate o , 1s just the studentized
residual discussed previously.

Finally, we note that PRESS can be used to compute an
approximate R? for prediction, say

PRESS
rediction | — SS:

5%

(2.54)

This statistic gives some indication of the predictive
capability of the regression model. For the transistor gain
model we can compute the PRESS residuals using the
ordinary residuals and the values of 4;; found in Table 2.3.
The corresponding value of the PRESS statistic is PRESS
=22,225.0. Then

Rﬁn:«huunu =1— PI’;;-?S‘

22,225.0
 665,387.2
— 0.9666

Therefore we could expect this model to “explain” about
96.66% of the variability in predicting new observations,
as compared to the approximately 97.98% of the
variability in the original data explained by the least
squares fit. The overall predictive capability of the model
based on this criterion seems very satisfactory.

R Student The studentized residual r; discussed above is

often considered an outlier diagnostic. It is customary to
use MSE as an estimate of o in computing ;. This is
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referred to as internal scaling of the residual, because
MSE is an internally generated estimate of o” obtained
from fitting the model to all n observations. Another
approach would be to use an estimate of ° based on a data
set with the ith observation removed. Denote the estimate
of 6% so obtained by i . We can show that

2 (n — pIMSg — cf;’{l — hi;)
(5.55) " n—p-—1
The estimate of 62 in Equation 2.55 is used instead of MSE
to produce an externally studentized residual, usually
called R-student, given by
€ .

.!'..'=I,__——., 1'=].,2......,H

.,lv,f'S;H{I — hii)

Some computer packages refer to R-student as the outlier
T.

In many situations, # will differ little from the studentized
residual ;. However, if the ith observation is influential,
then Sircan differ significantly from MSEg, and thus
R-student will be more sensitive to this point. Furthermore,
under the standard assumptions, #; has a t,-p-1-distribution.
Thus R-student offers a more formal procedure for outlier
detection via hypothesis testing. One could use a
simultaneous inference procedure called the Bonferroni
approach and compare all n values of [#] with
H(a/2n),np-1 to provide guidance regarding outliers.
However, it is our view that a formal approach is usually
not necessary and that only relatively crude cutoff values
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need be considered. In general, a diagnostic view as
opposed to a strict statistical hypothesis-testing view is
best. Furthermore, detection of outliers needs to be
considered simultaneously with detection of influential
observations.

Example 2.9 The Transistor Gain Data Table 2.3
presents the studentized residuals 7; and the R-student
values #; defined in Equations 2.50 and 2.56 for the
transistor gain regression model. None of these values are
large enough to cause any concern regarding outliers.

Figure 2.6 is a normal probability plot of the studentized
residuals. It conveys exactly the same information as the
normal probability plot of the ordinary residuals e; in Fig.
2.4. This is because most of the Aj-values are similar and
there are no wunusually large residuals. In some
applications, however, the 4;; can differ considerably, and
in those cases plotting the studentized residuals is the best
approach.

Figure 2.6 Normal probability plot of the studentized
residuals for the transistor gain data.
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2.7.3 Influence Diagnostics

We occasionally find that a small subset of the data exerts
a disproportionate influence on the fitted regression model.
That is, parameter estimates or predictions may depend
more on the influential subset than on the majority of the
data. We would like to locate these influential points and
assess their impact on the model. If these influential points
are “bad” values, then they should be eliminated. On the
other hand, there may be nothing wrong with these points,
but if they control key model properties, we would like to
know it, because it could affect the use of the model. In
this subsection we describe and illustrate several useful
measure of influence.

Leverage Points The disposition of points in x-space is

important in determining model properties. In particular
remote observations potentially have disproportionate
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leverage on the parameter estimates, the predicted values,
and the usual summary statistics.

The hat matrix H = X(X’X)'1 X" is very useful in
identifying influential observations. As noted earlier, H
determines the variances and covariances of ¥ and e,
because Var(¥;) = o> H and Var(e) = o (I-H). The
elements 4 of H may be interpreted as the amount of
leverage exerted by y; on ¥;. Thus inspection of the
elements of H can reveal points that are potentially
influential by virtue of their location in x-space. Attention
is usually focused on the diagonal elements 4;;.. Because
2oy by = rank(H) = rank(X) =p. o average size of the
diagonal element of the matrix H is p/n. As a rough
guideline, then, if a diagonal element kj; is greater than
2p/n, observation i is a high-leverage point. To apply this
to the transistor gain data in Example 2.1, note that 2p/ n =
2(3)/14 =0.43. Table 2.3 gives the hat diagonals 4;; for the
first-order model; and because none of the /4;; exceed 0.43,
we conclude that there are no leverage points in these data.
Further properties and uses of the elements of the hat
matrix in regression diagnostics are discussed by Belsley,
Kah, and Welsch (1980).

Influence on Regression Coefficients The hat diagonals
will identify points that are potentially influential due to
their location in x-space. It is desirable to consider both the
location of the point and the response variable in
measuring influence. Cook (1977, 1979) has suggested
using a measure of the squared distance between the least
squares estimate based on all n points b and the estimate
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obtained by deleting the ith point, say b(;). This distance
measure can be expressed in a general form as

(2.57)

b, — bYM(b;, — b
B,fh"[{] =|:: (eh 3:' { ) j

L

The usual choices of M and ¢ are M = XX and ¢ = pMSE,
so that Equation 2.57 becomes

(2.58)
— . [hl'rﬁ = h}‘rx;x[hfi: —b) .
DiM,c)=D,; = VS, : p=Rdeaa n

Points with large values of D; have considerable influence
on the least squares estimates b. The magnitude of D; may
be assessed by comparing it with Fyp,np. If Pi = Fospn-p
then deleting point i would move b to the boundary of a
50‘7;3 confidence region for B based on the complete data
set. This is a large displacement and indicates that the
least squares estimate is sensitive to the ith data point.
Because fossn-p» = 1. we usually consider points for which
D; >1 to be influential. Practical experience has shown the
cutoff value of 1 works well in identifying influential
points.

“The distance measure D; is not an F random variable, but
is compared with an F-value because of the similarity of

D;j to the normal theory confidence ellipsoid (Eq. 2.38).

The statistic D; may be rewritten as
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_r Varlye] _ 7

h.u'
(2.59) " p Varle) P = By’

P e e n

Thus we see that, apart from the constant p, D; is the
product of the square of the ith studentized residual and
hii/(1-hi;). This ratio can be shown to be the distance from
the vector x; to the centroid of the remaining data. Thus D;
is made up of a component that reflects how well the
model fits the ith observation y; and a component that
measures how far that point is from the rest of the data.
Either component (or both) may contribute to a larger
value of D;.

Table 2.3 presents the values of D; for the first-order
model fit to the transistor gain data in Example 2.1. None
of these values of D; exceed 1, so there is no strong
evidence of influential observations in these data.

2.7.4 Testing for Lack of Fit

In RSM, usually we are fitting the regression model to data
from a designed experiment. It is frequently useful to
obtain two or more observations (replicates) on the
response at the same settings of the independent or
regressor variables. When this has been done, we may
conduct a formal test for the lack of fit on the regression
model. For example, consider the data in Fig. 2.7. There is
some indication that the straight-line fit is not very
satisfactory, and it would be helpful to have a statistical
test to determine if there is systematic curvature present.

Figure 2.7 Lack of fit of the straight-line model.
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The lack-of-fit test requires that we have true replicates
on the response y for at least one set of levels on the
regressors x1, x2, ..., Xk. These are not just duplicate
readings or measurements of y. For example, suppose that
y is product viscosity and there is only one regressor x
(temperature). True replication consists of running n;
separate experiments (usually in random order) at x = x;
and observing viscosity, not just running a single
experiment at xi and measuring viscosity n; times. The
readings obtained from the latter procedure provide
information mostly on the variability of the method of
measuring viscosity. The error variance o’ includes
measurement error, variability in the process over time,
and variability associated with reaching and maintaining
the same temperature level in different experiments. These
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replicate points are used to obtain a modelindependent
estimate of o°.

Suppose that we have n; observations on the response at
the ith level of the regressors xj, i = 1, 2, ..., m. Let yjj
denote the jth observation on the response at x;, i = lm, 2,
..., m.and j = 1, 2, ..., nj. There are "~ i1 M
observations altogether. The test procedure involves
partitioning the residual sum of squares into two

components, say

S8k = S58pe + SS10F

where SSpg is the sum of squares due to pure error and
SSLoF is the sum of squares due to lack of fit.

To develop this partitioning of SSg, note that the (i, j)th
residual is

(2.60) Yii — ¥i = (yij — ¥) + (3 — 5

where ¥ is the average of the n; observations at Xx;.
Squaring both sides of Equation 2.60 and summing over i
and j yields

(2.61)

L

2

The left-hand side of Equation 2.61 is the usual residual
sum of squares. The two components on the right-hand

M y m

(g =307 = 3030 (o= 5+ 3 5 — 507
=1 i=1 j=1 i=1

i
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side measure pure error and lack of fit. We see that the
pure error sum of squares

SSpe = Z (yij — ¥
(2.62) = =

is obtained by computing the corrected sum of squares of
the repeat observations at each level of x and then pooling
over the m levels of x. If the assumption of constant
variance is satisfied, this is a model-independent measure
of pure error, because only the variability of the ys at each
xi level is used to compute SSpe. Because there are nj-1
degrees of freedom for pure error at each level x;, the total
number of degrees of freedom associated with the pure
error sum of squares is

mi—l=n—m
(2.63) =1

The sum of squares for lack of fit,

m

SS1or = Z”E{ ¥ — Vi )
(2.64) i=1

is a weighted sum of squared deviations between the mean
response ¥ at each x; level and the corresponding fitted
value. If the fitted values ¥; are close to the corresponding
average responses ¥, then there is a strong indication that
the regression function is linear. If the ¥; deviate greatly
from the ¥, then it is likely that the regression function is
not linear. There are m-p degrees of freedom associated
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with SSzoF, because there are m levels of x but p degrees
of freedom are lost because p parameters must be
estimated for the model. Computationally we usually
obtain SS7.0F by subtracting SSpg from SSE.

The test statistic for lack of fit is

_ SSior/tm —p) _ MSior
(2.65) g 58pe/(n—m)  MSpg

The expected value of MSpEg is o2, and the expected value
of MSLoF is

~
m

k
Z”r |iE{ ¥i)— B — Z -IBI"'f:f]
3 jm= =1
E(MSior) = 0° + :

(2.66) m—2

If the true regression function is linear, then

E(yi) = B+ 21 B and the second term of Equation 2.66
is zero, resulting in E(MSL0F) = o°. However, if the true
regression function is not linear, then £02) # Bo 1 Brin
and E(MSLOF) >0 Furthermore, if the true regression
function is linear, then the statistic Fo follows the
Fm-p,n-m-distribution. Therefore, to test for lack of fit, we
would compute the test statistic FO and conclude that the
regression function is not linear if 9 >Fo,m-p,n-m-

This test procedure may be easily introduced into the
analysis of variance conducted for significance of
regression. If we conclude that the regression function is
not linear, then the tentative model must be abandoned and
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attempts made to find a more appropriate equation.
Alternatively, if Fo does not exceed Fo,m-p,n-m, there is no
strong evidence of lack of fit, and MSpr and MSLoF are
often combined to estimate 2.

Ideally, we find that the F-ratio for lack of fit is not
significant and the hypothesis of significance of regression
is rejected. Unfortunately, this does not guarantee that the
model will be satisfactory as a prediction equation. Unless
the variation of the predicted values is large relative to the
random error, the model is not estimated with sufficient
precision to yield satisfactory predictions. That is, the
model may have been fitted to the errors only. Some
analytical work has been done on developing criteria for
judging the adequacy of the regression model from a
prediction point of view. See Box and Wetz (1973),
Ellerton (1978), Gunst and Mason (1979), Hill, Judge, and
Fomby (1978), and Suich and Derringer (1977). Box and
Wetz’s work suggests that the observed F-ratio must be at
least four or five times the critical value from the F-table if
the regression model is to be useful as a predictor—that is,
if the spread of predicted values is to be large relative to
the noise.

A relatively simple measure of potential prediction
performance is found by comparing the range of the fitted
values ¥ (i.e., Ymax - *min) With their average standard
error. It can be shown that, regardless of the form of the
model, the average variance of the fitted values is

.\
pir-

I n
Var(y) =-=)» Var[¥x;)] =
ar( y) = EI ar| vix;)] =

(2.67)
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where p is the number of parameters in the model. In
general, the model is not likely to be a satisfactory
predictor unless the range of the fitted values ¥; is large
relative to their average estimated standard error v/ (Po*)/n.
where & is a model-independent estimate of the error
variance.

Example 2.10 Testing Lack of Fit The data in Fig. 2.7 are
shown below:

x 1.0 1.0 20 i3 i3 4.0 4.0 4.0 4.7 5.0
y  10.84 930 1635 2288 2435 2456 2586 2046 2459 2225

X 5.6 5.6 5.6 6.0 6.0 6.5 6.92
¥y 2590 2720 2561 2545 20656 21.03 2146

The straight-line fit is ¥ = 13.301 + 2.108x, with SST =
487.6126, SSr = 234.7087, and SSE = 252.9039. Note that
there are 10 distinct levels of x, with repeat points at x =
1.0, x=3.3,x=4.0, x =5.6, and x = 6.0. The pure sum of
squares is computed using the repeat points as follows:

Level of x| 2o Ui — %' Degrees of Freedom
1.0 1.1858 1
33 1.0805 1
4.0 11.2467 2
5.6 1.4341 2
6.0 0.6161 1
Total 15.5632 7

The lack-of-fit sum of squares is found by subtraction as

S'S‘I.{'JF — SSE — SS.;J-E
= 252.9039 — 15.5632 = 237.3407

102



with m - p =10 - 2 = 8 degrees of freedom. The analysis of
variance incorporating the lack-of-fit test is shown in
Table 2.7. The lack-of-fit test statistic is Fo = 13.34, and
because the P-value for this test statistic is very small, we
reject the hypothesis that the tentative model adequately
describes the data.

TABLE 2.7 Analysis of Variance for Example 2.10

Source of Sum of Degrees of
Variation Squares Freedom Mean Square Fa P-¥alue
Regression 2347087 I 234. 7087
Residual 252.9039 15 16,8603
Lack of fit 237.3407 3 206676 13.34 00013
Pure error 15.5632 7 2.2233
Tostal 487.6126 16

2.8 FITTING A SECOND-ORDER MODEL

Many applications of response surface methodology
involve fitting and checking the adequacy of a
second-order model. In this section we present a complete
example of this process.

Table 2.8 presents the data resulting from an investigation
into the effect of two variables, reaction temperature (§1),
and reactant concentration (&2), on the percentage
conversion of a chemical process (). The process
engineers had used an approach to improving this process
based on designed experiments. The first experiment was a
screening experiment involving several factors that
isolated temperature and concentration as the two most
important variables. Because the experimenters thought
that the process was operating in the vicinity of the

103



optimum, they elected to fit a quadratic model relating
yield to temperature and concentration.

TABLE 2.8 Central Composite Design for the
Chemical Process Example

A B
Temperture (7C) Cong. (%)
Ohbservation Run & £ Xy X y
1 4 200 15 1 ! 43
2 12 250 15 1 -1 T8
3 11 200 25 -1 | 69
4 5 250 25 1 | 73
5 6 189.65 20 1414 0 43
(4] 7 260,35 20 1414 0 78
7 | 225 12.93 0 -1.414 63
B 3 225 27.07 0 1.414 74
9 8 225 20 0 0 76
10 10 225 20 1] 0 79
11 9 225 20 0 0 i3
12 2 225 20 0 ] 81

Panel A of Table 2.8 shows the levels used for &1 and &2 in
the natural units of measurements. Panel B shows the
levels in terms of coded variables x; and x2. Figure 2.8
shows the experimental design in Table 2.8 graphically.
This design is called a central composite design, and it is
widely used for fitting a second-order response surface.
Notice that the design consists of four runs at the corners
of a square, plus four runs at the center of this square, plus
four axial runs. In terms of the coded variables the corners
of the square are (x1, x2) = (-1, -1), (1, -1), (21, 1), (1, 1);
the center points are at (x1, x2) = (0, 0); and the axial runs
are at (x1, x2) = (-1.414, 0), (1.414, 0), (0, -1.414),
(0,1.414).

Figure 2.8 Central composite design for the chemical
process example.
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We will fit the second-order model

y=By+ Bixi+ B2+ Euﬁ + Eggl% + Baxix2 + &

using the coded variables. The matrix X and vector y for
this model are
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¥
X X3 b el S ¢

da

[ 1 =] | 11 17 (437
1 I el | I 1 -l 78
1 -1 1 1 1 -l 69
1 I 1 I I 73
1 -1414 0 20 0 48
1 1414 0 20 0 76

Xi= w Y=
1 0 ~-1414 0 2 0 65
1 0 1414 02 0 74
10 0 00 0 76
10 0 00 0 79
10 0 00 0 83
10 0 00 o0l 81

Notice that we have shown the variables associated with
each column above that column in the matrix X. The
entries in the columns associated with +i and 2 are found
by squaring the entries in columns x1 and x2, respectively,
and the entries in the x1x2 column are found by
multiplying each entry from x1 by the corresponding entry
from x2. The matrix XX and vector X'y are

12 00 8 8 0 [ 845.000
0 80 0 0 0 78.592
~_ |0 08 0 0 0| | 3372
XX=18 00 12 4 of*¥=| s11.000
8 00 4 120 541.000
0 00 0 0 4 | —31.000
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and from b = (X 'X)'IX’y we obtain

[ 79.757
10.18
4.22
~8.50
—~5.25
-7.75 |

h=

Therefore the fitted model for percentage conversion is

§=79.75 + 10.18x; + 4.22x; — 8.50x] — 5.25x3 — 7.75x1x

In terms of the natural variables, the model is

y = =1080.22 4 7.7671 & + 23.1932§; - ().(Ji?r(){ff = {}.2I()(}.f§ = 0.0620£, &

Tables 2.9 and 2.10 present some of the output from
Design-Expert, a popular statistics software package for
experimental design and RSM. In Table 2.9, the
model-fitting procedure is presented. Design-Expert
attempts to fit a series of models to the data (firstorder or
linear, first-order with interaction, second-order, and
cubic). The significance of each additional group of terms
is assessed sequentially using the partial F-test discussed
previously. Lack-of-fit tests and several summary statistics
are reported for each of the models considered. Because
the central composite design cannot support a full cubic
model, the results for that model are accompanied by a
statement “aliased,” indicating that not all of the cubic
model parameters can be uniquely estimated. The
summary statistics strong support selecting the quadratic
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model, and

this

Design-Expert.

i1s also the model

selected by

TABLE 2.9 Model Fitting for the Chemical Process
Example (From Design-Expert)

Sequential Model Sum of Squares [Tvpe I]

Sum of Mean F- Pevalue
Source Squares dr Squarne Value Prob = F
Mean vs Towal 5978408 | 50734.08
Lincar vs Mean 970.98 2 48549 5.30 0.0301
2FI1 vs Lincar 24025 1 24025 329 0.1071
Quadrnic vs 2F1 546,42 2 273,21 4398 00003 Suggested
Cubic vs Quadratic 10.02 2 301 0.74 0.5346 Aliased
Residual 27.25 4 6.81
Toaal G1579.00 12 5131.58

Lack-of-Fit Tesis
Lincar T97.19 i 132.86 14.90 0.0246
2F1 55694 5 111.39 12.49 0.0319
Quadratic 10,52 3 3.51 .39 0. 7682 Suggested
Cubic 0.50 1 0.50 0L.056 0.8281 Aliased
Pure Error 26.75 i 3.492
Model Summary Statistics
Sud. Adjusted Predicted

Source Dev, R-Squared  R-Squared  R-Squared  PRESS
Lincar 9.57 0.5410 0.4390 L1814 1469.26
2F1 8.54 0.6748 0.5529 0.2901 1274.27
Quadratic 2.49 0.9792 09619 0.9318 12237 Suggested
Cubic 2.61 0.9848 09583 (L9557 7956 Aliased

“Sequentiod Model Sum of Squares [Tvpe 1™: Select the highest order polynomial where the additiona) terms ane

significant and the model is not aliased.

“Lack-af-Fit Tests"; Want the selected model io have insignificant lack-of-fit.
“Model Swmmary Statistics”™: Focus on the model maximizing the “Adjusted R-Squared” and the “Predicted

R-Squared.”

TABLE 2.10 Design-Expert ANOVA for the Chemical
Process Example
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ANOVA for Response Surface Quadratic Model Analvsis of Variance Table
[Partial Sum of Squares—Type 1]

Sum of Mean P-value
Source Squares dr Sqquare F-Value FProb = F
Madel 1757.65 5 351.53 56,59 <0.0001
A-Temp R2B.78 ! B28.78 133.42 < (L0001
B-Cone 142.20 1 142.20 2289 0.0030
AB 240.25 I 240.25 38.68 (L0008
AT 46240 1 462.40 T4.44 00000
B 176.40 1 176.40 28.40 00018
Residual i 6 6.21
Lack af Fir 10.52 3 3.51 0.39 0.7682
FPure Error 26.75 3 B.92
Cor Total 1794.92 11
Sul. Dev. 2.49 R-Squared 0.9792
Mean T0.58 Adj R-Squared 09619
CV. % 3.53 Pred R-Squarcd 09318
PRESS 122.37 Adeq. Precision 20367
Coefficient Standard i,
Factor Estimate dr Ermor Low High
Intercept 79.75 I 1.25 76.70 8280
A-Temp 1018 1 (.88 8.02 12.33
B-Cone 4.22 1 (.88 2.06 6.37
AR —7.75 1 1.25 —1080 —470
A? = 8.50 ! 0.99 =10.91 =608
B —-5.25 I 0.99 -7.66 —284
Final Equation in Terms of Coded Factors:
Conversion =
+79.75
+10.18 ‘A
+4.22 ‘B
=1.75 ACB
—8.50 Al
-5.25 ‘B
Final Equation in Terms of Actual Factors:
Conversion =
= 1080.2 1867
+7.76713 “Temp
+23.19320 ‘Cone
—0.062000 “Temp *Conc
=0.013600 “Temp®
—0.21000 *Conc”

To illustrate the computations in Table 2.9, consider
testing the significance of the linear (first-order) terms.
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The regression sum of squares for this model, that is, the
contribution of x| and x2 over the mean (intercept) is SSR
(B1, B2|Bo) = 970.98. The residual mean square for the
linear model can be shown to be MSE = 91.58. Therefore,
the F-statistic for testing the contribution of the linear
terms beyond the intercept is

SSe(By. Ba2lBy)/2  970.98/2  485.99

- Lid Es N 30
MS; 91.58  91.58

Ln

Fy=

for which the P-value is P = 0.0301, so we conclude that
the linear terms are significant. The analysis in Table 2.9
indicates that the linear interaction and pure quadratic
terms contribute significantly to the model. Table 2.10
summarizes the ANOVA for the quadratic model. In this
table, the source of variation labeled “Lack of Fit” contains
all of the sums of squares for terms higher-order than
quadratic. Table 2.10 also reports 95% confidence
intervals for each model parameter. Some of these Cls
include zero, indicating that there are no nonsignificant
terms in the model. If some of these Cls had included zero,
some analysts would drop the nonsignificant variables for
the model, resulting in a reduced quadratic model for the
process. It is also possible to employ variable selection
methods such as stepwise regression to determine the
subset of variables to include in the model. Generally, we
prefer to fit the full quadratic model whenever possible,
unless there are large differences between the full and the
reduced model in PRESS and adjusted R?. Table 2.10
indicates that the R and adjusted R? values for this model
are satisfactory. The Riwesicion based on PRESS is
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_ PRESS

122.37
T 1799.92
— 0.9318

indicating that the model will probably explain a high
percentage (about 93%) of the variability in new data.

Table 2.11 contains the observed and predicted values of
percentage conversion, the residuals, and other diagnostic
statistics for this model. None of the studentized residuals
or the values of R-student are large enough to indicate any
problem with outliers. Notice that the hat diagonals hii take
on only two values, either 0.625 or 0.250. The values of 4;;
= (.625 are associated with the four runs at the corners of
the square in the design and the four axial runs. All eight
of these points are equidistant from the center of the
design; this is why all of the #4;; values are identical. The
four center points all have 4;; = 0.250. Figures 2.9, 2.10,
and 2.11 show a normal probability plot of the studentized
residuals, a plot of the studentized residuals versus the
predicted values ¥, and a plot of the studentized residuals
versus run order. None of these plots reveal any model
inadequacy.

TABLE 2.11 Observed Values, Predicted Values,
Residuals, and Other Diagnostics for the Chemical
Process Example
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Obs. Actual Predicted Student Cook's R-

Onder Value Value Residual by Residual D Student
| 43,00 43.96 =09  (0.625 ~IL643 0115 =609
2 TE.00 79.11 - 1.11 0.625 ~(L745 0.154 -0.714
3 69,00 6789 1.1 0,625 0.748 0155 0.717
4 T3.00 T2.04 0.9 L6258 (L5646 (IR NI 0.612
5 48,00 48.11 ~0.11 (L6235 ~(L073 0.001 0.067
6 T6.00 75.90 0,10  0.625 —0.073 0.001 —-0.067
T 6500 6354 1.46 L6235 .982 .268 0.9749
H T4.00) 7546 = 1.46 L6255 ~[L985 0.269 =.982
9 76.00 79.75 =375 0.250 - 1.784 0177 -237
10 79.00 79.75 -0.75 0.250 —0.357 0.007 -0.329
11 B3.00 7975 3.25 (.250 1.546 L0133 1.820
12 810G 79.75 1.25 0.250 0.595 0,020 0.560

Figure 2.9 Normal probability plot of the studentized
residuals, chemical process example.

95 -

701 _

30 -
20

Mormal % probability
8
T

| 1 1 | 1 | 1
-1.784 -1.229-0.674 0.119 0.436 0.991 1.546
Studentized residual

Figure 2.10 Plot of studentized residuals versus predicted
conversion, chemical process example.
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Figure 2.11 Plot of the studentized residuals versus run
order, chemical process example.
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Plots of the conversion response surface and the contour
plot, respectively, for the fitted model are shown in Fig.
2.12a and b. The response surface plots indicate that the
maximum percentage conversion is at about 240°C and
20% concentration.
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Figure 2.12 (a) Response surface of predicted conversion.
(b) Contour plot of predicted conversion.
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In many response surface problems the experimenter is
interested in predicting the response y or estimating the
mean response at a particular point in the process variable
space. The response surface plots in Fig. 2.12 give a
graphical display of these quantities. Typically, the
variance of the prediction is also of interest, because this is
a direct measure of the likely error associated with the
point estimate produced by the model. Recall from
Equation 2.40 that the variance of the estimate of the mean
response at the point xo is given by Var[¥i(xo)] =
czx’o(X'X)'lxo. Plots of the estimated standard deviation

of the predicted response, V V¥l obtained by
estimating o’ by the mean square error MSg = 5.89 for this
model for all values of xg in the region of experimentation,
are presented in Fig. 2.13a and b. Both the response
surface in Fig. 2.13a and the contour plot of constant

\/Varl3ta)l in Fig. 2.13b show that the V V&30l is the same
for all points xo that are the same distance from the center
of the design. This is a result of the spacing of the axial

runs in the central composite design at 1.414 units from the
origin (in the coded variables), and is a design property
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called rotatability. This is an important property for a
second-order response surface design, and it will be
discussed in more detail in Chapter 7.

Figure 2.13 (a) Response surface plot of V Vartito)l (b)
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2.9 QUALITATIVE REGRESSOR VARIABLES

The regression models employed in RSM usually involved
quantitative variables—that 1is, variables that are
measured on a numerical scale. For example, variables
such as temperature, pressure, distance, and age are
quantitative  variables. Occasionally, we need to
incorporate qualitative variables in a regression model.
For example, suppose that one of the variables in a
regression model is the machine from which each
observation y; is taken. Assume that only two machines are
involved. We may wish to assign different levels to the
two machines to allow for the possibility that each
machine may have a different effect on the response.

The usual method of representing the different levels of a
qualitative variable is by using indicator variables. For
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example, to introduce the effect of two different machines
into a regression model, we could define an indicator
variable as follows:

x =10 if the observation i1s from machine |

x=1 if the observation is from machine 2

In general, a qualitative variable with ¢ levels is
represented by ¢ -1 indicator variables, which are assigned
the values either O or 1. Thus, if there were three machines,
the different levels would be accounted for by two
indicator variables defined as follows:

A A2

0 0 if the observation is from machine 1
1 0 if the observation is from machine 2
0 | if the observation is from machine 3

Indicator variables are also referred to as dummy
variables. The following example illustrates some of the
uses of indicator variables. For other applications, see
Montgomery, Peck, and Vining (2006) and Myers (1990).

Example 2.11 The Surface Finish Regression Model A
mechanical engineer is investigating the surface finish of
metal parts produced on a lathe and its relationship to the
speed [in revolutions per minute (RPM)] of the lathe. The
data are shown in Table 2.12. Note that the data have been
collected using two different types of cutting tools.
Because it is likely that the type of cutting tool affects the
surface finish, we will fit the model

y=By+Bixi +Byx2+ ¢
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where y is the surface finish, x1 is the lathe speed in RPwm,
and x2 is an indicator variable denoting the type of cutting
tool used; that is,

Xy =

0 for tool type 302
| for tool type 416

TABLE 2.12 Surface Finish Data for Example 2.11

Observation Mumber, i Surface Finish, v; EPM Type of Cutting Tool

I 45.44 225 302
2 4203 201 302
3 5010 250 302
4 48.75 245 302
5 4792 235 302
6 47.79 237 302
7 52.26 265 302
8 5052 259 302
9 4558 221 302
1] 44.78 218 302
I 33.50 224 416
12 31.23 212 416
13 37.52 248 416
i4 3713 260 416
15 3470 243 416
[4] 33.92 238 416
17 3213 224 416
I8 547 251 416
19 3349 232 416
20 32.29 26 416

The parameters in this model may be easily interpreted. If
x2 = 0, then the model becomes

y=By+Bx+e¢
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which is a straight-line model with slope 1 and intercept
So. However, if x2 = 1, the model becomes

y=By+Bxi1+B:(l)+e=(By+B:)+Bx1 +¢

which is a straight-line model with slope f1 and intercept
po = p2. Thus, the model y = fo + f1x + fax2 + € implies
that surface finish is linearly related to lathe speed and that
the slope B1 does not depend on the type of cutting tool
used. However, the type of cutting tool does affect the
intercept, and P2 indicates the change in the intercept
associated with a change in tool type from 302 to 416.

The model matrix X and vector y for this problem are as
follows:
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1 225 0] [45.44 7
1 200 O 42.03

1 250 0 50.10

1 245 0 48.75

1 235 0 47.92

1 237 0 47.79

1 265 0 52.26

1 259 0 50.52

1 221 0O 45.58
X — 1 218 0 y = 44.78
1 224 0|’ 33.50

1 212 1 31.23

1 248 | 37.52

1 260 | 37.13

1 243 | 34.70

1 238 |1 33.92

1 224 | 32.13

1 251 1 35.47

1 232 |1 33.49
|1 216 1] | 32.29 |

The fitted model is

¥ =14.27620 4 0.14115x; — 13.28020x,

The analysis of variance for this model is shown in Table
2.13. Note that the hypothesis Ho: f1 = 2 = 0 (significance
of regression) is rejected. This table also contains the sums
of squares

SSH — SSRfﬁ] 5 ﬁz!ﬁu]
= SSk(B,|By) + SSk(B:|B,. By)
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so that a test of the hypothesis Hp: f2 = 0 can be made.
This hypothesis is also rejected, so we conclude that tool
type has an effect on surface finish.

TABLE 2.13 Analysis of Variance of Example 2.11

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fa P-Value
Regression 1012.0595 | 5060297 10369 L0175 = 107 "%
5560880 (130.6091) () 1306001 284.87  4.6980 — 107"
S8 Ba|B1. Bo) (881.4504) (1 8814504 1922.52 62439 x 107"
Error 7.7943 17 0.4508

Total 10198538 19

It is also possible to use indicator variables to investigate
whether tool type affects both the slope and intercept. Let
the model be reformulated as

y= By + Bixi + Boxz + Bixixa + &

where x7 is the indicator variable. Now if tool type 302 is
used, then x2 = 0, and the model is

y=B+Bx1+¢

If tool type 416 is used, then x> = 1, and the model
becomes

yv=56Ba+Bxi+ B+ B +e
= {ﬁu + ﬁg} + {ﬁ] =+ ﬁ_—.;ll'[ + E

Note that f2 is the change in the intercept, and 3 is the
change in slope produced by a change in tool type.
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Another method of analyzing this data set is to fit separate
regression models to the data for each tool type. However,
the indicator variable approach has several advantages.
First, only one regression model must be estimated.
Second, by pooling the data on both tool types, more
degrees of freedom for error are obtained. Third, tests of
both hypotheses on the parameters B2 and B3 are just
special cases of the extra sum of squares method.

2.10  TRANSFORMATION OF THE RESPONSE
VARIABLE

We noted in Section 2.7 that often a data transformation
can be used when residual analysis indicates some problem
with underlying model assumptions, such as nonnormality
or nonconstant variance in the response variable. In this
section we illustrate the use of data transformation for a
classic example from the literature. Following the
example, we discuss methods for the choice of the
transformation.

Example 2.12 The Worsted Yarn Data The data in Table
2.14 [taken from Box and Draper (1987)] show the number
of cycles to failure of worsted gain (y) and three factors
defined as follows:

_ Length — 300
- 50
Amplitude of load cycle (MM): x; = Length —9

Length of test specimen (mn): x;

__ Length — 45
B 5

Load (grams): x3
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TABLE 2.14 The Worsted Yarn Data

Fun Mumber  Length, vy Amplitede, v Load, x: Cycles to Failure, v

I =] =] =1 674
2 ] -1 el | 1414
3 1 -] -1 3636
4 -1 0 =1 338
] ] 0 -1 1022
i I 0 -1 1365
7 | I =1 170
8 ] | -1 442
9 I 1 o | 1140
10 =] =] ] 370
I ] =1 0 1198
12 1 -1 ] 3184
i3 =] 0 0 a6
14 ] 0 ] 620
15 I 0 ] 1070
It =1 | () 118
17 ] | 0 332
18 1 | ] 584
19 =1 -1 I 2492
20 ] -1 | 634
21 I -] I 200K
22 -1 0 | 210
23 ] 0 | 438
24 I 0 I 566
25 -1 I I a0
26 0 1 | 220
27 I | I i)

These factors form a 3° factorial experiment. This
experiment will support a complete second-order
polynomial. The least squares fit is

3 = 550.7 + 660x; — 535.9x> — 310.8x; + 238.7x] + 275.7%
— 48303 — 456.5x;x7 — 235.7x;x3 + 14320013
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The R? value is 0.975. An analysis of variance is given in
Table 2.15. The fit appears to be reasonable and both the
first- and second-order terms appear to be necessary.

TABLE 2.15 Analysis of Variance for the Quadratic
Model for the Worsted Yard Data

Sum of Squares Degrees of Mean Square
Source of Variability (x107% Freedom (x107% Fa
First-order terms 14,748.5 3 4.916.2 70
Added second-order 4,224.3 6 704.1 9.5
ferms
Residual 1,256.6 17 739
Total 20,2294 26

Figure 2.14 is a plot of residuals versus the predicted
cycles to failure ¥; for this model. There is an indication of
an outward-opening funnel in this plot, implying possible
inequality of variance.

Figure 2.14 Plot of residuals versus predicted for the
worsted yarn, quadratic model.
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When a natural log transformation is used for y, we obtain
the following model:

In¥ = 6.33 + 0.82x; — 0.63x> — 0.38x;

- 6.3340.82r; —0.63xy —().38xy
y=e"" ' .

This model has R = 0.963, and has only three model terms
(apart from the intercept). None of the second-order terms
are significant. Here, as in most modeling exercises,
simplicity is of vital importance. The elimination of the
quadratic terms and interaction terms with the change in
response metric not only allows a better fit than the
secondorder model with the natural metric, but the effect
of the design variables x1, x2, and x3 on the response is
clear.
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Figure 2.15 is a plot of residuals versus the predicted
response for the log model. There is still some indication
of inequality of variance, but the log model, overall, is an
improvement on the original quadratic fit.

Figure 2.15 Plot of residuals predicted for the worsted
yam data, log model.
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In the previous example, we illustrated the problem of
nonconstant variance in the response variable y in linear
regression and noted that this is a departure from the
standard least squares assumptions. This inequality of
variance problem occurs fairly often in practice, often in
conjunction with a non-normal response variable.
Examples include a count of defects or particles,
proportion data such as yield or fraction defective, or a
response variable that follows some skewed distribution
(one tail of the response distribution is longer than the
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other).We illustrated how transformation of the response
variable can be used for stabilizing the variance of the
response. In our example we selected a log transformation
empirically, by noting that it greatly improved the
appearance of the residual plots.

Generally, transformations are used for three purposes:
stabilizing the response variance, making the distribution
of the response variable closer to the normal distribution,
and improving the fit of the model to the data. This last
objective could include model simplification, say by
eliminating interaction, or higher-order polynomial terms.
Sometimes a transformation will be reasonably effective in
simultaneously accomplishing more than one of these
objectives.

We often find that the power family of transformations y*
= y7‘ is very useful, where A is the parameter of the
transformation to be determined (e.g., * = ! means use the
square root of the original response). Box and Cox (1964)
have shown how the transformation parameter A may be
estimated simultaneously with the other model parameters
(overall mean and treatment effects). The theory
underlying their method uses the method of maximum
likelihood. The actual computational procedure consists of
performing, for various values of A, a standard analysis of
variance on

A=l

3
,"'ll“ g F A#FD
(2.68) viny A=0
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where ¥ =In"'[(1/n)XIny] is the geometric mean of the
observations. The maximum likelihood estimate of A is the
value for which the error sum of squares, say SSE(MA) is a
minimum. This value of A is usually found by plotting a
graph of SSE(A) versus A and then reading the value of A
that minimizes SSE(A) from the graph. Usually between 10
and 20 values of A are sufficient for estimation of the
optimum value. A second iteration using a finer mesh of
values can be performed if a more accurate estimate of A is
necessary.

Notice that we cannot select a value of 1 by directly
comparing the error sums of squares from analyses of
variance on yk, because for each value of A the error sum
of squares is measured on a different scale. Furthermore, a
problem arises in y when A = 0; namely, as 1 approaches
Zero, y approaches unity. That is, when A = 0 all the
response values are a constant. The component (y -1)/A of
Equatlon 2.68 alleviates this problem because as A tends to
Zero, (y -1)/1 goes to a limit of In y. The divisor component

! in Equation 2.68 rescales the responses so that the
error sums of squares are directly comparable.

In applying the Box—Cox method, we recommend using
simple choices for I, because the practical difference
between A = 0.5 and A = 0.58 is likely to be small, but the
square root transformation (A = 0.5) is much easier to
interpret. Obviously, values of | close to unity would
suggest that no transformation is necessary.

Once a value of A is selected by the BOX—COX method, the

experimenter can analyze the data using y as the response,
unless of course A = 0, in which case use In y. It is
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perfectly acceptable to use yO‘) as the actual response,
although the model parameter estimates will have a scale
difference and orlgm shift in comparison with the results
obtained using y (or In y).

An approximate 100(1-a)% confidence interval for A can
be found by computing

o
5 :S.Sh{h}(l ol )
(2.69) 4

where v is the number of degrees of freedom and plotting
a line parallel to the A -axis at height SS” on the graph of
SSE(L) versus A. Then by locating the points on the A -axis
where SS” cuts the curve SSE(L), we can read confidence
limits on A directly from the graph. If this confidence
interval includes the value A = 1, this implies that the data
do not support the need for the transformation.

Several software packages have implemented the
Box—Cox procedure. Figure 2.16 shows the output
graphics from Design-Expert when the Box—Cox
procedure is applied to the worsted yarn data in Table
2.14. The optimum value of A is 20.24, and the 95%
confidence interval for A contains zero, so the use of a log
transformation is indicated.

Figure 2.16 The Box—Cox procedure applied to the
worsted yarn data in Table 2.5.
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EXERCISES

2.1 A study was performed on wear of a bearing y and its
relationship to & = oil viscosity and & = load. The
following data were obtained:

€1

&

193

1.6

851

230

15.5

816

172

22.0

1058

91

43.0

1201

113

33.0

1357

125

40.0

1115

(a) Fit a multiple linear regression model to these data,
using coded variables x1 and x2, defined so that -1<x; <1,
i=1,2.
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(b) Convert the model in part (a) to a model in the natural
variables &1 and &).

(c) Use the model to predict wear when &1 = 25 and & =
1000.

(d) Fit a multiple linear regression model with an
interaction term to these data. Use the coded variables
defined in part (a).

(e) Use the model in (d) to predict wear when 1 = 25 and
&2 = 1000. Compare this prediction with the predicted
value from part (b) above.

2.2 Consider the regression models developed in Exercise
2.1.

(a) Test for significance of regression from the first-order
model in part (a) of Exercise 2.1 using the analysis of
variance with a = 0.05. What are your conclusions?

(b) Use the extra sum of squares method to investigate
adding the interaction term to the model [part (d) of
Exercise 2.1]. With a = 0.05, what are your conclusions
about this term?

2.3 The pull strength of a wire bond is an important
characteristic. Table E2.1 gives information on pull
strength (), die height (x1), post height (x2), loop height
(x3), wire length (x4), bond width on the die (x5), and bond
width on the post (x6).

TABLE E2.1 Wire Bond Data for Exercise 2.3
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¥ X Xa X3 Xa A5 Xp
8.0 5.2 9.6 9.6 94,9 z2.1 33
] 5.2 19.8 324 597 2.1 1.5
85 5.8 19.6 3.0 06,2 20 2.0
5.8 6.4 |94 324 95.6 22 2.1
9.0 5.8 18.6 28.6 "6.5 20 1.5
03 5.2 18.8 3L #4.5 2.1 21
9.3 5.6 0.4 324 555 23 1.9
05 6.0 1490 326 85.7 2.1 1.9
0.k 5.2 2.8 32.2 936 23 2.1
10,0 5.8 |99 38 6.0 2.1 1.8
103 6.4 18.0 32.6 871 20 .6
15 64 20.6 334 93.1 2.1 2.1
10,8 6.2 0.2 3.8 £3.4 2.2 2.1
11.0 6.2 20.2 324 O4.5 2.1 1.9
11.3 6.2 9.2 314 Bid 1.9 1.8
11.5 5.6 |1 7.0 33.2 85.2 2.1 2.1
11.8 G0 19.8 354 541 20 1.8
12.3 3.8 15.8 340 B9 2.1 (1
12.5 56 18.6 34.2 3.0 1.9 2.0

(a) Fit a multiple linear regression model using x2, x3, x4,
and x5 as the regressors.

(b) Test for significance of regression using the analysis of
variance with a = 0.05. What are your conclusions?

(¢) Use the model from part (a) to predict pull strength
when x2 = 20, x3 = 30, x4 = 90, and x5 = 2.0.

2.4 An engineer at a semiconductor company wants to
model the relationship between the device gain ZFE(y) and
three parameters: emitter RS (x1), base RS (x2), and
emitter-to-base RS (x3). The data are shown in Table E2.2.

TABLE E2.2 Gain Data for Exercise 2.4
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Xy X3 t3 ¥
Emer RS Base RS E-to-B RS hFE

14.620 22600 700 128,40
15.630 220,00 3.375 52.62
14.620 21740 6,375 1 13.90
15,000} 21N 6,000 98.01
14.506) 226.50 T.625 139.90
15.250 224,10 XL [ 0260
16,120 2MIE0 3.375 48.14
15.130 223.50 6125 105 G0
15.504) 760 5,000 52.68
15.130 X28.50 6,625 11260
15.5(6) 23020 5.750 07.52
16,120 226,50 3.750 59.06
15.130 226,60 6,125 I 11.580
15.630 22560 5.375 Ho0o
15.380 234,00 BRT5 171.90
15,500} 230,00 4,000 iy, 20
14.250 224.30 5000 157.10
14.500) 240,50 10,870 208,40
14.620 2230 7.375 133.40

(a) Fit a multiple linear regression model to the data.
(b) Predict A#FE when x1 = 14.5, x2 = 220, and x3 = 5.0.

(c¢) Test for significance of regression using the analysis of
variance with o = 0.05. What conclusions can you draw?
EXERCISES

2.5 The electric power consumed each month by a
chemical plant is thought to be related to the average
ambient temperature (x1), the number of days in the month
(x2), the average product purity (x3), and the tons of
product produced (x4). The past year’s historical data are
available and are presented in Table E2.3.
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TABLE E2.3 Electric Power Consumption Data for
Exercise 2.5

¥ ¥ X3 X3 &)

240 25 24 91 | (3
236 il 21 Q0 05
200 45 g | B8 110
274 fal) 25 &7 S
1] 4] 25 a1 04
316 72 26 94 99
300 a0 25 87 a7
20 4 25 Hi U]
267 75 24 BE 110
276 fal) 25 a1 1005
258 30 25 Qi 100}
261 35 23 B9 oy

(a) Fit a multiple linear regression model to the data.

(b) Predict power consumption for a month in which x| =
758F, x2 = 24 days, x3 = 90%, and x4 = 98 tons.

2.6 Heat treating is often used to carburize metal parts,
such as gears. The thickness of the carburized layer is
considered an important feature of the gear, and it
contributes to the overall reliability of the part. Because of
the critical nature of this feature, two different lab tests are
performed on each furnace load. One test is run on a
sample pin that accompanies each load. The other test is a
destructive test, where an actual part is cross-sectioned.
This test involved running a carbon analysis on the surface
of both the gear pitch (top of the gear tooth) and the gear
root (between the gear teeth). The data in Table E2.4 are
the results of the pitch carbon analysis test for 32 parts.
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TABLE E2.4 Heat Treating Data for Exercise 2.6

TEMP SOAKTIME SOAKPCT DIFFTIME DIFFPCT PITCH
1650 .58 110 0.25 0,90 0013
1650 (L66 1.10 0.33 (.94 0016
1650 (L66 1.10 033 (.54} 0.015
1650 .66 110 0.33 0.95 0.016
1600 .66 1.15 0.33 100 0.015
1600 (L66 1.15 0.33 1.0 0.016
1650 LOK} 1.1 0.50 (.80 0.014
1650 117 110 0.58 (.80 0.021
1650 117 1.10 0.58 .50 0.018
1650 117 1.10 0.58 (.80 0019
1650 1.17 110 0.58 0,90 0.021
1650 117 110 0.58 0.90 0.019
1650 1.17 1.13 1.58 0.90 0.021
1650 1.20 1.15 1.10 0.80 0.025
1650 200 1.15 1.0 (.80 0.025
1650 2.00 1.10 1.10 (.80 0026
1650 2.20 1.10 1.10 0.80 0.024
1650 220 1.10 1.10 .80 0.025
1650 2.20 1.15 1.10 .80 01024
1650 2.20 (N1 110 (.90 0.025
1650 2.20 1.10 1.10 (.90 0.027
1650) 2.20 (i} 1.50 .90 0,026
1650 300 1.15 1.50 0.80 0,029
1650 3.00 110 1.50 0.70 0,030
1650) 300 1.10 1.50 0.75 0.028
1650 3.00 I.15 1.6 .85 0,032
1650 3.33 (W] 1.50 (L80 0033
1700 4,00 (i} 1.50 .70 0.039
1650 4.00 110 1.50 0,70 0040
1650 400 1.15 1.50 (.85 00035
1700 12.50 1.00 1.50 (.70 0056
1700 18.50 100 1.50 (.70 0.06E

(a) Fit a linear regression model relating the results of the
pitch carbon analysis test (PITCH) to the five regressor
variables.

(b) Test for significance of regression. Use o = 0.05.

2.7 A regression model y =Bo + B1x1 + B2x2 + P3x3 + € has
been fitted to a sample of n = 25 observations. The
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calculated #-ratios Bj/se(Bj), j = 1, 2, 3, are as follows: for
B1, to = 4.82; for B2, to = 8.21; and for B3, 70 = 0.98.

(a) Find P-values for each of the z-statistics.
(b) Using a = 0.05, what conclusions can you draw about
the regressor x3? Does it seem likely that this regressor

contributes significantly to the model?

2.8 Consider the electric power consumption data in
Exercise 2.5.

(a) Estimate o° for the model fit in Exercise 2.5.

(b) Use the #-test to assess the contribution of each
regressor to the model. Using o = 0.01, what conclusions
can you draw?

2.9 Consider the bearing wear data in Exercise 2.1.

(a) Estimate o° for the no-interaction model.

(b) Compute the #-statistic for each regression coefficient.
Using a = 0.05, what conclusions can you draw?

(c) Use the extra sum of squares method to investigate the
usefulness of adding x2 = load to the model that already

contains x1 = oil viscosity. Use a = 0.05.

2.10 Consider the wire bond pull strength data in Exercise
2.3.

(a) Estimate o° for this model.
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(b) Find the standard errors for each of the regression
coefficients.

(¢) Calculate the #-test statistic for each regression
coefficient. Using a = 0.05, what conclusions can you
draw? Do all variables contribute to the model?

2.11 Reconsider the semiconductor data in Exercise 2.4.
(a) Estimate o for the model you have fitted to the data.
(b) Find the standard errors of the regression coefficients.
(¢) Calculate the #-test statistic for each regression
coefficient. Using a = 0.05, what conclusions can you
draw?

2.12 Exercise 2.6 presents data on heat treating gears.

(a) Estimate o° for the model.

(b) Find the standard errors of the regression coefficients.

(¢) Evaluate the contribution of each regressor to the
model using the #-test with o = 0.05.

(d) Fit a new model to the response PITCH using new
regressors x] = SOAKTIME x SOAKPCT and xy =
DIFFTIME x DIFFPCT.

(e) Test the model in part (d) for significance of regression

using a = 0.05. Also calculate the #-test for each regressor
and draw conclusions.
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(f) Estimate o° for the model from part (d), and compare
this with the estimate of o obtained in part (b) above.
Which estimate is smaller? Does this offer any insight
regarding which model might be preferable?

2.13 Consider the wire bond pull strength data in Exercise
2.3.

(a) Find 95% confidence intervals on the regression
coefficients.

(b) Find a 95% confidence interval on mean pull strength
when x2 = 20, x3 = 30, x4 =90, and x5 = 2.0.

2.14 Consider the semiconductor data in Exercise 2.4.

(a) Find 99% confidence intervals on the regression
coefficients.

(b) Find a 99% prediction interval on AFE when x1 = 14.5,
x2 =220, and x3 = 5.0. (¢) Find a 99% confidence interval
on mean AFE when x1 = 14.5, x2 = 220, and x3 = 5.0.

2.15 Consider the heat-treating data from Exercise 2.6.

(a) Find 95% confidence intervals on the regression
coefficients.

(b) Find a 95% interval on mean PITCH on TEMP = 1650,
SOAKTIME = 1.00, SOAKPCT = 1.10, DIFFTIME
=1.00, and DIFFPCT = 0.80.
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2.16 Reconsider the heat treating in Exercise 2.6 and 2.12,
where we fit a model to PITCH using regressors x| =
SOAKTIME x SOAKPCT and x» = DIFFTIME x
DIFFPCT.

(a) Using the model with regressors x1 and x2, find a 95%
confidence interval on mean PITCH when SOAKTIME =
1.00, SOAKPCT = 1.10, DIFFTIME = 1.00, and DIFFPCT
=0.80.

(b) Compare the length of this confidence interval with the
length of the confidence interval on mean PITCH at the
same point from Exercise2.15 part (b), where an additive
model in SOAKTIME, SOAKPCT, DIFFTIME, and
DIFFPCT was used. Which confidence interval is shorter?
Does this tell you anything about which model is
preferable?

2.17 For the regression model for the wire bond pull
strength data in Exercise 2.3.

(a) Plot the residuals versus ¥ and versus the regressors
used in the model. What information is provided by these
plots?

(b) Construct a normal probability plot of the residuals.
Are there reasons to doubt the normality assumption for

this model?

(c) Are there any indications of influential observations in
the data?

2.18 Consider the semiconductor AFE data in Exercise 2.4.
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(a) Plot the residuals from this model versus ¥. Comment
on the information in this plot.

(b) What is the value of R? for this model?
(c¢) Refit the model using In AFE as the response variable.

(d) Plot the residuals versus predicted In AFE for the
model in part

(c) above. Does this give any information about which
model is preferable?

(e) Plot the residuals from the model in part (d), versus the
regressor x3. Comment on this plot.

(f) Refit the model to In AFFE using x1, x2, and 1/x3 as the
regressors. Comment on the effect of this change in the

model.

2.19 Consider the regression model for the heat-treating
data in Exercise 2.6.

(a) Calculate the percentage of variability explained by
this model.

(b) Construct a normal probability plot for the residuals.
Comment on the normality assumption.

(c) Plot the residuals versus ¥, and interpret the display.

(d) Calculate Cook’s distance for each observation, and
provide an interpretation of this statistic.
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2.20 In Exercise 2.12 we fitted a model to the response
PITCH in the heat treating data of Exercise 2.6 using new
regressors x] = SOAKTIME x SOAKPCT and xy =
DIFFTIME x DIFFPCT.

(a) Calculate the R? for this model, and compare it with the
value of R? from the original model in Exercise 2.6. Does
this provide some information about which model is
preferable?

(b) Plot the residuals from this model versus ¥ and on a
normal probability scale. Comment on model adequacy.

(¢) Find the values of Cook’s distance measure. Are any
observations unusually influential?

2.21 An article entitled “A Method for Improving the
Accuracy of Polynomial Regression Analysis” in the
Journal of Quality Technology (1971, pp. 149-155)
reported the following data on y = ultimate shear strength
of a rubber compound (psi) and x = cure temperature (°F).

y 770 BOO  B40  BI0 T35 640 590 560
x 280 284 292 205 298 305 308 315

(a) Fit a second-order polynomial to these data.
(b) Test for significance of regression, using o = 0.05.

(c¢) Test the hypothesis that B11 =0, using a = 0.05.
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(d) Compute the residuals and use them to evaluate model
adequacy.

(e) Suppose that the following additional observations are
available: (x = 284, y = 815), (x = 295, y = 830), (x = 305,
y = 660), and (x = 315, y = 545). Test the second-order
model for lack of fit.

2.22 Consider the following data, which result from an
experiment to determine the effect of x = test time in hours
at a particular temperature to y = change in oil viscosity:

¥y —442 —139 —-1.55 —1.89 —-243 -315 —405 -515 —643 -7.89
x 025 050 0795 1.00 1.25 1.50 1.75 200 225 250

(a) Fit a second-order polynomial to the data.
(b) Test for significance of regression, using o = 0.05.
(c¢) Test the hypothesis that $11 = 0, using a = 0.05.

(d) Compute the residuals and use them to evaluate model
adequacy.

2.23 When fitting polynomial regression models we often
subtract x from each x-value to produce a centered
regressor x'=x—i. This reduces the effects of
dependences among the model terms and often leads to
more accurate estimates of the regression coefficients.
Using the data from Exercise 2.21, fit the model

Y= Bt Bixt Bl + & Uge the results to estimate the
coefficients in the uncentered model y =Bo + Bix + B11x2
+e
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2.24 Suppose that we use a standardized variable
x'=(x—%)/s. where sy is the standard deviation of x, in
constructing a polynomial regression model. Using the
data in Exercise 2.21 and the standardized variable
approach, fit the model ¥ = B + Bix'+Bi (') + e,

(a) What value of y do you predict when x = 2858°F?

(b) Estimate the regression coefficients in the
unstandardized model y = Bo + B1x + B1 13 e,

(¢) What can you say about the relationship between SSg
and R for the standardized and unstandardized models?

(d) Suppose that ¥ = (¥ =~ /5 is used in the model along
with «. Fit the model and comment on the relationship
between SSg and R” in the standardized model and the
unstandardized model.

2.25 An article in the Journal of Pharmaceuticals Sciences
(vol. 80, 1991, pp. 971-977) presents data on the observed
mole fraction solubility of a solute at a constant
temperature to the dispersion, dipolar, and hydrogen
bonding Hansen partial solubility parameters. The data are
in Table E2.5, where y is the negative logarithm of the
mole fraction solubility, x1 is the dispersion Hansen partial
solubility, x2 is the dipolar partial solubility, and x3 is the
hydrogen bonding partial solubility.

TABLE E2.5 Data for Exercise 2.25
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Ohs ¥ Xy Xa X3

I 0,22200 1.3 £1.10 0.0
2 (1.39500 87 0.0 0.3
3 0.42200 £.8 0.7 1.0
4 043700 8.1 4.0 0.2
5 (. 42800 Q.0 0.3 .0
6 046700 8.7 1.5 28
7 (44400 9.3 2.1 1.0
8 (,37800 7.6 5.1 34
Q9 (149400 100 (.0 0.3
1} 0, 45600 %4 3.7 4.1
I 0.45200 9.3 36 20
12 0.1 1200 1.7 28 7.1
13 (0. 43200 9.8 4.2 2.0
14 0, 1000 7.3 25 6.8
15 (L2320 85 20 b
16 (130600 9.5 25 5.0
17 0LO9230 7.4 25 7.8
1% 0.1 1600 18 28 7.7
19 (07640 1.7 a0 5.0
20 (43900 10.3 1.7 4.2
21 0L09440 7.8 i3 8.5
22 0.1 1700 7.1 39 .6
23 0L07260 7.7 4.3 9.5
24 004120 7.4 .0 10.9
25 0.25100 1.3 20 5.2
26 L2 1.6 7.8 0.7
(a) Fit the model

¥=Bo+ Bixy + Baxs + Baxs + Bravixa + BraXiXs + Boaxaxs + Brixt + Baaxi + Bl + &
(b) Test for significance of regression, using o = 0.05.
(c) Plot the residuals, and comment on model adequacy.

(d) Use the extra sum of squares method to test the
contribution of the second-order terms, using o = 0.05.
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2.26 Below are data on y = green liquor concentration (g/
liter) and x = paper machine speed (ft/min) from a kraft
paper machine (the data were read from a graph in an
article in the Tappi Journal, March, 1986).

y 160 15.8 15.6 15.5 14.8 14.0 13.3 13.0 12.0 11.0
x 1700 1720 1730 1740 1750 1760 1770 1780 1790 1795

(a) Fit the model y = Bo + Pi1x + B2x2 +¢ using least
squares.

(b) Test for significance of regression using o = 0.05.
What are your conclusions?

(c) Test the contribution of the quadratic term to the
model, over the contribution of the linear term, using an
F-statistic. If a = 0.05, what conclusion can you draw?

(d) Plot the residuals from this model versus Y. Does the
plot reveal any inadequacies?

(e) Construct a normal probability plot of the residuals.
Comment on the normality assumption.

2.27 Consider a multiple regression model with &
regressors. Show that the test statistic for significance of
regression can be written as

R* [k

Fy = :
CTU-R)/in—k—1)
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Suppose that n =20, k =4, and R*=0.90.1fa = 0.05, what
conclusion would you draw about the relationship between
y and the four regressors?

2.28 A regression model is used to relate a response ytok
= 4 regressors. What is the smallest value of R? that will
result in a significant regression if a = 0.05? Use the
results of the preV10us exercise. Are you surprised by how
small the value of R? is?

2.29 Show that we can express the residuals from a
multiple regression model as

e=(I—-H)y
where H = XiX'X) 'X".

2.30 Show that the variance of the ith residual e¢; in a
multiple regression model is 02(1 -hij) and that the
covariance between e; and ejis - Gzhzj, where the 4s are the
elements of H = X(X'X)" Ixr.

2.31 Consider the multiple linear regression model y = X
+¢. If b denotes the least squares estimator of 3, show that
b =B + Re where R = X(X'X)" Ix,

2.32 Constrained least squares: Suppose we wish to find
the least squares estimator of B in the model y = Xp + ¢
subject to a set of equality constraints, say TP = ¢. Show
that the estimator is

b, = bX'X)"'T'[TX'X)"'T'] ' (c — Th)
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where b = X(X’X)'1 Xly.
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3
TWO-LEVEL FACTORIAL DESIGNS
3.1 INTRODUCTION

Factorial designs are widely used in experiments involving
several factors where it is necessary to investigate the joint
effects of the factors on a response variable. By joint factor
effects, we typically mean main effects and interactions. A
very important special case of the factorial design is that
where each of the k factors of interest has only two levels.
Because each replicate of such a design has exactly ok
experimental trials or runs, these designs are usually called
2F factorial designs. These designs are the subject of this
chapter.

The 2* factorial designs are very important in response
surface work. Specifically, they find applications in three
areas:

1.4 2% design (or a fractional version discussed in the next
chapter) is useful at the start of a response surface study
where screening experiments should be performed to
identify the important process or system variables.

2.4 2% design is often used to fit a first-order response
surface model and to generate the factor effect estimates

required to perform the method of steepest ascent.

3. The 2% design is a basic building block used to create
other response surface designs. For example, if you
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augment a 22 design with axial runs and center points as in
Fig. 2.8 of Chapter 2, then a central composite design
results. As we will subsequently see, the central composite
design is one of the most important designs for fitting
second-order response surface models.

3.2 THE 22 DESIGN

The simplest design in the 2¥ series is one with only two
factors, sagf A and B, each run at two levels. This design is
called a 2” factorial design. The levels of the factors may
be arbitrarily called “low” and ‘“high.” These two levels
may be quantitative, such as two values of temperature or
pressure; or they may be qualitative, such as two
machines, or two operators. In most response surface
studies the factors and their levels are quantitative.

As an example, consider an investigation into the effect of
the concentration of the reactant and the feed rate on the
viscosity of product from a chemical process. Let the
reactant concentration be factor 4, and let the two levels of
interest be 15% and 25%. The feed rate is factor B, with
the low level being 20 Ib/hr and the high level being 30 1b/
hr. The experiment is replicated four times, and the data
are as follows:

- WViscosily
Factor-Level E

Combination I I 111 v Totad

A low, B low 145 148 147 140 580
A high, B low 158 152 55 152 617
A low, B high 135 138 141 139 553
A high, £ high 150 152 |46 149 597
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The four factor-level or treatment combinations in this
design are shown graphically in Fig. 3.1. By convention,
we denote the effect of factor by the same capital Latin
letter. That is, 4 refers to the effect of factor A, B refers to
the effect of factor B, and AB refers to the AB interaction.
In the 2° design the low and high levels of 4 and B are
denoted by — and +, respectively, on the A- and B-axes.
Thus, 2 on the A-axis represents the low level of
concentration (15%), and p represents the high level
(25%). Similarly, — on the B-axis represents the low level
of feed rate, and + denotes the high level.

The four factor-level combinations in the design can also
be represented by lowercase letters, as shown in Fig. 3.1.
We see from the figure that the high level of any factor at a
point in the design is denoted by the corresponding
lowercase letter and that the low level of a factor at a point
in the design is denoted by the absence of the
corresponding letter. Thus, a represents the combination of
factor levels with A at the high level and B at the low level,
b represents A at the low level and B at the high level, and
ab represents both factors at the high level. By convention,
(1) is used to denote the run where both factors are at the
low level. This notation is used throughout the 2K series.

Figure 3.1 The 2? design.|
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High b= 5353 ab = 597
(30 Ibhe) * -7

Faad rate, B

Low i
(20 Io/hn) (1} = 580 gm617

B *
Low (15%F High {25%)

Reaclant conceniration, A

The average effect of a factor (or the main effect) is
defined as the change in response produced by a change in
the level on that factor averaged over the levels of the
other factor. Also the symbols (1), a, b, and ab now
represent the totals of all » replicates taken at the points in
the design, as illustrated in Fig. 3.1. The formulas for the
effects of 4, B, and AB may be easily derived. The main
effect of 4 can be found as the difference in the average
response of the two points on the right-hand side of the
square in Fig. 3.1 (call this average ¥ 4+ , because it is the
average response at the points where A4 is at the high level)
and the two points on the left-hand side (or ¥4 ). That is,

A=Yp — ¥4
B ab+a b+(1)

2n 2n

1
G.D) = Z—H[uh +a—b—(1)]

The main effect of factor B is found as the difference
between the average of the response at the two points on
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the top of the square ( YB+ ) and the average of the
response at the two points on the bottom ( ¥B- ), or

B=yg —¥g

_u!;+h_cr+[l]l
- 2n 2n

|
(32) =,}—”[ﬂh—|—h— a—(1)]

Finally, the interaction effect 4B is the average of the
responses on the right-to-left diagonal points in the square
[ab and (1)] minus the average of the responses on the
left-to-right diagonal points (a and b), or

ab+(1) a+b
AB = -
2n n

1
(33) =-j;;[ﬂh+[1]—u—h]

Using the example data in Fig. 3.1, we may estimate the
effects as

I
2(4)

A=

(597 + 617 — 553 — 580) = 10.125

1
B =——(597 + 553 — 617 — 580) = =5.875
2{4}{ )

I
= ——(5¢C i == —553)=0.
AB 2[4}{53'? + 580 — 617 — 553) = 0.875
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The main effect of A (reactant concentration) is positive;
this suggests that increasing 4 from the low level (15%) to
the high level (25%) will increase the viscosity. The main
effect of B (feed rate) is negative; this suggests that
increasing the feed rate will decrease the viscosity. The
interaction effect appears to be small relative to the two
main effects.

In many experiments involving 2k designs, we will
examine the magnitude and direction of the factor effects
to determine which variables are likely to be important.
The analysis of variance can generally be used to confirm
this interpretation. In the 2k design, there are some special,
efficient methods for performing the calculations in the
analysis of variance.

Consider the sums of squares for 4, B, and 4B. Note from
Equation 3.1 that a contrast is used in estimating A4,
namely,

(3.4) Contrasty = ab +a — b — (1)

We usually call this contrast the total effect of 4. From
Equations 3.2 and 3.3, we see that contrasts are also used
to estimate B and AB. Furthermore, these three contrasts
are orthogonal. The sum of squares for any contrast is
equal to the contrast squared divided by the number of
observations in each total in the contrast times the sum of
the squares of the contrast coefficients. Consequently, we
have

S8, = [ab+a—b— (]
(3.5) nx4
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[ab+ b —a— (D))

(3.6) = nx4
and
[ab+ (1) — a — b)*
Sdap =
(3.7) = n x4

as the sums of squares for 4, B, and 4B.

Using the data in Fig. 3.1, we may find the sums of the
squares from Equations 3.5, 3.6, and 3.7 as

(81)*
= — 410.062
S84 @) 0.0625
(47)%
= — 138.062
SSg @) 38.0625
and
(7)?
&S8ap = m = 3.0625

The total sum of squares is found in the usual way; that is,

S5t :ZZZ"M e

(3.9) i=1 j=1 k=

153



In general, SST has 4n — 1 degrees of freedom. The error
sum of squares, with 4(n — 1) degrees of freedom, is
usually computed by subtraction as

(39) SSL = SE; = .'_'-‘-IS‘.I[ — 55{; — SS_.',H

For the data in Fig. 3.1, we obtain

= 334,527.0000 — 344,275.5625 = 651.4375

and

S85g = 857 — 554 — 555 — SSan
= 651.4375 — 410.0625 — 138.0625 — 3.0625
= 100.2500

using SS4, SSB, and SS4p computed previously. The
complete analysis of variance is summarized in Table 3.1.
Both main effects are statistically significant, and the
interaction is not significant. This confirms our initial
interpretation of the data based on the magnitudes of the
factor effects.

TABLE 3.1 Analysis of Variance for Data in Fig. 3.1
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Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fo P-Value
A 410.0625 | 410.0625 49.08 142 % 107%
& 138.0625 1 138.0625 16.53 00016

AB 30625 | 3.0625 0.37 0.5562
Error 100L2500 12 83542

Total 651.4375 15

It is often convenient to write down the factor level or
treatment combinations in the order (1), a, b, ab, as in the
column labeled “treatment combination” in Table 3.2. This
is referred to as standard order. The columns labeled A
and B in this table contain the + and — signs corresponding
to the four runs at the corners of the square in Fig. 3.1.
Note that the contrast coefficients for estimating the
interaction effect are just the products of the corresponding
coefficients for the two main effects. The column labeled /
in Table 3.2 represents the total or average of all of the
observations in the entire experiment. The column
corresponding to / has only plus signs and is sometimes
called the identity column. The row designators are the
treatment combinations. To find the contrast for estimating
any effect, simply multiply the signs in the appropriate
column of the table by the corresponding treatment
combination and add. For example, to estimate A, the
contrast is —(1) + a — b + ab, which agrees with Equation
3.1

TABLE 3.2 Signs for Calculating Effects in the 2?
Design
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Factonal Effect

Treatment Combination ! A B AR

il

€l - i — =
b }

aly t

The Regression Model 1t is easy to convert the effect
estimates in a 2¥ factorial design into a regression model
that can be used to predict the response at any point in the
space spanned by the factors in the design. For the
chemical process experiment, the first-order regression
model is

(3.10)Y = Bo+ Bixi + Boxa + &

where x1 is the coded variable that represents the reactant
concentration, x2 is the coded variable that represents the
feed rate, and the fs are the regression coefficients. The
relationship between the natural variables, the reactant
concentration and the feed rate, and the coded variables is

_ Conc — (Concyoy, + Concpign)/2
- (Concpigh — Concjow)/2

Xl

and

_ Feed — (Feed,oy, + Feedygn) /2
"~ (Feedyig — Feediow)/2

When the natural variables have only two levels, this
coding will produce the £ 1 notation for the levels of the
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coded variables. To illustrate this for our example, note
that

_ Conc — (15 + 25)/2
=T mE=an

- Conc — 20
B 5

Thus, if the concentration is at the high level (Conc =
25%), then x1 = +1, whereas if the concentration is at the
low level (Conc = 15%), then x1 = —1. Furthermore,

Feed — (20 4 30)/2
(30 — 20)/2

_ Feed — 25
= 5

Xy =

Thus, if the feed rate is at the high level (Feed = 30 Ib/hr),
then x2 = +1, whereas if the feed rate is at the low level
(Feed =20 Ib/hr), then x2 = —1.

The fitted regression model is

) 10.125 —5.875
_r=14ﬁ.ﬁ-8?5+( j ).n-l—( - ).x:

= 146.6875 + 5.0625x; — 2.9375x,

where the intercept is the grand average of all 16
observations, and the regression coefficients b1 and b2 are
one-half the corresponding factor effect estimates. The
reason that the regression coefficient is one-half the effect
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estimate is that a regression coefficient measures the effect
of a unit change in x on the mean of y, and the effect
estimate is based on a two-unit change (from —1 to +1).
This model explains about 84% of the variability in
viscosity, because

-

R = 55111(1:&! .f'r-st{a"f — EIE“-'-"\ T SSH}IISS]"
= (410.0625 + 138.0625)/651.4375
= 548.1250/651.4375 = (0.8414

This regression model is really a first-order response
surface model for the process. If the interaction term in the
analysis of variance (Table 3.1) were significant, the
regression model would have been

¥=Bo+ Bixa + Boxi + Bpxixa + &

and the estimate of the regression coefficient f12 would be
one-half the AB interaction effect, or b2 = 0.875/2.
Clearly this coefficient is small relative to 1 and b2, and
so this is further evidence that interaction contributes very
little to explaining viscosity in this process.

Regression Coefficients are Least Squares Estimates The
regression coefficient estimates obtained above are least
squares estimates. To verify this, write out the model in
Equation 3.10 in matrix form, that is,

v=Xp+e

where

158



(1457 o = Mgy ]
148 TR [P £
147 . =1 =] £
140 1 -1 =1 £4
‘ESS 1 ] —1 £5
152 1 = £6
155 11 =1 &
Bo
152 . £x
Sl 2=k gk "3':[13'}' =l
]33 1 -1 1 EE 10
141 1 -1 1 £11
]39 1 -1 1 £12
15” 1 1 1 £13
]52 1 1 1 £14
146 11 1 £1s
| 149 | B 5 1l | 815 |

The least squares estimates of fo, f1, and f2 are found
from

b= (X'X)"'X'y
or
bo 6 0 07 '[2347
byl=]0 16 0 81
b 0 0 16 —47
o[
—47

where I3 is a 3 x 3 identity matrix. This last expression
reduces to
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by 2347/16
bl =] 81/16
b, —47/16

or bo = 2347/16 = 146.6875, b1 = 5.0625, and by =
—2.9375. Therefore, the least squares estimates of 1 and
2 are exactly one-half of the factor effect estimates. This
will always be the case in any 2* factorial design with
coded factors between —1 and 1.

Residual Analysis 1t is easy to compute the residuals from
a 2% design via the regression model. For the chemical
process experiment, the regression model is

10.125 5.875
v = 146.6875 + ( 3 -),1'| - (T-).'l:-_r

This model can be used to generate the predicted values of
y at the four points in the design. For example, when the
reactant concentration is at the low level (x; =—1) and the
feed rate is at the low level (x2 = —1) the predicted
viscosity is

10.125 B75
146.6875 + ( : ){—I}— (57)“”

144.563

el
Il

There are four observations at this treatment combination,
and the residuals are
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e = 145 — 144.563 = 0.438
€ = 148 — 144.563 = 3.438
e3 = 152 — 144.563 = 2.438
€y = 140 — 144.563 = —4.563

The remaining predicted values and residuals are
calculated similarly. For the high level of the reactant
concentration and the low level of the feed rate:

10.125 —5.875
j-:l46.53?5+( > ){+n+( 5 ){—H

= 154.688

and

e; = 158 — 154.688 = —3.688
e = 152 — 154 688 = —2.688
er = 155 — 154.688 = —0.313
ex = 152 — 154.688 = —2.688

For the low level of the reactant concentration and the high
level of the feed rate:

10.125 —5.875
_'E=E46.63T5+( 3 ){-—I]+( 5 ){+I]|

= 138.688

and
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&y
€10
€11

c12

= 135 — 138.688 =
— 138 — 138.688 =
— 141 — 138.688 =
— 139 — 138.688 =

—3.688
—(0.688
2.313
0.313

Finally, for the high level of both factors:

l{I —

and

€13
€14
€15

€16

146.6875 + (
148.812

= 150 — 148.812 =
— 152 — 148.812 =
— 146 — 148.812 =
— 149 — 148.812 =

10.125 | —5.875 o
2 (+1)+ 3 (+1)

1.188
3.188
-2.813
0.188

Figure 3.2 presents a normal probability plot of these
residuals, and Fig. 3.3 is a plot of the residuals versus the
predicted values ¥. These plots appear satisfactory, so we
have no reason to suspect problems with the validity of our
conclusions.

Figure 3.2 Normal probability plot of the residuals from
the chemical process experiment.
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Figure 3.3 Plot of residuals versus predicted viscosity for
the chemical process experiment.
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The Response Surface Figure 3.4a presents a
three-dimensional response surface plot of viscosity, based
on the first-order model using reactant concentration and
feed rate as the regressors, and Fig. 3.4b is the contour
plot. Because the model is first-order, the fitted response
surface is a plane. Based on examination of this fitted
surface, it is clear that viscosity increases as reactant
concentration increases and feed rate decreases. Often a
fitted surface such as this can be used to determine an
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appropriate direction of potential improvement for a
process. A formal method for doing this, called the
method of steepest ascent, will be introduced in Chapter

5.

Figure 3.4 (a) Response surface plot of viscosity from the
chemical process experiment. (b)The contour plot.
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1.00
20,
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20.00~15.00

1667 1833 2000 2167
A {eorcestiaton)

2333 2500

TABLE 3.3 Design Expert Output for the 2? Factorial

Example
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“moosity

A for Sebected Factorial Masdel
warance fable [Pariial sum of squares)

Sum of Squares DF Mean Squan: F-Valoe Proh = F
55019 3 18373 L <0000
A10.06 I 410,06 49,08 << (L0001
13806 1 13806 16,33 [T
106 I 306 037 0.5562
10025 LA 835
65144 [H]
189 R-Squared 05401
146,60 Addj R-Squared 0,%076
197 Pred R-Soguansd 07264
178.22 Adey Precision 117
Coefiichent Estbimane DF Saandand Ermor 95% 1 Low 93% C1 High VIF
14669 1 072 145,11 148,26
- 506 1 072 349 fibd 100
-1 1 072 -4.31 -1.3% 140
044 1 072 =L14 01 La0
ek
lEsposity
for Sebecred Factorial Mode!
vartance tablde |Parial sam of squeres]
Sum of Sqmanes DF Mean Squane F-Viiloe Peob = F
a3 2 27406 ERR <0000}
RATEL ] 1 410.06 5160 < (L0001
[ELEL G 1 13806 I7.37 0,000 1
[ 3 185
ir 306 1 306 07 0.5562
w 100,25 12 135
GBS 144 15
282 B-Squarcd 088148
Mean 14669 Adj R-Souared 08170
C.v 1%z Fred K-Sauarned 075495
PRESS | 5650 Aaded) Prevision 1xi07
Factar Coefflchents Estimate oF Stamdard Error 5% O Lo wS5% CI High VIF
Imtevcept Lt i (i) 14516 4521
A-Reactant C 506 I L] 154 6,59 1.0t
B-Feed Ruie =294 1 0 =446 =141 100
Fanal Bquation in Terms of Coded Factors:
Vinposity =
+ 146,60
504G A
1948
Final Equation in Terms of Acual Factors:
Viscosily =
140, 12500
+ LA 25 * Reactam C
— 58730 *Focdl Rate
Diagnostics Case Statistics
Run Oxrdder Seanlard Owder Actual Valee  Prdicted Valoe Residual Leverage Srudent Resbdua
1 1 14540 144,56 44 0138 19 ]
16 2 14540 144,56 344 0,158 1.353
4 k) 14700 144,56 244 0,=8 0959
5 4 140400 14456 —4.56 0,158 —1.796
3 5 15500 154.69 i 0158 1304
i (] 15240 154.69 =269 [INELY = 1058
: ] 7 155400 154.69 ni 0158 ®123
12 8 152,00 15409 ] 0,1x8 = lL.Osg
@ 13300 135069 =308 0,158 =145
14 1] 13800 13869 =064 0,188 vl |
7 i 14100 13869 pi] | 0158 @910
2 2 13500 13869 o3 0,58 123
15 13 150,00 14581 Lig 0,188 467
13 14 15200 1581 18 0,pu8 1.254
L] 14 146,00 1HERI —181 0,188 =1.107
L 6 14500 14881 AL 0138 LLLEr Y
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Computer Output There are several software packages that
will construct experimental designs and analyze the
resulting data. The output from Design-Expert is shown in
Table 3.3. In the upper portion of the table an analysis of
variance for the full model is presented. The format of this
presentation is slightly different from the analysis of
variance in Table 3.1. The source called the “model” is an
analysis of variance for the full model using

SSmodet = 54 + 555 + SSas
= 410.06 + 138.06 + 3.06
= 551.19

Thus the statistic

‘wS]]HJ(!L'] _ 183.73 _

_ 21.99
MSg 8.35

F[]z

is testing the hypotheses

Hy: By =B =Bp=0
H,: at least one 3 # (.

Because F{ is large, we conclude that at least one variable
has a nonzero effect. Then each individual factorial effect
is tested for significance using the F-statistic (as in Table
3.1).

The lower portion of Table 3.3 shows the analysis of
variance summary for the reduced model; that is, the
model with the nonsignificant 4B interactions removed.
The error or residual sum of squares is now composed of
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a pure error component arising from the replicate runs
and a lack-of-fit component corresponding to the AB
interaction. The regression model in terms of both actual
and coded variables is given, along with confidence
intervals on each model coefficient, a summary of several
regression diagnostics from Chapter 2, and the model
residuals. The column labeled “Outlier #” is R-student.

3.3 THE 23 DESIGN

Suppose that three factors, 4, B, and C, each at two levels,
are of interest. Then the design is called a 23 factorial
design, and the eight treatment combinations can be
displayed graphically as a cube, as shown in Fig. 3.5a.
Extending the notation discussed in Section 3.2, we write
the treatment combinations in standard order as (1), a, b,
ab, ¢, ac, bc, and abc. Remember that these symbols also
represent the total of all n observations taken at that
particular treatment combinations.

Figure 3.5 The 23 factorial design.

(a) Geometric view (b} The design matrix
be abe
1
1
High + —fac __ Factor
© | Aun A B Cc
5 ol ab_~+ High - N L
-
E L / 0‘$ 2 + - "
I" ‘# 3 = * =
Low = = Low « 4 * - -
m a 5 - - -
— & + = *
o . 7 - + +
Low High
Eactor A 8 * - *

Using the “+ and —” notation to represent the high and low
levels of each factor, we may list the eight runs in the 23
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design in the tabular format shown in Fig. 3.5b. This is
usually called the design matrix.

The “+ and —” notation is often called the geometric
notation. While other notational schemes could be used,
we prefer the geometric notation because it facilitates the
translation of the analysis of variance results into a
regression model. This notation is widely used in response
surface methodology.

There are seven degrees of freedom between the eight
treatment combinations in the 2° design. Three degrees of
freedom are associated with the main effects of 4, B, and
C. Four degrees of freedom are associated with
interactions: one each with AB, AC, and BC, and one with
ABC.

Consider estimating the main effects. First, consider
estimating the main effect of 4. This effect estimate can be
expressed as a contrast between the four treatment
combinations in the right face of the cube in Fig. 3.6a
(where A is at the high level) and the four in the left face
(where A4 is at the low level). That is, the 4 effect is just the
average of the four runs where 4 is at the high level (Ya+ )
minus the average of the four runs where 4 is at the low
level (¥A-), or

A=Y4: — V4

a+ab+ac+abe ()+b+c+ be
4n 4n

This equation can be rearranged as
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= —[a+ab+ac+abc—(1)—b—c— bc]

A
(3.11) dn

Figure 3.6 Geometric presentation of contrasts
corresponding to the main effects and interaction in the 23
design, (a) Main effects, (b) Two-factor interactions, (c)
Three-factor interaction.

& = 4 funs
Qo == funs

In a similar manner, the effect of B is the difference in
averages between the four treatment combinations in the
front face of the cube and the four in the back. This yields
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B=yg — ¥

1
(3.12) = [0+ ab + bc + abe — (1) — a — ¢ — ac]

The effect of C is the difference in averages between the
four treatment combinations in the top face of the cube and
the four in the bottom; that is,

C =Y — Ve

|
G.13) — 1—[:' +ac+bec+abc—(1)—a—b— ab]
. 4n

The two-factor interaction effects may be computed easily.
A measure of the 4B interaction is the difference between
the average A effects at the two levels of B. By convention,
one-half of this difference is called the AB interaction. This
is expressed symbolically as follows:

i Average A Effect

High {+) labe — be) + {alb — b)
n

Low (—) (e — o)+ Ja — (13
2n

Difference agbe=betab=b—gc4+c—a+ (1)
2n

Because the AB interaction is one-half of this difference,
we have

_labc —bc+ab—b—ac+c—a+(1))
(3.14) " 4n
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We can write Equation 3.14 as follows:

- abec+ab+c+(1) be+b+ac+a
B dn dn

AB

In this form, the AB interaction is easily seen to be the
difference in averages between runs on two diagonal
planes in the cube in Fig. 3.6b. Using similar logic and
referring to Fig. 3.6b, the AC and BC interactions are

I
C=—I(1)—a+b—ab—c+ac— bc+ abe]

A
(3.15) 4n
and
1
(3.16) b= zﬁl{ 1)+a—b—ab—c—ac+bc+abc)

The ABC interaction is defined as the average difference
between the AB interaction for the two different levels of
C. Thus,

(3.17)
ABC = %{]uhc — bc] — [ac — ¢] — [ab — b] + [a — (1)]}
1

|
= [abc —bc —ac+c—ab+ b +a—(1)]

As before, we can think of the ABC interaction as the
difference in two averages. If the runs in the two averages
are isolated, they define the vertices of the two tetrahedra
that make up the cube in Fig. 3.6c.
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In Equations 3.11 through 3.17, the quantities in brackets
are contrasts in the treatment combinations. 4 table of plus
and minus signs can be developed for the contrasts and is
shown in Table 3.4. Signs for the main effects are
determined by associating a plus with the high level and a
minus with the low level. Once the signs for the main
effects have been established, the signs for the interaction
columns can be obtained by multiplying the appropriate
preceding columns, row by row. For example, the signs in
the AB column are the products of the 4 and B column
signs in each row. The contrast for any effect can be
obtained from this table.

TABLE 3.4 Algebraic Signs for Calculating Effects in
the 2° Design

Factorial Effect

Treatment Combination ! A B AR [ AC BC ABC

i1 i -

@

b ¥ - } - - 'l =

ab & } L 4 - = =

P

ac + 4 - - i i = =
b

i

Table 3.4 has several interesting properties: (1) Except for
column /, every column has an equal number of plus and
minus signs. (2) The sum of the products of the signs in
any two columns is zero. (3) Column / multiplied by any
column leaves that column unchanged. That is, / is an
identity element. (4) The product of any two columns
yields a column in the table. For example, 4 x B = 4B, and

ABxB=AB*=A
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We see that the exponents in the products are formed by
using modulus 2 arithmetic. (That is, the exponent can
only be zero or one; if it is greater than one, it is reduced
by multiples of two until it is either zero or one.) All of
these properties result from the fact that the 23 (indeed all
2k designs) is an orthogonal design.

Sums of squares for the effects are easily computed,
because each  effect  has a  corresponding
single-degree-of-freedom contrast. In the 23 design with n
replicates, the sum of squares for any effect is

99— (contrast)”
(3.18) 8n

Example 3.1 The Plasma Etch Experiment An electrical
engineer is investigating a plasma etching process used in
semiconductor manufacturing. He is studying the effects of
three factors—anode—cathode gap (4), C2F¢ gas flow rate
(B), and power applied to the cathode (C)—on the etch
rate. Each factor is run at two levels. Two replicates of a 23
factorial design are shown in Table 3.5, along with the
resulting response variable values. The design is shown
graphically in Fig. 3.7.

Figure 3.7 The 23 design for Example 3.1.
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Using the totals shown in Table 3.5 for each of the eight
runs in the design, we may calculate the effect estimates as
follows:

A=4l[a—{I}+ﬂb—b+ar—t‘+abr—bc]
1

1
=~8-[9]6- 647 + 880 — 834 + 1221 — 1687 + 1190 — 1640]

1
=3 —601] = —-75.125

1
B=E[b+ab + be+abc—(1)—a—c¢c—ac]

=%|334+83ﬂ+ 1640 + 1190 — 647 — 916 — 1687 — 1221]

1
- —g[??:] = 9.125

TABLE 3.5 The 23 Factorial Design for Example 3.1
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Etch Rate (A /min)

A (Gap) B (CsF, Flow) C (Power) Replicate 1 Replicate 1 Tonals
=1 -1 =1 247 400 (1 =647
I -1 -1 470 M6 a="016
=1 | —= | 429 405 h=834
1 1 ~] 435 5 ab = &30
-1 -1 1 837 &350 = 1687
1 =1 1 551 670 ac= 1221
=1 1 1 775 865 e = 1640
I | 1 660 530 abe = 1190

C:dllc+ac+br+ﬁbr—{i}—a—b—ab]
n

1
= §{I63?+ 1221 + 1640 + 1190 — 647 — 916 — 834 — 886]

= %{24&] = 307.625

AB=$[ab—a—b+(1)+abc—bc—ac+c:]

I
= 5880 — 916 — 834 + 647 + 1190 — 1640 — 1221 + 1687]

:%[—20?1 = —25.875

ACzﬁ[tl)haﬁhb—ab—c+ac~bc+abc]
=%[64?—916+834 — 880 — 1687 + 1221 — 1640 + 1190]
=%[—123l] = —153.875
BC=$[(l)+a—b—ab—-:'—ac-l-.‘sc+abc]
=%[64? + 916 — 834 — 880 — 1687 — 1221 + 1640 + 1190]

1
= g[-2291 = ~28.625
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and

ABC =4L[abc' —bc—ac+c—ab+b+a—(1)]
n

1
=§{I|9[}— 1640 — 1221 + 1687 — 880 + 834 + 916 — 647]

= é[zm] = 29.875

The largest effects are for the gap (A = —75.125), the
power (C = 307.625), and the gap—power interaction (AC
=—153.875).

The analysis of variance may be used to confirm the
magnitude of these effects. From Equation 3.18, the sums
of squares are

(—601)
%, = — 22.575.1
354 16
(73)
fCi=Y "2 _-a991
58 =16
(2461)°
o = — 378.532.6
7, F 3
(—207)
o = — 2678.1
AR If}
(—1231)°
PR Wi ol JUPSI 7 Wy 3 [)
$84c =
—220)2
= (=229 _ 39976
16
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and

) 2
(239 = 3570.1

SSapc =

The analysis of variance is summarized in Table 3.6.
Based on the P-values shown in this table, we concluded
that gap (4) and power (C) are statistically significant
effects, as is the gap-power (4C) interaction.

TABLE 3.6 Analysis of Variance for Example 3.5

Source of Sum of Degrees of Mean

Variation Squares Freedom Square Fa P-Value
A 22.575.1 | 22,575.1 564 0.0448

B 333 ] 3331 0.08 0.7802

C 3785326 I 378,532.6 94.65 104 5 107F
AR 2678.1 1 2678.1 0.67 0.4369
AC 94,710.1 1 94,7101 23.68 0.0012
BC 32776 | 32776 0.82 03018
ABRC 3570.1 | 357001 .89 0.3724
Ermor 31,9955 8 3999.4

Total 5376719 15

The regression model for this process, based on the above
analysis, is

¥y = by + byxy + byxs + biaxix;

= 563.438 + (ﬂ)x, i (3“?,;625).1-; 4 (ﬁ)m;

g 2

= 563.438 — 37.563x; + 153.813x3 — 76.938xx3

where the variables x1 and x3 represent the design factors
A and C, respectively, on the coded (-1, +1) scale. This
regression model can be used to generate predicted values
at each corner of the design, from which residuals can be
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obtained. The reader should obtain these residuals and
graphically analyze them.

The factor effect estimates (and the regression model)
indicate that etch rate increases as the gap (4) decreases
and as the power (C) increases, and that these factors
interact, The two-factor interaction graph, shown in Fig.
3.8, is helpful in the practical interpretation of the results.
This graph was constructed by plotting average etch rate
versus gap (A4) for each power setting and connecting the
points for the low- and high-power settings to give the two
lines shown in the figure. Inspection of the interaction
graph indicates that changes in the anode—cathode gap
produces a much larger change in etch rate at the
high-power setting than at the low-power setting.

Figure 3.8 Gap—power (AC) interaction graph, Example
3.1.
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Figure 3.9 is a response surface plot and contour plot of
etch rate as a function of gap and power setting. These
plots were obtained from the fitted model. The effect of the
strong interaction on this process is very clear; notice that
the response surface is now a twisted plane (that is, the
lines in the contour plot are not parallel straight lines).
Thus the interaction term in the model is a form of
curvature. In processes such as this one, the engineer is
usually trying to select the appropriate factor settings (in
this case gap and power) to obtain a desired etch rate. The
response surface and contour plot will be most helpful for
this analysis.

Figure 3.9 (a) Response surface of etch rate, Example 3.1.
(b) The contour plot.
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Other Methods for Judging the Significance of Effects
The analysis of variance is a formal way to determine
which factor effects are nonzero. There are two other
methods that are useful. In the first method, we calculate
the standard error of the effects and compare the
magnitudes of the effects with their standard errors. The
second method, which we will illustrate in Section 3.5,
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uses normal probability plots to assess the importance of
the effects.

The standard error of an effect is easy to ﬁnd If we
assume that there are n replicates at each of the 2K runs or
treatment combinations in the design, and if yi1, yi2,..., Yin
are the observations at the ith run, then

s 1 n 2 : ‘
Ly .= IJZI[_“,-—}',-} S E ) B T 2

1S an estimate of the variance at the ith run. The 2k
variance estimates can be combined to give an overall
variance estimate:

_':HH—IJZLHU f}:

=l j=I

T

This is also the variance estimate given by the error mean
square in the analysis of variance. The variance of each
effect estimate is

i Contrast
Var(Effect) = Vur(ﬂ)
n2k=1
-—VdT{Clﬂﬂl[dH”
(n2k-1)?

Each contrast is a linear combination of 2¥ treatment totals,
and each total consists of n observations. Therefore,

Var(Contrast) = n2*o*
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and the variance of an effect is

1 :
er o n nk 2
Var(Effect) = .[—_,Qﬁ—l 2 n2*a

1 2
— [ o

(3.19) ~ k-2

The estimated standard error would be found by replacing
o by its estimate s? and taking the square root of Equation
3.19.

To illustrate this method, consider the etch rate experiment
in Example 3.1. The mean square error is MSE = 3999.4.
Therefore, the standard error of each effect is (using §2 =
MSE)

se(Effect) = k2 52
1
— /—— 3999
\/2{23. 3) 999 .4
= 31.62

Two standard error limits on the effect estimates are then
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A:  =75.125 £ 63.24
B: 9.125 4 63.24
3 307.625 + 63.24
AB: —25.875 + 63.24
AC: —153.875 + 63.24
BC: —28.625 + 63.24

i

ABC: 29.875 + 63.24
These intervals are approximate 95% confidence
intervals. This analysis indicates that 4, C, and the AC
interaction are important effects, because they are the only
factor effect estimates for which the intervals do not
include zero.

3.4 THE GENERAL 2 DESIGN

The methods of analysis that we have presented thus far
may be generalized to the case of a 2¥ factorial design; that
is, a design with k factors, each at two levels. The
statistical model for a 2% design will include k main
effects, () two-factor interactions, (5)  three-factor
interactions, ..., and one k-factor interaction. That is, for a
2k design the complete model will contain 2k 1 effects.
The notation introduced earlier for treatment combinations
is also used here. For example, in a 2 design abd denotes
the treatment combination with factors 4, B, and D at the
high level and factors C and E at the low level. The
treatment combinations may be written in standard order
by introducing the factors, one at a time, with each new
factor being successively combined with those that precede
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it. For example, the standard order for a 24 design is (1), a,
b, ab, ¢, ac, be, abce, d, ad, bd, abd, cd, acd, bed, and abcd.

To estimate an effect or to compute the sum of squares for
an effect, we must first determine the contrast associated
with that effect. This can always be done by using a table
of plus and minus signs, such as Table 3.2 or Table 3.3.
However, for large values of k this is awkward. Most
modern computer programs generate the effect estimates,
the regression coefficients, and the sums of squares for the
analysis of variance using the method of least squares.

3.5 A SINGLE REPLICATE OF THE 2X DESIGN

For even a moderate number of factors, the total number of
treatment combmatlons in a 2" factorial design is large. F or
example, a 2 design has 32 treatment combmatlons a 2°
design has 64 treatment combinations, and a 2! demgn
has 1024 treatment combinations. Because resources are
usually limited, the number of replicates that the
experimenter can employ may be restricted. Frequently,
available resources only allow a single replicate of the
design to be run, unless the experimenter is willing to omit
some of the original factors.

A single replicate of a 2k design is sometimes called an
unreplicated factorial. With only one replicate, there is
no estimate of error. One approach to the analysis of an
unreplicated factorial is to assume that certain high-order
interactions are negligible and combine their mean squares
to estimate the error. This is an appeal to the sparsity of
effects principle; that is, most systems are dominated by
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some of the main effects and low-order interactions, and
most high-order interactions are negligible.

When analyzing data from unreplicate factorial designs,
occasionally very high-order interactions occur. The use of
an error mean square obtained by pooling high-order
interactions is inappropriate in these cases. A method of
analysis attributed to Daniel (1959) provides a simple way
to overcome this problem. Daniel suggests constructing a
normal probability plot of the effect estimates. The effects
that are negligible are normally distributed, with mean zero
and variance ¢, and will tend to fall along a straight line
on this plot, whereas significant effects will have nonzero
means and will not lie along the straight line. We will
illustrate this method in the following example.

Example 3.2 A Single Replicate of the 24 Design
Montgomery (2005) describes a factorial experiment
carried out in a pilot plant to study the factors thought to
influence the filtration rate of a chemical product. The four
factors are temperature (4), pressure (B), concentration of
formaldehyde (C), and stirring rate (D), Each factor is
present at two levels, and the data obtained from a single
replicate of the 24 experiment are shown in Table 3.7 and
Fig. 3.10. The 16 runs are made in random order. The
process engineer is interested in maximizing the filtration
rate. Current process conditions give filtration rates of
around 75 gal/hr. The process also currently uses the
concentration of formaldehyde, factor C, at the high level.
The engineer would like to reduce the formaldehyde
concentration as much as possible but has been unable to
do so because it always results in lower filtration rates.
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TABLE 3.7 Pilot Plant Filtration Rate Experiment

Factor
Treatment Filiration Rate
Run Number A B [ 61 (4] Combination {gal/hr)
1 = = = (1) 45
2 = - = a 71
3 i = b 48
4 + + = = b 65
5-' e - LE s (4 ﬁ»ﬂ
4] T % o (1]
7 = -+ = b B0y
8 - ; - - abe 65
9 t o 43
10 - - + ad (11
11 = . -+ b 45
12 } t ahd 104
13 = = + o+ cd 75
14 : - : aced 86
15 = + § + bed 0
16 B - - + abcd 96

Figure 3.10 Data from the pilot plant filtration rate
experiment for Example 3.2.
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We will begin the analysis of this data by constructing a
normal probability plot of the effect estimates. The plus
and minus signs for the contrast constants for the 2 design
are shown in Table 3.8. From these contrasts, we may
estimate the 15 factorial effect estimates
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TABLE 3.8 Contrast Constants and Effect Estimates
for the 2* Design, Example 3.2

Oibscrvalions A & A c AC BC ABC (] ALR By ABD on ACD BCD ABCT
(=45

p =TI
b=48
L]
=68

e = Bl
b=
el = 65
o =43

ol = 100
b = 45
abd = 104
ol =T5
acd = 86
Bed = 70

Effeut 21.625 0125 185,125 1.875 16,625 4125 1625 1,375
Estimases ERE Q.75 2375 14628 0.375 1125 1628

shown at the foot of each column in Table 3.8. The normal
probability plot of these effects is shown in Fig. 3.11. All
of the effects that lie along the line are negligible, whereas
the large effects are far from the line. The important effects
that emerge from this analysis are the main effects of 4, C,
and D and the AC and AD interactions. Table 3.9
summarizes the analysis of variance for this design. In this
analysis we have pooled the nonsignificant effects to form
the error term. The F-tests reveal that the effects of 4, C,
D, and the AC and AD interactions are large.

Figure 3.11 Normal probability plot of effects for the 24
factorial in Example 3.2.
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TABLE 3.9 Analysis of Variance, Example 3.2

Source of Sum of Degrees of

Vanation Squares Freedom Mean Square Fa P-Value

A 1870563 1 1870.563 9586 193 < 107"
C 300062 1 300,062 1999  0.0012

D 855562 1 855.562 4385  0.00M

AC 1314.062 1 1314.062 6734 942 x 107"
AD 1105.563 1 1105.563 56,66 200 % 107*
Error 195125 10 19.513

Total 5730937 15

The main effects of 4, C, and D are plotted in Fig. 3.12a.
All three effects are positive, and if we considered only
these main effects, we would run all three factors at the
high level to maximize the filtration rate. However, it is
always necessary to examine any interactions that are
important. Remember that main effects do not have much
meaning when they are involved in significant interactions.
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Figure 3.12 Main effect and interaction plots for Example
3.2. (a) Main effect plots, (b) Interaction plots.
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The AC and AD interactions are plotted in Fig. 3.12b.
These interactions are the key to solving the problem. Note
from the AC interaction that the temperature effect is very
small when the concentration is at the high level and very
large when the concentration is at the low level, the best
results being obtained with low concentration and high
temperature. The 4D interaction indicates that stirring rate
D has little effect at low temperature but has a large
positive effect at high temperature. Therefore, the best
filtration rates would appear to be obtained when 4 and D
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are at the high level and C is at the low level. This would
allow the reduction of the formaldehyde concentration to a
lower level, another objective of the experimenter.

The Half-Normal Probability Plot of Effects An
alternative to the normal probability plot of the factor
effects is the half-normal plot. This is a plot of the
absolute value of the effect estimates against their
cumulative normal probabilities. Fig. 3.13 presents the
half-normal plot of the effects for the pilot plant filtration
rate experiment. The straight line on the half-normal plot
always passes through the origin and should also pass
close to the fiftieth percentile data value. Many analysts
feel that the half-normal plot is easier to interpret
particularly when there are only a few effect estimates, as
when the experimenter has used an eight-run design. Some
software packages will construct both plots.

Figure 3.13 Half-normal plot of the factor effects from the
24 factorial in Example 3.2.
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Design Projection Another interpretation of the data in
Fig. 3.11 is possible. Because B (pressure) is not
significant and all interactions involving B are negligible,
we may dlscard B from the experiment so that the design
becomes a 2° factorial in A, C, and D with two replicates.
This is easily seen from examining only columns A, C, and
D in Table 3.7 and noting that those columns form two
replicates of a 23 design. The analysis of variance for the
data using this simplifying assumption is summarized in
Table 3.10. The conclusions that we would draw from this
analysis are essentially unchanged from those of Example
3.2. Note that by grOJectlng the single replicate of the 2

into a replicated 2°, we now have both an estimate of the
ACD interaction and an estimate of error based on
replication.
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TABLE 3.10 Analysis of Variance for the Pilot Plant
Filtration Rate Experiment in A, C, and D

Source of Sum of Degrees of

Variation Squares Freedom Mean Square Fa P-Value
A 1870.56 | 1870.56 8336 1.67 % 107F
C 300.06 1 390,06 17.38 00031

D 855,56 I 855.56 38.13 0.0003
AC 1314.06 | 1314.06 58.56 00001
ALy 1105.56 1 1105.56 49.27 L0001
L)) 5.06 1 5.06 0.23 1.6476
ACD 10.56 1 10.56 0.47 05121
Error 179.52 8 22,44

Total 573094 15

The technique of projecting an unreplicated factorial into a
replicated factorial in fewer factors is Very useful. In
general, if we have a single replicate of a 2k design and if 4
(h < k) factors are negligible and can be dropped, then the
original data correspond to a full twolevel factorial in the
remaining k — & factors with 2k replicates.

The Regression Model and Diagnostic Checking The
usual dlagnostlc checks should be applied to the residuals
from a 2F design. Our analysis indicates that the only
significant effect are 4 = 21.625, C = 9.875, D = 14.625,
AC = —18.125, and AD = 16.625. If this is true, then the
predicted values of the filtration rate over the region
spanned by the design are given by the regression model

. 21.625 9.875 14.625
v =T70.06 + ( > ),n -+ ( 3 ).1'; - ( 5 )14
18.125 . (16.625 _
— 5 X X3 + 5 XX
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where 70.06 is the average response and the coded
variables x;, x3, x4 take on values in the interval from —1 to
+1. For example, the predicted filtration rate at the run
where all three factors are at the low level is

21.625 9.875 14.625
_%:?0.t)6+( s )(—I}+(T)(—|1+(Tﬁ)[—l}

18.125 16.625
—( . )(—n{—m( : )(—nt—n

= 46.22

Because the observed value is 45, the residual ise=y —¥=
45 —46.22 = 21.22. The values of y, ¥, and e = y — ¥ for all
16 observations follow:

¥ ¥ e=y—¥
(1) 45 46,22 - .22
a 71 fith, 30 1.61
b 48 4622 1.78
ah 65 69,39 -4.39
¢ 6% 74,23 —6.23
e Bl 61.14 -1.14
be H0 74.23 577
abhe 65 61.14 3.86
a 43 4422 -1.22
ad 100 100,65 3.35
bd 45 44,22 078
b 104 101635 3.35
il 75 72.23 2T
aed 86 02 .40 —f, 40
bed 70 72.23 -2.23
abhed 9t 9240 .60

A normal probability plot of these residuals is shown in
Fig. 3.14. The points on this plot lie reasonably close to a
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straight line, lending support to our conclusion that 4, C,
D, AC, and AD are the only significant effects and that the
underlying assumptions of the analysis are satisfied.

Figure 3.14 Normal probability plot of residuals of
Example 3.2.
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Example 3.3 Duplicate Measurements of the Response
A team of engineers at a semiconductor manufacturer ran a
2* factorial design in a vertical oxidation furnace. The
purpose of the experiment was to study the effects of the
four factors in oxide thickness. Four wafers are stacked in
the furnace, and the response variable of interest is the
oxide thickness on the wafers. The four design factors are
temperature (A4), time (B), pressure (C), and gas flow (D).
The experiment is conducted by loading four wafers into
the furnace, setting the process variables to the test
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conditions required by the experimental design, processing
the wafers, and then measuring the oxide thickness on all
four wafers. Table 3.11 presents the design and the
resulting thickness measurements. In this table, the four
columns labeled “Thickness” contains the oxide thickness
measurements on each individual wafer, and the last two
columns contain the sample average and sample variance
of the thickness measurements on the four wafers in each
run.

TABLE 3.11 The Oxide Thickness Experiment

Standard

Order Run Order A B [} ] Thickness 7 s

1 10 -] -1 -1 -1 378 37 3™ 370 378 2

2 7 1 -1 = 1 415 416 416 417 416 0.67
3 3 1 1 | 1 380 379 382 383 381 33
4 9 I I =1 =1 450 446 449 447 448 333
5 6 = | = | | 1 375 M 373 369 N2 6.67
6 2 | 1 1 1 3 300 388 A9 390 2

7 5 -1 I I -1 384 385 386 385 385 0.67
8 4 1 | | 1 426 433 430 431 430 8.67
9 12 1 | -1 1 381 381 375 383 380 12,00
10 (1] 1 =1 =] I 416 420 412 412 415 14.67
11 8 —1 | -1 1 KTl 372 3 3 3N 0.67
12 1 1 | 1 1 445 448 443 448 446 [}

13 14 -1 -1 I 1 377 377 379 379 a78 1.33
14 15 | -1 | | 391 391 386 400 392 34

15 11 1 1 | 1 375 316 36 377 376 0.67
16 13 1 1 | 1 430 430 428 428 429 133

The proper analysis of this experiment is to consider the
individual wafer thickness measurements as duplicate
measurements, and not as replicates. If they were actually
replicates, each wafer would have been processed
individually on a single run of the furnace. However,
because all four wafers were processed together, they
received the treatment factors (i.e., the levels of the design
variables) simultaneously, so there is much less variability
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in the individual wafer thickness measurements than would
have been observed if each wafer had been a replicate.
Therefore, the average of the thickness measurements is
the correct response variable to initially consider.

Table 3.12 presents the effect estimates for this
experiment, using the average oxide thickness ¥ as the
response variable. Note that factors 4 and B and the 4B
interaction have large effects that together account for
nearly 90% of the variability in average oxide thickness.
Figure 3.15 is a normal probability plot of the effects.
From examination of this display, we conclude that factors
A, B, and C and the 4B and AC interactions are important.
The analysis of variance display for this model is shown in
Table 3.13.

TABLE 3.12 Effect Estimates for Example 3.3:
Response Variable is Average Oxide Thickness

Model Term Effect Estimate Sum of Squares Percemt Contribution
A 43,125 7439.06 67.9339

i 18.125 1314.06 1200001

L& — 1375 430.562 393192

n — 1,625 10,5625 00064573
AR 16.875 1139.06 104402

AC - 10.625 451.563 412369

AD 1.125 50625 0046231
BC 3875 60.0625 05484094
BD —-3.875 60,0625 0.548494
L&l 1,125 5.0625 0046231
ABC 0.375 0.5625 000513678
ABD 2.875 33.0625 0.301929
ACD —0,125 0.0625 0000570752
ECD 0.625 1.5625 00142688
ABCD 0,125 0.0625 0000570753

Figure 3.15 Normal probability plot of the effects for the
average oxide thickness response, Example 3.3.
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TABLE 3.13 Analysis of Variance (from
Design-Expert) for the Average Oxide Thickness
Response, Example 3.3

Source Sam of Squares ¥ Mean Square F Value Prob = F

Aonkef IT74.31 5 2154886 12235 << 00000
A T43506 1 T439.00 42237 < 0,000
B 131496 1 134,06 7460 <000
o 430,56 1 430,56 2445 00006
AR 113806 1 1139.06 6467 <0000
AT 450,56 1 451,56 2504 00005

Residual 176.12 10 1761

Cor. Total 10,950.44 15

Sul. Dev. 40 R-Suuared 09835

Mean 09.19 Adj. B-Squared 09755

cv. Los Prid. R-Squared R

FRESS 45085 Adeq. Precisaon 17.967

#5% Cl

Factor Cocflicient Estimme DF Standard Emor Cl Low Cl High

Inercept 4,19 1 108 106 45 401.53

A-Time 2056 1 108 19.22 X090

B-Temp .06 1 105 672 1140

C-Pressure -%.19 1 1,05 -7.53 245

Al 44 [} 1.05 .10 1n7s

AC -53 1 1.05 - T45 -

The model for predicting the average oxide thickness is

¥ =399.19 + 21.56x; + 9.06x3 — 519x3 + 8.44x 130 — 5,313,103
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The residual analysis of this model is satisfactory.

The experimenters are interested in obtaining an average
oxide thickness of 400A, and product specifications
require that the thickness must lie between 390 and 410A .
Figure 3.16 presents two contour plots of average
thickness, one with factor C (or x3), pressure, at the low
level (i.e., x3 = —1) and the other with C (or x3) at the high
level (i.e., x3 = +1). From examining these contour plots, it
is obvious that there are many combinations of time and
temperature (factors 4 and B) that will produce acceptable
results. However, if pressure is held constant at the low
level, the operating window is shifted toward the left, or
lower, end of the time axis, indicating that lower cycle
times will be required to achieve the desired oxide
thickness.

Figure 3.16 Contour plots of average oxide thickness with

pressure (x3) held constant
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It is interesting to observe the results that would be

obtained in we incorrectly considered the individual wafer

oxide thickness measurements as replicates. Table 3.14
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presents a full model analysis of variance based on treating
the experiment as a replicated 2* factorial. Notice that
there are many significant factors in this analysis,
suggesting a much more complex model than we found
when using the average oxide thickness as the response.
The reason for this is that the estimate of the error variance
in Table 3.14 is too small (& = 6.12). The residual mean
square in Table 3.14 primarily reflects the variability
between wafers within a run and damps out the variability
between runs. The estimate of error obtained from Table
3.13 is much larger, &* = 17.61, and it is primarily a
measure of the between-run variability. This is the best
estimate of error to use in judging the significance of
process variables that are changed from run to run.

TABLE 3.14 Analysis of Variance (from
Design-Expert) of the Individual Wafer Oxide
Thickness Response if Duplicates are Incorrectly
Treated as Replicates
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Source Sum of Squares DF Mean Square F Value Prob = F

Maodel 43.801.75 15 2020.12 476.75 < (L0000
A 29.756.25 1 20.756.25 4858.16 = (.001
B 5256.25 1 5256.25 B55.16 = (.00
C 1722.25 1 1722.25 281.18 <{.001
D 42,25 1 4225 .90 00115
AR 4556.25 1 4556.25 T43.88 == (L0001
AC 18046.25 1 1806.25 294,90 = (.001
Al 20,25 1 20.25 3.31 0.0753
BC 240.25 1 240.25 3922 = (.00
By 240.25 1 240.25 39.22 =0.001
()] 20,25 1 20.25 3.31 0.0753
ABRD 132.25 1 132.25 21.59 == (L0001
ABC 2.25 1 225 (.37 .5473
ACD 0.25 1 0.25 0.94] 0.8407
BCD 6.25 1 6.25 1.02 03175
ABCD 0.25 1 0.25 0.041 (.8407
Residual 294,00 48 6.12

Lack of Fir 0L000 [1]

Pure Error 294.00 48 6.13

Cor, Total 44,095.75 63

A logical question to ask is: What harm results from
identifying too many factors as important?, as the incorrect
analysis in Table 3.14 would certainly do. The answer is
that trying to manipulate or optimize the unimportant
factors would be a waste of resources, and it could result in
adding unnecessary variability to other responses of
interest.

When there are duplicate measurements on the response,
there is almost always useful information about some
aspect of process variability contained in these
observations. For example, if the duplicate measurements
are multiple tests by a gauge on the same experimental
unit; then the duplicate measurements give some insight
into gauge capability. If the duplicate measurements are
made at different locations on an experimental unit, they
may give some information about the uniformity of the
response variable across that unit. In our example, because
we have one observation on each of four experimental
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units that have undergone processing together, we have
some information about the within-run variability in the
process. The information is contained in the variance of
the oxide thickness measurements from the four wafers in
each run. It would be of interest to determine if any of the
process variables influence the within-run variability.

Figure 3.17 is a normal probability plot of the effect
estimates obtained using ln(sz) as the response. As we will
discuss further in Chapter 10, there is historical evidence
that the log transformation is generally appropriate for
modeling variability. There are not any strong individual
effects, but factor 4 and the BD interaction are the largest.
If we also include the main effects of B and D to obtain a
hierarchical model, then the model for ln(sz) is

In(s?) = 1.08 + 0.41x; — 0.40x> + 0.20x5 — 0.56x2x

The model accounts for just slightly less than half of the
variability in the ln(sz) response, which is certainly not
spectacular as empirical models go; but it is often difficult
to obtain exceptionally good models of variances.

Figure 3.17 Normal probability plot of the effects using
ln(sz) as the response. Example 3.3.
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Figure 3.18 is a contour plot of the predicted variance (not
the log of the predicted variance) with pressure x3 at the
low level (recall that this minimizes the cycle time) and
gas flow x4 at the high level. This choice of gas flow gives
the lowest values of predicted variance in the region of the
contour plot.

Figure 3.18 Contour plot of 52 (within-run variability)

with pressure at the low level and gas flow at the high
level.

201



Variance

Tempsarsbure

=1.00
-1.0 -0.50 0.00 0.50 1.00

Tima

The experimenters here were interested in selecting values
of the design variables that gave a mean oxide thickness
within the process specifications and as close to 400A as
possible, while simultaneously making the within-run
variability small, say s? < 2. One possible way to find a
suitable set of conditions is to overlay the contour plots in
Figs. 3.17 and 3.18. The overlay plot is shown in Fig. 3.19,
with the specifications on mean oxide thickness and the
constraint s> < 2 shown as contours. In this plot, pressure
is held constant at the low level and gas flow is held
constant at the high level. The open region near the upper
left of the graph identifies a feasible region for the
variables time and temperature.

Figure 3.19 Overlay of the average oxide thickness and s

responses with pressure at the low level and gas flow at the
high level.
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This is a simple example of using contour plots to study
two responses simultaneously. We will discuss techniques
for simultaneously analyzing and optimizing several
responses in more detail in Chapter 6.

3.6 THE ADDITION OF CENTER POINTS TO THE 2¥
DESIGN

A potential concern in the use of two-level factorial
designs is the assumption of linearity in the factor effects.
Of course, perfect linearity is unnecessary, and the 2k
system will work quite well even when the linearity
assumption holds only very approximately. In fact, we
have noted that if interaction terms are added to a main
effects or first-order model, resulting in
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1 k
. K
y= By + E Bx; + > E Bixixi + &

(3.20)

then we have a model capable of representing some
curvature in the response function. This curvature, of
course, results from the twisting of the plane induced by
the interaction terms fjx;x;.

There are going to be situations where the curvature in the
response function is not adequately modeled by Equation
3.20. In such cases, a logical model to consider is the
complete second-order response surface model:

(3.21)

y=5+ ZB{U"‘ZZ.@”\ x; + Zﬁf»"’ + &

]_J'_

In running a two-level factorial experiment, we usually
anticipate fitting the first-order model in Equation 3.20,
but we should be alert to the possibility that the
second-order model in Equation 3.21 is really more
appropriate. There is a method of replicating certain points
in a 2X factorial that will provide protection against
curvature from secondorder effects as well as allow an
independent estimate of error to be obtalned The method
consists of adding center points to the ok design. These
consists of n replicates run at the points x; =0 (i=1, 2, ...,
k). One important reason for adding the replicate runs at
the design center is that center points do not effect the
usual effect estimates in a 2 design. When we add center
points, we assume that the k factors are quantitative.
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To illustrate the approach, consider a 2? design with one
observation at each of the factorial points (-, — ), (+, — ),
(-, +), and (+, +) and nc observations at the center point
(0, 0). Figure 3.20 illustrates the situation. Let Y be the
average of the four runs at the four factorial points, and let
¥c be the average of the n¢ runs at the center point. If the
difference ¥ — ¥ is small, then the center points lie on or
near the plane passing

Figure 3.20 A 2? design with center points.

through the factorial points, and there is no quadratic
curvature. On the other hand, if Y — ¥¢ is large, then
quadratic curvature is present. A single-degree-of-freedom
sum of squares for pure quadratic curvature is given by
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¥ nEnel Ve — ¥ _]-"
‘Sspuu‘ quadratic = i £ C
(3.22) e+ e

where, in general, nr is the number of factorial design
points. This quantity may be compared with the error mean
square to test for pure quadratic curvature. More
specifically, when points are added to the center of the 2k
design, then the test for curvature based on Equation 3.22
actually tests the hypothesis

k

Ho: Y B;=0
=1
K

Hi: Y By #0
=1

Furthermore, if the factorial points in the design are
unreplicated, one may use the n¢ center points to construct
an estimate of error with nc — 1 degrees of freedom.

Example 3.4 Testing for Curvature A chemical engineer
is studying the yield of a process. There are two variables
of interest: reaction time and reaction temperature.
Because she is uncertain about the assumption of linearity
over the region of exploration, the engineer decides to
conduct a 2° design (with a single replicate of each
factorial run) augmented with five center points. The
design and the yield data are shown in Fig. 3.21.

Figure 3.21 The 2? design with five center points for
Example 3.4.
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Table 3.15 summarizes the analysis of variance for this
experiment. The mean square error is calculated from the
center points as follows:

SSe
ne — |
> (yi=¥e)P

cenler points

MSg =

H(‘—I

b

S (y; — 40.46)°
=1

4
0.1720
4

= 0.0430

TABLE 3.15 Analysis of Variance for Example 3.4
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Degrees of

Source of Varability Sum of Squares Freedom Mean Square Fa P-Value
A (time) 24025 1 24025 55.87 00017
B (tlemperature) 04225 1 0.4225 9.83 (L0350
AB 0.0025 I 0.0025 0.06 0.8185
Curvature 0.0027 1 0.0027 0.06 (5185
Error 0.1720 4 0.0430

Total 3.0022 3

The average of the points in the factorial portion of the
design is ¥ = 40.425, and the average of the points at the
center is ¥c = 40.46. The difference Y — Yc = 40.425 —
40.46 = —0.035 appears to be small. The curvature sum of
squares in the analysis of variance table is computed from
Equation 3.22 as follows:

nene( Ve — }'(-]3
ng <+ nc

_ (4)(5)(—0.035)

- 445

= 0.0027

..5'5{_-..“ ature —

The analysis of variance indicates that both factors exhibit
significant main effects, that there is no interaction, and
that there is no evidence of curvature in the response over
the region of exploration. That is, the null hypothesis Ho:

22518 =Y cannot be rejected.

In Example 3.4, we concluded that there was no indication
of quadratic effects; that is, a first-order model with
interaction

y= By + Bixi + Baxz + Bpaxixa + €
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is appropriate (although we probably don’t need the
interaction term). There will be situations where the
quadratic terms will be required. That is, we will have to
assume a second-order model such as

y =By + Bixi + Baxa + Baxixa + ﬁ!l"rl: T 1333-":2 T &

Unfortunately, we cannot estimate all of the unknown
parameters (the B’s) in this model, because there are six
parameters to estimate, and the 2? design plus center points
in Fig. 3.21 only has five independent runs.

A simple and highly effective solution to this problem is to
augment the 22 design with four axial runs, as shown in
Fig. 3.22a. The resulting design is the central composite
design. Figure 3.22b shows a central composite design for
k =3 factors. This design has 14 + nc runs (usually 3 < nc
< 5), and i1s a very efficient design for fitting the

10-parameter second-order model in £ = 3 factors.

Figure 3.22 Central composite designs.
(a) *2 () 3

3

24

o 5 I |

= e

Two factors Three factors

As we noted in Chapter 2, central composite designs are
used extensively in building second-order response surface
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models. These designs will be illustrated and discussed in
more detail in Chapters 6 and 7.

We conclude this section with a few additional useful
suggestions and observations concerning the use of center
points.

1. When a factorial experiment is conducted in an ongoing
process, consider using the current operating conditions (or
recipe) as the center point in the design. This often assures
the operating personnel that at least some of the runs in the
experiment are going to be performed under familiar
conditions, and so the results obtained (at least for these
runs) are unlikely to be any worse than are typically
obtained.

2. When the center point in a factorial experiment
correspond to the usual operating recipe, the experimenter
can use the observed responses at the center point to
provide a rough check of whether anything unusual
occurred during the experiment. That is, the center point
responses should be very similar to responses observed
historically in routine process operation. Often operating
personnel will maintain a control chart for monitoring
process performance. Sometimes the center point
responses can be plotted directly on the control chart as a
check of the manner in which the process was operating
during the experiment.

3. Consider running the replicates at the center point in
nonrandom order. Specifically, run one or two center
points at or near the beginning of the experiment, one or
two near the middle, and one or two near the end. By
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spreading the center points out in time, the experimenter
has a rough check on the stability of the process during the
experiment. For example, if a trend has occurred in the
response while the experiment was performed, plotting the
center point responses versus time order may reveal this.

4. Sometimes experiments must be conducted in situations
where there is little or no prior information about process
variability. In these cases, running two or three center
points as the first few runs in the experiment can be very
helpful. These runs can provide a preliminary estimate of
variability. If the magnitude of the variability seems
reasonable, continue; on the other hand, if larger than
anticipated (or reasonable!) variability is observed, stop.
Often it will be very profitable to study why the variability
is so large before proceeding with the rest of the
experiment.

5. Usually, center points are employed when all design
factors are quantitative. However, sometimes there will
be one or more qualitative or categorical variables and
several quantitative ones. Center points can still be
employed in these cases. To illustrate, consider an
experiment with two quantitative factors, time and
temperature, each at two levels, and a single qualitative
factor, catalyst type, also with two levels (organic and
nonorganic). Figure 3.23 shows the 23 design for these
factors. Notice that the center points are placed on the
opposed faces of the cube that involve the quantitative
factors. In other words, the center points can be run at the
high- and low-level treatment combinations of the
qualitative factors, just so long as those subspaces involve
only quantitative factors.
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Figure 3.23 A 22 factorial design with one qualitative
factor and center points.
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3.7 BLOCKING IN THE 2% FACTORIAL DESIGN

There are many situations in which it is impossible to
completely randomize all of the runs in the experiment.
For example, we might not be able to perform all of the
runs in a factorial experiment under homogeneous
conditions. As examples, these conditions might be a
single time period (such as one day), a single batch of
homogeneous raw material, using only one operator, or the
like. In other cases, it might be desirable to deliberately
vary the experimental conditions to ensure that the
treatments are equally effective (one might say robust)
across many situations likely to be encountered in practice.
For example, a chemical engineer may run a pilot plant
experiment with several batches of raw material because
he knows that different raw material batches of different
quality grades will be used in the full-scale process.
Sometimes the presence of nuisance factors prevents
complete randomization.
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The design technique used in these situations is called
blocking. In this section we show how to arrange the 2k
factorial design in blocks.

3.7.1 Blocking in the Replicated Design

Suppose that the 2* factorial design has been replicated n
times. A simple way to incorporate nonhomogeneous
conditions or nuisance factors in this situation is to
consider each set of these conditions or nuisance factor
levels as a block and to run each replicate of the design in
a separate block. The runs in each block are to be made in
random order. Because each block contains all of the runs
from a complete replicate of the experiment, this type of
blocking arrangement is called a randomized complete
block design (RCBD).

Example 3.5 The Chemical Process Revisited Consider
the chemical process experiment described in Section 3.2
Suppose that only four experimental trials could be easily
be made from a single batch of raw material. Therefore,
four batches of raw material will be required in order to
run all four replicates. Table 3.16 shows the RCBD for this
experiment, assuming that each replicate is run in a single
batch of material. Within each material batch, the four runs
are made in random order.

TABLE 3.16 The Chemical Process Experiment in
Four Blocks (RCBD)
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Block 1 Block 2 Block 3 Block 4

{1y = 145 (1) = 148 (1y= 147 (1) = 140
a = |58 a =152 o =155 a =152
b =135 b =138 b = 141 b =139
ab = 150 ab = 152 ab = 146 . _fr_ﬂ.i_l:lfi_
Block witals 588 590 589 580

The analysis of variance for this design is shown in Table
3.17. All of the sums of squares in this table are calculated
as in a standard (unblocked) 2k factorial, except the sum of
squares for blocks. If we let B; (i = 1, 2, 3, 4) represent the
four block totals (see Table 3.16), then

4 ¥ 3
B ¥
SSBlocks = E’ - -IE

f=1
(588)% + (590) + (589)° + (580)° (2347)
4 16

Il

15.6875

TABLE 3.17 Analysis of Variance for the Chemical
Process Experiment in Four Blocks, Example 3.5

Source of Vanation  Sum of Squares  Degrees of Freedom  Mean Square Fa P-Value
Blocks 15.6875 3 5.2292

A 410.0625 | 410.0625 4364 0.0001

B 1380625 1 1380625 14.69 FLO0
AR 30625 1 3.0625 033 (0.5820
Error §4.5625 9 9.3959

Total 651.4375 15

There are three degrees of freedom among the four blocks.
Table 3.17 indicates that the conclusions from this
experiment are identical to those in Section 3.2 and that the
block effect is relatively small.

3.7.2 Confounding in the 2k Design
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In many situations, it is impossible to perform a complete
replicate of a factorial design in one block. Confounding
is a design technique for arranging a complete factorial
experiment in blocks, where the block size is smaller than
the number of treatment combinations in one replicate. The
technique causes information about certain treatment
effects (usually high-order interactions) to be
indistinguishable from, or confounded with, blocks. In
this section we introduce confounding systems for the 2k
factorial design. Note that even though the designs
presented are incomplete block designs because each block
does not contain all the treatments or treatment
combinations, the special structure of the 2k factorial
system allows a simplified method of design construction
and analysis.

We consider the construction and analysis of the 2k
factorial design in 2¥ incomplete blocks, where p < k.
Consequently, these designs can be run in two blocks, four
blocks, eight blocks, and so on.

Two Blocks Suppose that we wish to run a single replicate
of the 2° design. Each of the 22 = 4 treatment
combinations requires some quantity of raw material, for
example, and each batch of raw material is only large
enough for two treatment combinations to be tested. Thus,
two batches of raw material are required. If batches of raw
material are considered as blocks, then we must assign two
of the four treatment combinations to each block.

Figure 3.24 shows one possible design for this problem.

The geometric view, Fig. 3.24a, indicates that treatment
combinations on opposing diagonals are assigned to
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different blocks. Notice from Fig. 3.24b. that block 1
contains the treatment combinations (1) and ab and that
block 2 contains a and b. Of course the order in which the
treatment combinations are run within a block is randomly
determined. We would also randomly decide which block
to run first. Suppose we estimate the main effect of 4 and
B just as if no blocking had occurred. The effect estimates
are

A=3lab+a—b—(1)]
B=%|ﬂh+f?—ﬂ—{1]]

Note that both of the effect estimates 4 and B are
unaffected by blocking because in each estimate there is
one plus and one minus treatment combination from each
block. That is, any difference between block 1 and block 2
will cancel out.

Figure 3.24 A 22 design in two blocks. (a) Geometric
view. (b) Assignment of the four runs to two blocks.

(at+e
Block 1 Block 2
B (b)
{1} a
ab b
- o

- +
A

# = Run in block 1
o = Run in block 2

Now consider the AB interaction

216



AB =%[a."}+ (1) —a—b]

Because the two treatment combinations with the plus sign
[ab and (1)] are in block 1 and the two with the minus sign
[a and b] are in block 2, the block effect and the AB
interaction are identical. That is, AB is confounded with
blocks.

The reason for this is apparent from the table of plus and
minus signs for the 22 design. This was originally given as
Table 3.2, but for convenience it is reproduced as Table
3.18. From this table, we see that all treatment
combinations that have a plus on AB are assigned to block
1, whereas all treatment combinations that have a minus on
AB are assigned to block 2. This approach can be used to
confound any effect (4, B, or AB) with blocks. For
example, if (1) and b had been assigned to block 1 and a
and ab to block 2, then the main effect 4 would have been
confounded with blocks. The usual practice is to confound
the highest-order interaction with blocks.

TABLE 3.18 Table of Plus and Minus Signs for the 2?
Design

Factorial Effect

Treatment Combination I A B AB

(1 } - =
7} i i
i + - I 5
ah } }

This scheme can be used to confound any 2k design in two
blocks. As a second example, consider a 23 design run in
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two blocks. Suppose we wish to confound the three-factor
interaction ABC with blocks. From the plus and minus
signs shown in Table 3.3, we assign the treatment
combinations that are minus on ABC to block 1 and those
that are plus on ABC to block 2. The resulting design is
shown in Fig. 3.25. Once again, we emphasize that the
treatment combinations within a block are run in random
order.

Figure 3.25 A 23 design in two blocks. (a) Geometric
view. (b) Assignment of the eight runs to two blocks.

(b) Block 1 Block 2
(1 a
ab b
a e
be abe

» = Runs in block 1
o = Runs in bleck 2

Example 3.6 A 24 Factorial in Two Blocks Consider the
situation described in Example 3.2. Recall that four
factors—temperature (4), pressure (B), concentration of
formaldehyde (C), and stirring rate (D)—are studied in a
pilot plant to determine their effect on product filtration
rate. Suppose now that the 2* = 16 treatment combinations
cannot all be run on one day. The experimenter can make
eight runs per day, so a 2* design confounded in two
blocks seems appropriate. It is logical to confound the
highest-order interaction ABCD with blocks. The design is
shown in Fig. 3.26. Because the block totals are 566 and
555, the sum of squares for blocks is
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2 7 2

566)2 + (5557 (1121
o L ;_{ LI m] — 75625

which is identical to the sum of squares for ABCD. A
normal probability plot of the remaining effects indicates
that only factors 4, C, D and the AC and CD interactions
are important. Therefore, the error sum of squares is
formed by pooling the remaining effects. The resulting
analysis of variance is shown in Table 3.19. The practical
conclusions are identical to those found in the original
Example 3.2.

Figure 3.26 The 24 design in two blocks for Example 3.6.

(a) Geometric view. (b) Assignment of the 16 runs to 2
blocks.

D + (b) Block 1 Block 2
(1) = 45 a= 711

ab = 65 b= 48

ae = 60 ¢c= 68

be = 8O o= 43

ad =100 abe = 65

bd = 45 bed = 70

ed = 75 acd = 86

abed = 96 abd = 104

C_f E

© = Runs in block 2 (;/_9_

& = Runs in block 1

TABLE 3.19 Analysis of Variance, Example 3.16
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Source of Sum of Degrees of Mean
Variation Squares Freedom Squares Fa P-Value

Blocks (ABCD) 7.563

I
A 1870563 I 1870.563 89.76  5.60 = 107°
s 360,062 I 390,062 1872 00019
n 855.562 I 855.562 41.05  (0.0001
AC 1314.062 I 1314.062 6305 235x%107°
AD 1 105,562 I 1105.563 5305 4.65x107°
Error 187.562 9 20.840
Total 5730.937 15

Four or More Blocks 1t is possible to construct 2X factorial
designs confounded in four blocks of 2k/4 k2
observations each. These designs are particularly useful in
situations where the number of factors is moderately large,
say k>4, or block sizes are relatively small.

As an example, consider the 2 design. If each block will
hold only eight runs, then four blocks must be used. The
construction of this design is relatively straightforward.
Select two effects to be confounded with blocks, say ADE
and BCE. Then construct a table of plus and minus signs
for the 2° design. If you consider only the ADE and BCE
columns in such a table, there will be exactly four different
sign patterns for the 32 observations in these two columns.
The sign patterns are as follows:

ADE  BCE
= +
+4 +

The design would be constructed by placing all the runs
that are (—, —) in block 1, those that are (+, —) in block 2,
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those that are (—, +) in block 3, and those that are (+, +) in
block 4. The design is shown in Fig. 3.27.

Figure 3.27 The 2 design in four blocks with ADE, BCE,
and ABCD confounded.

Block 1 Block 2 Block 3 Block 4
ADE - + - +
BCE - - * +
(1) abe a be b abee ] abede
ad ace d abde abd ae ade bd
be ede abe ce e bede bee ac
abed bde bed acde aod de ab od

With a little reflection we realize that another effect in
addition to ADE and BCE must be confounded with
blocks. Because there are four blocks with three degrees of
freedom between them, and because ADE and BCE have
only one degree of freedom each, clearly an additional
effect with one degree of freedom must be confounded.
This effect is the generalized interaction of ADE and
BCE, which is defined as the product of ADE and BCE
modulo 2. Thus, in our example the generalized interaction
(ADE)(BCE) = ABCDE? = ABCD is also confounded with
blocks. It is easy to verify this by referring to a table of
plus and minus signs for the 2 design. Inspection of such
a table would reveal that the treatment combinations are
assigned to the blocks as follows:
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Treament Sign on Sign on Sign on
Combinations in ADE BCE ABCD

Block 1 - -
Block 2 i -
Block 3
Block 4

Notice that the product of signs of any two effects for a
particular block (e.g., ADE and BCE) yields the sign of the
other effect for that block (in this case ABCD). Thus ADE,
BCE, and ABCD are all confounded with blocks.

The general procedure for constructing a 2k design
confounded in four blocks is to choose two effects to
generate the blocks, automatically confounding a third
effect that is the generalized interaction of the first two.
Then, the design is constructed by assigning the treatment
combinations that have the sign pattern (—, —), (+, +), (+,
-), (-, ) in the two original columns to four blocks. In
selecting effects to be confounded with blocks, care must
be exercised to obtain a design that does not confound
effects that may be of interest. For example, in a 2 design
we might choose to confound ABCDE and ABD, which
automatically confounds CE, an effect that is probably of
interest. 4 better choice is to confound ADE and BCE,
which automatically confounds ABCD. It is preferable to
sacrifice information on the three-factor interactions ADE
and BCE instead of the two-factor interaction CE.

We can extend this procedure to even larger numbers of
blocks. It is possible to construct a 2K factorial design in 27
blocks (where p < k) of 2K treatment combinations each.
To do this, select p independent effects to confound with
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blocks, where “independent” means that no chosen effect
is the generalized interaction of the others. The plus and
minus sign patterns on these p columns are used to assign
the treatment combinations to the blocks. In addition,
exactly 2 — p — 1 other effects will be confounded with
blocks, these effects being the generalized interactions of
the p effects initially chosen. The choice of these p effects
is critical, because the confounding pattern in the design
depends on them. Table 3.20, from Montgomery (2005),
presents a selection of useful designs for k£ < 7 factors. To
illustrate the use of this table, suppose we want to run a 26
design in 23 = 8 blocks of 2° = 8 runs each. Table 3.20
indicates thatwe should choose ABEF, ABCD, and ACE as
the p = 3 independent effects to construct the blocks. Then
2 _p—-1-= 23— 3 — 1 = 4 other effects are also
confounded. These are the generalized interaction of these
three, or

(ABEF)YABCD) = A*B*CDEF = CDEF
(ABEF)ACE) = A’BCE*F = BCF
(ABCD)YACE) = A*’BC’DE = BDE

(ABEF)ABCD)ACE) = A’B*C*DE’F = ADF

Notice that this design would confound three four-factor
interactions and four three-factor interactions with blocks.
This is the best possible blocking arrangement for this
design.

TABLE 3.20 Suggested Blocking Arrangements for the
2k Factorial Design
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Block

Effects Chosen 1o

Numberof  Number of Siec, Generate the
Factors, k Blocks, 27 s Blocks Interactions Confounded with Blocks
3 2 4 ABC ABC
4 2 AR, AC AB, AC, BC
4 2 # ABCD ABCD
4 4 ARC, ACD ABC, ACD, BD
8 2 AB, BC, CD AR, BC, CD, AC, BD, AD. ABCD
5 2 16 ABCDE ABCDE
4 8 ABC, CDE ABC, CDE, ABDE
s 4 ABE, BCE, CDE  ABE, BCE, CDE, AC, ABCD, BD,
ADE
16 2 AR, AC, CD, DE All 2-Factor and 4-factor inleractions
{135 effects)
6 2 32 ABCDEF ABCDEF
4 16 ABCF, CDEF ABCF, CDEF, ABDE
8 B ABEF, ABCD, ABEF, ABCD, ACE, BCF, BDE,
ACE CDEF, ADF
16 4 ABF, ACF, BDF,  ABE, ACF, BDF, DEF, BC, ABCD,
DEF ABDE, AD, ACDE. CE, BDF,
BCDEF, ABCEF, AEF, BE
iz 2 AR, BC, CD, DE, Al 2-factor, 4-Tactor, and 6-Tactor
EF interactions (31 effects)
7 2 o ABCDEFG ABCDEFG
4 32 ABCFG, CDEFG . ABCFG, CDEFG, ABDE
8 It ABC, DEF. AFG  ABC, DEF, AFG. ABCDEF, DCFG,
ADEG, BCDEFG
16 3 ABD, EFG, CDE.  ABCD, EFG, CDE, ADG, ABCDEFG,
A ABE, BCG, CDFG, ADEF, ACEG,
ABFG, BCEF, BDEG, ACF, BDF
32 4 ABG, BCG, CDG,  ABG, BCG, CDG, DEG, EFG, AC,
DEG, EFG BD, DE, DF, AE, BE, ABCD,
ABDE, ABEF, BCDE, BCEF,
CDEF, ABCDEFG, ADG, ACDEG,
ACEFG, ABDFG. ABCEG, BEG,
BDEFG, CFG, ADEF, ACDF,
ABCF, AFG
64 2 AR, BC, CD, DE,  All 2-factor, 4-factor, and 6-factor

EF, FG

interactions (63 effects)

There are several computer programs for constructing and
analyzing two-level factorial designs. Most of these
programs have the capability to generate the confounded
versions of these designs discussed in this section. The
authors of these programs have typically used Table 3.20,
or a similar one, as the basis for their designs.

3.8 SPLIT-PLOT DESIGNS

224



The experimental designs we have considered so far are
either completely randomized designs (CRDs) or
randomized blocks, where the randomization is restricted
to within different levels of nuisance factors (the blocks).
In some experimental situations we may be unable to
completely randomize the order of the runs because some
of the factors are hard to change. To illustrate, suppose that
it is hard to change the level for one of the factors in the
experiment. When this happens, practitioners typically fix
the level of the hard-to-change factor and run multiple
combinations of the other factors at that level of the
hard-to-change factor. This results in a generalization of
the factorial design called a split-plot design.

As an example, consider a paper manufacturer who is
interested in two different pulp preparation methods (the
methods differ in the amount of hardwood in the pulp
mixture) and two different cooking temperatures for the
pulp and who wishes to study the effect of these two
factors on the tensile strength of the paper. Each replicate
of a factorial experiment requires four observations, and
the experimenter has decided to run two replicates.
Therefore, the complete experiment will require eight runs.
Also, the pulp preparation method factor is hard to change
in that each batch of pulp is quite large, and making up a
separate batch of pulp for each run of the experiment or
eight pulp batches is impractical. Therefore, he conducts
the experiment as follows. A batch of pulp is produced by
one of the two methods under study. Then this batch is
divided into two samples, and each sample is cooked at
one of the two temperatures. Then a second batch of pulp
is made up using the remaining pulp preparation method.
This second batch is also divided into two samples that are
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tested at the two temperatures. Then a third batch is made
up using one of the two methods, it is divided into two
samples and the samples are tested using the two
temperatures. Finally, another batch of pulp is prepared
using the remaining method, it is divided into two samples
and both temperatures are tested. The data are shown in
Table 3.21.

TABLE 3.21 Split-Plot Design for the Pulp Preparation
Method-Temperature Experiment

Whaole Plots Method Temperature ¥

36
50
25
k1]
4
35
20
27

_'I -
=]

N

Initially, we might consider this to be a factorial
experiment with two levels of preparation method (factor
A) and two levels of temperature (factor B). If this is the
case, then the order of experimentation should be
completely randomized; that is, within a block, we should
randomly select a treatment combination (a preparation
method and a temperature) and obtain an observation, and
then we should randomly select another treatment
combination and obtain a second observation, and so on,
until all eight treatment combinations corresponding to the
two replicates have been taken. However, the experimenter
did not conduct the experiment this way. He made up a
batch of pulp and obtained observations for both
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temperatures from that batch. Because of the size of the
batches, this is the only feasible way to run this
experiment. A completely randomized factorial experiment
would require eight batches of pulp, which is unrealistic.
The split-plot design requires only four batches.
Obviously, the split-plot design has resulted in a gain in
experimental efficiency when compared to the completely
randomized design.

Split-plot designs have their origin in the agricultural
sciences. Suppose that we have an agricultural field trial
with two factors: irrigation method and seed variety. The
irrigation method is hard to change, in that it can only be
applied over a relatively large section of the test field,
called a whole plot. The factor associated with this is
therefore called a whole plot factor. Within the whole
plot, the second factor—seed wvariety—is applied to
smaller sections of the field, which are obtained by
splitting the larger section of the field into subplots or split
plots. This factor is called the subplot factor. In the paper
manufacturing example, pulp preparation method is the
whole plot factor and temperature is the subplot factor.

The pulp preparation method—temperature experiment is
fairly typical of how the split-plot design is used in an
industrial setting. Notice that the two factors were
essentially “applied” at different times. Consequently, a
split-plot design can be viewed as two experiments
“combined” or superimposed on each other. One
“experiment” has the whole plot factor applied to the large
experimental units (or it is a factor whose levels are hard to
change) and the other “experiment” has the subplot factor
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applied to the smaller experimental units (or it is a factor
whose levels are easy to change).

The statistical model for a split-plot design can be written
as

Vi = p+ 7+ ewp + B; + (7B); + esp

where u is an overall mean, = is the whole plot factor (the
pulp preparation methods), ep is the whole plot error, f;
is the subplot factor (the temperature), (vf);j is the
methods— temperature interaction, and esp is the subplot
error. Notice that the model has two error terms, ewp and
esp, because there are two different randomizations
involved; one for the whole plots, and another for the
subplots. Consequently there are two variance components
that represent these errors, orivr and @ir. We usually say
that the split-plot design has two different error
structures. All of the whole plot factors are tested against
the whole plot error, and all of the subplot factors along
with interactions between whole plot and subplot factors
are tested against the subplot error. Generally we find that
the subplot error variance is less than the whole plot error
variance, because the subplots are wusually more
homogeneous than the whole plots. Because the subplot
treatments are compared with greater precision, it is
preferable to assign the factor we are most interested in to
the subplots, if possible. However, practical or economic
considerations of the hard-to-change versus easy-to-change
nature of the factors may make this impossible.

JMP will construct and analyze split-plot designs. Some of
the JMP output for the ©pulp preparation
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method—temperature experiment is shown in Table 3.22. In
addition to an ANOVA summary for the model (see the
section in Table 3.22 labeled “Fixed Effect Tests”) JMP
also obtains estimates of the whole plot and subplot
variance components using a maximum likelihood
approach (see the section labeled “REML Variance
Components Estimates™). Both factors, pulp preparation
methods and temperature are significant, and there is
reasonable indication of an interaction between these
factors (the Pvalue is approximately 0.07). Also, we see
that the whole plot error estimate ive= 4.75, is greater than
the subplot error estimate @i = 1.625.

TABLE 3.22 JMP Output for the Split-Plot
Experiment in Table 3.21

Responsc ¥
Summary of Fit
B-Squarc 099508
B 0991261
1.274755
33625
®
Estkmate Sul Error DFDen r-Ratio Prob > |
Inseriepd 3625 LI7T9248 2 851 0002
X1 128 1179248 2 6R 00204
x2 4625 0450694 2 526 0.0004
XI'x2 1625 0450694 2 161 00651
REML Variance Componcnt Estinates
Random Effect Var Ratio Var Componest Sud Ervor 959 Lower 95% Upper Pet of Total
29230769 475 5621567 -~ 6268192 15. 768192 74510
1625 735 B.4405132 64, 184072 25.4%0
6.375 1000000
2 LogLikelibood =2545867972
Fined Effect Tess
Soune Nparm F DFen Frob = F
Xl 1 1 L0204
X2 1 i 000
X1°X2 1 1 0681

3.1 A router is used to cut registration notches on a printed
circuit board. The vibration at the surface of the board as it
is cut is considered to be a major source of dimensional
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variation in the notches. Two factors are thought to
influence vibration: bit size (4) and cutting speed (B). Two
bit sizes (|In and & inch) and two speeds (40 and 90 rpm) are
selected, and four boards are cut at each set of conditions
as shown in Table E3.1. The response variable is vibration
measured as the resultant vector of three accelerometers (x,
¥, and z) on each test circuit board.

TABLE E3.1 The 22 Design for Exercise 3.1

Replicate
A B Treatment Combination | 11 Il v
= xit; (1 13.2 18,9 129 14,4
- ] 27.2 24.0 224 225
b 159 14.5 15.1 14.2

al 41.0 43,9 63 399

(a) Analyze the data from this experiment.

(b) Construct a normal probability plot of the residuals and
a plot of the residuals versus the predicted vibration level.
Interpret these plots.

(c) Draw the AB interaction plot. Interpret this plot. What
levels of bit size and speed would you recommend for
routine operation?

(d) Construct a contour plot of vibration as a function of
speed and bit size.

3.2 An engineer is interested in the effects of cutting speed

(4), tool geometry (B), and cutting angle (C) on the life (in
hours) of a machine tool. Two levels of each factor are
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chosen, and two replicates of a 23 factorial design are run.
The results are shown in Table E3.2.

TABLE E3.2 The 2° Design for Exercise 3.2

Treament u

i B c Combination 1 I
(1) 17 11

I i 32 13
; : _ b 35 14
i ; (J.fr iﬂ 47
; ] : = 4 45
i k o 40 17

he i} 50
abe 39 41

(a) Estimate the factor effects. Which effects appear to be
large?

(b) Use the analysis of wvariance to confirm your
conclusions for part (a).

(c) Analyze the residuals. Are there obvious problems or
violations of the assumptions?

(d) What levels of A, B, and C would you recommend,
based on the data from this experiment?

3.3 An industrial engineer employed by a beverage bottler
is interested in the effects of two different types of
32-ounce bottles on the time to deliver 12-bottle cases of
the product. The two bottle types are glass and plastic.
Two workers are used to perform a task consisting of
moving 40 cases of the product 50 ft on a standard type of
hand truck and stacking the cases in a display. Four
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replicates of a 22 factorial design are performed, and the
times observed are given in Table E3.3. Analyze the data
and drawappropriate conclusions. Analyze the residuals
and comment on model adequacy.

TABLE E3.3 The 2? Design for Exercise 3.3

Time
Bottle Type | Worker 1 | Worker 2
Glass 5.12 6.65

4.98 5.49

4.89 6.24

5.00 5.55
Plastic 4.95 5.28

4.27 4.75

443 491

4.25 4.71

3.4 Find the two standard error limits for the factor effects
in Exercise 3.1. Does the results of this analysis agree with
the conclusions from the analysis of variance?

3.5 Find the two standard error limits for the factor effects
in Exercise 3.2. Does the result of this analysis agree with
the conclusions from the analysis of variance?

3.6 An experiment was performed to improve the yield of
a chemical process. Four factors were selected, and one
replicate of a completely randomized experiment was run.
The results are shown in Table E3.4.

TABLE E3.4 The 23 Design for Exercise 3.6
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Treatment Combination Yield Treatment Combination Yield

(1) M) i O

a o4 ad 62
h 8l b 87
ab 63 bl T35
F 17 el 1)
ac 6l aced 69
b b beed ni
abe 53 athed 6

(a) Estimate the factor effects. Construct a normal
probability plot of these effects. Which effects appear
large?

(b) Prepare an analysis of variance table using the
information obtained in part (a)

(c) Plot the residuals versus the predicted yield and on
normal probability paper. Does the residual analysis
appear satisfactory?

(d) Construct a contour plot of yield as a function of the
important process variables.

3.7 Consider the design of Exercise 3.6. Suppose that four
additional runs were made at the center of the region of
experimentation. The response values at these center
points were 94, 90, 99, and 87. Use this additional
information to test for curvature in the response function.
What are your conclusions?

3.8 An article in the AT&T Technical Journal (March/
April 1986, Vol. 65, pp. 39-50) describes the application
of two-level factorial designs to integrated circuit
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manufacturing. A basic processing step is to grow an
epitaxial layer on polished silicon wafers. The wafers
mounted on a susceptor are positioned inside a bell jar, and
chemical vapors are introduced. The susceptor is rotated
and heat is applied until the epitaxial layer is thick enough.
An experiment was run using two factors: arsenic flow rate
(4) and deposition time (B). Four replicates were run, and
the epitaxial layer thickness (in micrometers) was
measured. The data from this experiment are in Table
E3.5.

TABLE E3.5 The Layer Thickness Experiment from
Exercise 3.8

Rephicate Lewvel
A B I I 1l A Factor Low (=)} High (+)
14.037 16165 13972 13907 A 55% 59%
— 13880 13860 14032 13914 ] Short Long
14821 14757 14843 14878
14.88 14921 14415 14932

(a) Estimate the factor effects.

(b) Conduct the analysis of variance. Which factors are
important?

(¢) Analyze the residuals. Are there any residuals that
should cause concern?

(d) Discuss how you might deal with the potential outlier
found in part (c).

(e) Construct a contour plot of the layer thickness response
surface as a function of flow rate and deposition time.
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3.9 A nickel-titanium alloy is used to make components
for jet turbine aircraft engines. Cracking is a potentially
serious problem in the final part, because it can lead to
nonrecoverable failure. A test is run at the parts producer
to determine the effect of four factors on cracks. The four
factors are pouring temperature (4), titanium content (B),
heat treatment method (C), and amount of grain refiner
used (D). A single replicate of a 24 design is run, and the
lengths (in millimeters) of three cracks induced in a sample
coupon subjected to a standard test are measured. The data
are shown in Table E3.6.

TABLE E3.6 The Crack Length Experiment from
Exercise 3.9

A B C 0 Treatment Combination Crack Length
= = = == (1l 001 0015 0013
+ - - - d 1015 1.2 1018
t ] 0.014 0012 (.010
- - — — ab 1.032 1020 1046
- - i e 0440 D444 0450
iy 2388 2.253 2467
- : - - b 1.228 1. 106 1.306
- + . = abe 2,759 2.560 2830
d 0010 0013 (.008
- - -+ ad 0,593 (.542 (.631
= : = . bd 0,675 (.60 0.752
} i - byl 1.362 1.213 1.413
= = 1 t+ cd 0,544 (5491 (486
- - . - acd 2112 2,003 2218
! t bed 1.553 1.318 1.625
- + . - abed 2497 2.220 2753

(a) Use the average crack length as the response. Estimate
the factor effects. Which effects appear to be large?
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(b) Using the results of part (a), form a tentative model and
conduct an analysis of variance.

(c) Analyze the residuals from this model.

(d) Use the logarithm of the variance of crack length as the
response. Is there any evidence that any of the design
factors affect the variability in crack length?

(e) Make recommendations for process operating
conditions.

3.10 Reconsider the crack length experiment in Exercise
3.9. Factor C, type of heat treatment, is a categorical
variable. Write down the appropriate models for the mean
case length response for each type of heat treatment.

(a) Construct the contour plots of average crack length for
these two models. Comment on any differences in the
plots.

(b) Is there any evidence that one heat treatment method
results in lower variability in crack length than the other?

3.11 An article in Solid State Technology (“Orthogonal
Design for Process Optimization and its Application in
Plasma Etching,” May 1987, pp. 127-132) describes the
application of factorial designs in developing a nitride etch
process on a singlewafer plasma etcher. The process uses
C2F6 as the reactant gas. Four factors are of interest:
anode—cathode gap (A4), pressure in the reactor chamber
(B) C2F6 gas flow (C), and power applied to the cathode
(D). The response variable of interest is the etch rate for
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silicon nitride. A single replicate of a 24 design is run, and
the resulting data are in Table E3.7.

TABLE E3.7 The Etch Rate Experiment from Exercise
3.11

Actual Etch et

Run Run Rane

Number Order A B € D (A/min) Factor Low (=) High {+)
| 13 i 500 A {em) (L8 1.20)
2 B F = e = Hag B (mTomr) 4.5 5500
3 12 : 614 € (scem) 125 200
- 9 + o - = 630 0wy 275 325
5 4 - - 4 - (33

6 15 | | H42

7 16 - o = Gl

8 3 = 635

9 I | 1037

10 14 o i T49

I 5 =k T 1052

12 16} + + } B6R

13 3} - = 4+ + 1073

14 2 + = 4 B 60

15 7 + 1063

16 f $ = 4 4 729

(a) Estimate the factor effects. Construct a normal
probability plot of the factor effects. Which effects appear
large?

(b) Conduct an analysis of variance to confirm your
findings for part (a).

(c) Analyze the residuals from this experiment. Comment
on the model’s adequacy.
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(d) If not all the factors are important, project the 24
design into a 2k design with £ <4 and conduct the analysis
of variance.

(e) Draw graphs to interpret any significant interactions.

(f) Plot the residuals versus the actual run order. What
problems might be revealed by this plot?

3.12 Consider the single replicate of the 24 design in
Example 3.11. Suppose we had arbitrarily decided to
analyze the data assuming that all three- and four-factor
interactions were negligible. Conduct this analysis and
compare your results with those obtained in the example.
Do you think that it is a good idea to arbitrarily assume
interactions to be negligible even if they are relatively
high-order ones?

3.13 An experiment was run in a semiconductor
fabrication plant in an effort to increase the number of
good chips produced per wafer. Five factors, each at two
levels, were studied. The factors (and levels) were 4 =
aperture setting (small, large), B = exposure time (20%
below nominal), C = development time (30 sec, 45 sec), D
= mask dimension (small, large), and £ = etch time (14.5
min, 15.5 min). The unreplicated 25 design shown in Table
E3.8 is run.

TABLE E3.8 The 2° Experiment from Exercise 3.13
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(1) 15 o 16 € 14 de 12

& 20 ared 21 e 23 aufe 19
b 70 Ind 65 be 71 bl o0
ab 112 alnd 100 alve 110 abde 106
c 30 ol as e 3 cde 32
P, 40 acel 45 dce 43 acele 19
be 79 beed B3 bee 90 bede 82
by 125 abied 120 ahee 130 abede 128

(a) Construct a normal probability plot of the effect
estimates. Which effects appear to be large?

(b) Conduct an analysis of variance to confirm your
findings for part (a).

(c) Plot the residuals on normal probability paper. Is the
plot satisfactory?

(d) Plot the residuals versus the predicted yields and versus
each of the five factors. Comment on the plots.

(e) Interpret any significant interactions.

(f) What are your recommendations regarding process
operating conditions?

(g) Project the 25 design in this problem into a 2k design
in the important factors. Sketch the design, and show the
average and range of yields at each run. Does this sketch
aid in data interpretation?

(h) Construct a contour plot showing how yield changes in
terms of the important factors.
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3.14 After running a 24 factorial design, an engineer
obtained the following factor effect estimates:

A=-13 AB=-29 ABC = 0.5

B=10.1 AC=19 ABD = 1.8

cC=175 AD = -4 ACD = -27

D=-14 BC=-51 BCD =238
BD =122 ABCD = —0.6
CD = -0

Use a normal probability plot to interpret these effects.

3.15 Consider the data from the experiment in Exercise
3.11. Suppose that the last run made in this experiment
(run order number 16) was lost; in fact, the wafer was
broken so that no reading on etch rate could be obtained.
One logical approach to analyzing these data is to estimate
the missing value that makes the highest-order interaction
effect estimate zero. Apply this technique to these data,
and compare your results with those obtained in the
analysis of the full data set in Exercise 3.10.

3.16 Continuation of Exercise 3.15. Reconsider the
situation described in Exercise 3.15.

(a) Analyze the data by fitting a regression model in the
main effects to the 15 observations.

(b) Investigate the adequacy of this model. What are your
conclusions?

(c) Build a model for the 15 observations with stepwise

regression methods, using the main effects and two-factor
interactions as the candidate variables.
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(d) Comment on the model obtained above, and compare it
to those from Exercise 3.11 and 3.15.

3.17 Contour Plots for Exercise 3.11. Reconsider the etch
rate experiment in Exercise 3.11. Construct contour plots
for the etch rate response. Suppose that it is important to
operate this process with a mean etch rate very close to
800A /m. What operating conditions do you recommend?

3.18 An experiment was conducted on a chemical process
that produces a polymer. The four factors studied were
temperature (A4), catalyst concentration (B), time (C), and
pressure (D). Two responses, molecular weight and
viscosity, were observed. The design matrix and the
resulting data are given in Table E3.9.

TABLE E3.9 The Chemical Process Experiment,
Exercise 3.18

Rus Run Muolevilas —
Number Order \ o ‘ n Weight Viscosity Factor Low {—} Highi+)
1 15 2400y 1400 NiC) 100 120
3 9 s 410 1500 Bi%) 4 &
13 25 1520 © (mim) n 3
4 L] . 2510 1630 0 (psi) 60 5
3 + 2615 1380
[ " - + 2625 1525
14 " + 2400y 1500
17 . - 2780 1620
2400 1400
10 7 2390 1525
i 2 * + 2300 1500
12 1o + + + 2500 1500
13 4 4 + 2625 1420
14 i . : s 2630 1400
15 15 - - - 2500 1300

16 n 2710 1600
17 [ 2515 1500
15 5 ] 1 0 0 2500 1460
i 16 [ [ 0 o 2400 1528
20 12 [ i 0 0 2475 1500

(a) Consider only the molecular weight response. Plot the
effect estimates on a normal probability scale. What effects
appear important?
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(b) Use an analysis of variance to confirm the results from
part (a). Is there indication of curvature?

(¢) Write down a regression model to predict molecular
weight as a function of the important variables.

(d) Analyze the residuals and comment on model
adequacy.

(e) Repeat parts (a)—(d) using the viscosity response.

3.19 Continuation of Exercise 3.18. Use the regression
models for molecular weight and viscosity to answer the
following questions.

(a) Construct a response surface contour plot for molecular
weight. In what direction would you adjust the process
variables to increase molecular weight?

(b) Construct a response surface contour plot for viscosity.
In what direction would you adjust the process variables to
decrease viscosity?

(c) What operating conditions would you recommend if it
is necessary to produce a product with molecular weight
between 2400 and 2500 and with low viscosity?

3.20 Consider the experiment described in Exercise 3.1.
Suppose that only one replicate (four runs) could be
obtained in a single 4-hr time period, and the
experimenters were concerned about unknown factors that
could vary from one time period to another.
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(a) Set up a design in four blocks that will minimize the
time effects.

(b) Analyze the data assuming that the design had been run
as in part (a). Compare the results of your analysis with the
original analysis in Exercise 3.1.

(c) Suppose that the experimenter’s concerns were realized
and that as a result of the time effect, the observations in
replicate IV were (1) =34.4, a =44.5, b =34.2, and ab =
59.9 instead of the wvalues shown in Exercise 3.1.
Reanalyze these new data, assuming that the blocked
design from part (a) had been used. How has the time
effect influenced your conclusions?

3.21 Consider the experiment described in Exercise 3.2.
Suppose that this experiment had been run with each
replicate considered as a block. Analyze the data and draw
conclusions. How do the results of your analysis compare
with the analysis of the original Exercise 3.2?

3.22 Consider only the data from the first replicate of
Exercise 3.2. Set up a design to run these observations in
two blocks of four runs each with 4BC confounded with
blocks. Analyze the data.

3.23 Consider the data from both replicates of Exercise
3.2. Suppose that only four runs could be made under the
same conditions, so that it was necessary to run this design
in blocks of four runs.

(a) Set up a design that confounds ABC in both replicates.
Analyze the data.
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(b) Set up a design that confounds ABC in the first
replicate and AB in the second replicate. Analyze this
design, using the data from replicate I to draw conclusions
about the AB effect, and the data from replicate II to draw
conclusions about the ABC effect (this is a design
technique called partial confounding).

3.24 Consider the data from Exercise 3.6. Construct a
design with two blocks of eight runs each, with ABCD
confounded with blocks. Analyze the data.

3.25 Continuation of Exercise 3.24. Reconsider the
situation in Exercise 3.24, and assume that the block effect
causes all observations in the second block to be reduced
by 20. Analyze the data that result. Is the block effect
significant? How are the other conclusions affected?

3.26 Consider the situation described in Exercise 3.13. Set
up a design in two blocks for 16 observations each of this
problem. Analyze the data that result.

3.27 Consider the situation described in Exercise 3.13. Set
up a design in four blocks of eight runs each, with ACDE
and BCE confounded with blocks. What is the other
confounded effect? Analyze the data and draw
conclusions.

3.28 Construct a 26 design in eight blocks of eight runs

each. Show the complete set of effects that are confounded
with blocks.
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3.29 Suppose that an experimenter has run a 23 factorial
design (eight trials) in random order. He fits the following
model to the data:

y=PBo+ Bixi+ Brxa+ Byxz + &
(a) Suppose that the true model is

E(v) = By + Bix2 + Byxa + Byxsz + Baxix2

Does the interaction term result in biased estimates of fo, f
1, B 2, and S 3 in the fitted first-order model?

(b) Suppose that the true model is
E(y) = By + Bixi + Baxz + Bsxs + Boxixa + Byyx;

Determine the bias induced in the least squares estimates
of fo,f 1, f 2, and p 3 by the failure to include the terms
S12x1x2 and f11x21 in the fitted model.

3.30 An experimenter has run a 23 design in standard order
(no randomization). Unknown to the experimenter, a
fourth variable x4 takes on the values shown in Table
E3.10.

TABLE E3.10 The 23 Experiment for Exercise 3.30
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Suppose that the experimenter fits the first-order model

y=PF6y+ Bix1+ Paxa+ Bixs+ &

Find the bias in the least squares estimates of fSo, f1, 52,
and f 3 that results from not including the term f 4x4 in the

model.

3.31 Consider the runs from a 23 factorial design shown in
Table E3.11, in random order. The first four observations
are subject to a block effect of 20 units.

TABLE E3.11 The 23 Experiment for Exercise 3.31

Run Order A B c Observation
| - + — abr + 20
2 i+ 20
3 — - - (1y+ 20
4 | ahe 4+ 20
3 = } = b

4] = - i

7 ¥ [

!’; w— + i h\l'
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(a) Find the effect of the block effect on the estimates of
the main effects of 4, B, and C.

(b) Suppose that the design had been set up with ABC
confounded with blocks, and once again, the first 4 runs
were subject to a block effect of 20 units. What is the
effect of this block effect on the estimates of 4, B, and C?

3.32 Consider a 23 design with a center point that has been
replicated nC times. Show that the runs at the center do not
affect the estimates of any of the factorial affects. Do the
center points affect the estimate of the overall mean? Will
these results generalize to any 2k design?

3.33 Consider the 2¥ design with »C center points. Show
that an unbiased estimate of the sum of the pure quadratic

coefficients (2-i-1Bi) in a second-order model can be
obtained from the difference between ¥F and ¥ .

3.34 Consider the 2% design with nC center points. We
gave an F-test for pure quadratic curvature. Show that the
same hypothesis can be tested using a #-test.

3.35 Consider the plasma etching experiment described in
Exercise 3.11. Suppose that factor A4, the anode-cathode
gap, is a hard-to-change factor. Set up an appropriate
split-plot design for conducting this experiment.

3.36 Consider the chemical process experiment described
in Exercise 3.18. Suppose that temperature is a
hard-to-change factor. Set up an appropriate split-plot
design for conducting this experiment.
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4
TWO-LEVEL FRACTIONAL FACTORIAL DESIGNS
4.1 INTRODUCTION

As the number of factors in a 2% factorial design increases,
the number of runs required for a complete replicate of the
design rapidly outgrows the resources of most
experimenters. For example, a complete replicate of the 26
design requires 64 runs. In this design only 6 of the 63
degrees of freedom are used to estimate the main effects,
and only 15 degrees of freedom are used to estimate the
two-factor interactions. The remaining 42 degrees of
freedom are associated with three-factor and higher
interactions.

If the experimenter can reasonably assume that certain
high-order interactions are negligible, then information on
the main effects and low-order interactions may be
obtained by running only a fraction of the complete
factorial experiment. These fractional factorial designs
are among the most widely used types of design in
industry.

A major use of fractional factorials is in screening
experiments. These are experiments in which many
factors are considered with the purpose of identifying
those factors (if any) that have large effects. Remember
that screening experiments are usually performed early in a
response surface study when it is likely that many of the
factors initially considered have little or no effect on the
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response. The factors that are identified as important are
then investigated more thoroughly in subsequent
experiments.

The successful use of fractional factorial designs is based
on three key ideas:

1. The Sparsity-of-Effects Principle. When there are
several variables, the system or process is likely to be
driven primarily by some of the main effects and low-order
interactions.

2. The Projection Property. Fractional factorial designs
can be projected into stronger (larger) designs in the subset
of significant factors.

3. Sequential Experimentation. It is possible to combine
the runs of two (or more) fractional factorials to assemble
sequentially a larger design to estimate the factor effects
and interactions of interest.

We will focus on these principles in this chapter and
illustrate them with several examples.

4.2 THE ONE-HALF FRACTION OF THE 2¥ DESIGN

Consider the situation in which three factors, each at two
levels, are of interest, but the experimenters do not wish to
run all 2° = 8 treatment combinations. Suppose they
consider a design with four runs. This suggests a one-half
fraction of a 2° design. Because the design contains 237!
= 4 treatment combinations, a one-half fraction of the 23
design is often called a 237! design.
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The table of plus and minus signs for the 23 design is
shown in Table 4.1. Suppose we select the four treatment
combinations a, b, ¢, and abc as our one-half fraction.
These runs are shown in the toSp half of Table 4.1 and in
Fig. 4.1a. Notice that the 2 -1 design is formed by
selecting only those treatment combinations that have a
plus in the ABC column. Thus, ABC 1is called the
generator of this particular fraction. Sometimes we will
refer to a generator such as ABC as a word. Furthermore,
the identity column / is also always plus, so we call

I =ABC

TABLE 4.1 Plus and Minus Signs for the 23 Factorial
Design

Factorial Effect
Treatment

Combination I A B C Al AC BC ABC

a 3 S = = =
b - — - = ~ + -

j

il

ah - - £ - 4 - = e
a ; - - - +

B E: - } 3 = =

(4] - - - - 4 4 ' =

Figure 4.1 The two one-half fractions of the 23 design. (a)
The principal fraction, / = +4BC. (b) The alternate
fraction, / =—-ABC.
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the defining relation for our design. In general, the
defining relation for a fractional factorial will be the set of
all columns that are equal to the identity column /.

The treatment combinations in the 23! design yield three
degrees of freedom that we may use to estimate the main
effects. Referring to Table 4.1, we note that the linear
combinations of the observations used to estimate the main
effects of 4, B, and C are

[A] = éiu - b — ¢+ abe)
B8] = éi @+ b — ¢+ abc)
[(Cl= !1’ a—b+ e+ abe)

It is also easy to verify that the linear combinations of the
observations used to estimate the two-factor interactions
are

|-Hf-| m _I.h-' b= ¢+ abe)
[AC] =£l a+b—c+ab)
|[AR] = _I.l a =4+ ¢+ abc)

Thus, [A]l = [BC]. [B] = [AC], and [C] = [AB] consequently, it is
impossible to differentiate between 4 and BC, B and AC,
and C and 4B. In fact, when we estimate 4, B, and C we
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are really estimating 4 + BC, B+ AC, and C + AB. Two or
more effects that have this property are called aliases. In
our example, 4 and BC are aliases, B and AC are aliases,

and C and 4B are aliases. We indicate this by the notation
[A] — A + BC, [Bl — B + AC, and [C] — C + AB

The alias structure for this design may be easily
determined by using the defining relation / = ABC.
Multiplying any column by the defining relation yields the
aliases for that effect. In our example, this yields as the
alias of 4

A-1=A-ABC = A’BC

or, because the square of any column is just the identity 7,

A=BC

Similarly, we find the aliases of B and C as

B-I=B-ABC
B =AB*C = AC
and
C-1=C-ABC
C=ABC* = AB

This one-half fraction, with / = +4BC, is usually called the
principal fraction
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Now suppose that we had selected the other one-half
fraction; that is, the treatment combinations in Table 4.1
associated with a minus sign in the ABC column. This
alternate or complementary fraction is shown in Fig.
4.1b. Notice that it consists of the runs labeled (1), ab, ac,
and bc. The defining relation for this design is

I = —-ABC

The linear combination of the observations, say [ 4l [B],
and [C], from the alternate fraction gives us the following
alias relationships:

[A] — A — BC
[B) — B - AC
[C] — C—AB

Thus, when we estimate 4, B, and C with this particular
fraction, we are really estimating A — BC, B — AC, and C —
AB.

In practice, it does not matter which fraction is actually
used. Both fractions belong to the same famlly, that is, the
two one-half fractions form a complete 23 design. This is
easily seen by referring to Fig. 4.1a and 4.1b.

Suppose that after running one of the one-half fractions of
the 2° design, the other one was also run. Thus, all eight
runs associated with the full 2° are now available.We may
now obtain de-aliased estlmates of all the effects by
analyzing the eight runs as a full 23 design in two blocks of
four runs each. This could also be done by adding and
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subtracting the linear combination of effects from the two
individual fractions. For example, consider [4] — 4 + BC
and [A]' — A — BC This implies that

LAl +[A1) =LA+ BC+A - BC) — A

and

L([A] - [A]) = (A + BC — A + BC) — BC

Thus, for all three pairs of linear combinations, we would
obtain the following:

i [From Ui+ i1} prom (11 = [i)
A|A BC
B|B AC
c|C AB

Design Resolution The preceding 231 design is called a
resolution IIl design. In such a design, main effects are
aliased with two-factor interactions. A design is of
resolution R if no p-factor effect is aliased with another
effect containing less than R — p factors. We usually
employ a Roman numeral subscript to denote design
resolution; thus, the one-half fraction of the 23 design with
the defining relation / = ABC (or I = —-ABC) is a 2
design.

Designs of resolution III, IV, and V are particularly

important. The definitions of these designs and an example
of each follow.
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1. Resolution III Designs. These are designs in which no
main effects are aliased with any other main effect, but
main effects are aliased with two-factor interactions and
two factor interactions may be aliased with each other. The
231 design in Table 4.1 is of resolution III (vm ).

2. Resolution IV Designs. These are designs in which no
main effect is aliased with any other main effect or with
any two-factor interaction, but two-factor interactions are
aliased with each other A2+ demgn with / = ABCD is of
resolution IV (Ziv ).

2. Resolution IV Designs. These are designs in which no
main effect is aliased with any other main effect or with
any two-factor interaction, but two-factor interactions are
aliased with each other A% demgn with / = ABCD is of
resolution IV (Ziv ).

3. Resolution V Designs. These are designs in which no
main effect or two-factor interaction is aliased with any
other main effect or two-factor interaction, but two-factor
interactions are aliased with three-factor interactions. A
2> design with / = ABCDE is of resolution V @,

In general, the resolution of a two-level fractional factorial
design is equal to the smallest number of letters in any
word in the defining relation. Consequently, we could call
the preceding design types three-letter, four-letter, and
five-letter designs, respectively.We usually like to employ
fractional designs that have the highest possible resolution
consistent with the degree of fractionation required. The
higher the resolution, the less restrictive the assumptions
that are required regarding which interactions are
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negligible in order to obtain a unique interpretation of the
data.

Constructing One-Half Fractions A one-half fraction of
the 2F design of the highest resolution may be constructed
by writing down a basic design consisting of the runs for a
full 251 factorial and then adding the kth factor by
identifying its plus and minus levels with the plus and
minus signs of the highest-order interaction ABC ... (K= 1),
Therefore, the 2im' fractional factorial is obtained by
writing down the full 22 factorial as the basic design and
then equating factor C to the AB interaction. The alternate
fraction would be obtained by equating factor C to the —4B
interaction. This approach is illustrated in Table 4.2.
Notice that the basic design always has the right number of
runs (rows), but it is missing one column. The generator K
= ABC...(K—=1) defines the product of plus and minus
signs to use in each row to produce the levels for the ith
factor.

TABLE 4.2 The Two One-Half Fractions of the 23
Design

TR
Full 27 Factorial

(Basic Design} i), 1= ABC I, I= —ABC

~+3
=m

Fun A B A B C=AB A B C=—Af8

R

Note that any interaction effect could be used to generate
the column for the kth factor. However, using any effect
other than ABC...(K = 1) ag the generator will not produce
a design of the highest possible resolution.
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Another way to view the construction of a one-half
fraction is to partition the runs into two blocks with the
highest-order interaction ABC...K confounded. Each
block is a 28 fractional factorial design of the highest
resolution.

Projection of Fractions into Factorials Any fractional
factorial design of resolution R contains complete factorial
designs (possibly replicated factorials) in any subset of R —
1 factors. This is an important and useful concept. For
example, if an experimenter has several factors of potential
interest but believes that only R — 1 of them have important
effects, then a fractional factorial design of resolution R is
the appropriate choice of design. If the experimenter is
correct, then the fractional factorial design of resolution R
will project into a full factorial in the R — 1 significant
factors. This process is illustrated in Fig. 4.2 for the 2!
design, which projects into a 2? design in every subset of
two factors.

Figure 4.2 Projection of a 2 design into three 2? designs.
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Because the max1mum possible resolutlon of a one-half
fraction of the 2% design is R = k, every 2k demgn will
project into a full factorlal in any k — 1 of the original k&
factors. Furthermore, a 2k des1gn may be projected into
two replicates of a full factorial in any subset of &k — 2
factors, four replicates of a full factorial in any subset of k&
— 3 factors, and so on.

Sequences of Fractional Factorials Using fractional
factorial designs often leads to great economy and
efficiency in experimentation, particularly if the runs can
be made sequentially. For example, suppose that we were
investigating k = 4 factors (27 = 16 runs). It is almost
always preferable to run a 2! fractional design (8 runs),
analyze the results, and then decide on the best set of runs
to perform next. If it is necessary to resolve ambiguities,
we can always run the alternate fraction and complete the
24 design. When this method is used to complete the
design, both one-half fractions represent blocks of the
complete design with the highest-order interaction
confounded with blocks (here ABCD) would be
confounded. Thus, sequential experimentation has the
result of losing information only on the highest-order
interaction. Alternatively, in many cases we learn enough
from the one-half fraction to proceed to the next stage of
experimentation, which might involve adding or removing
factors, changing responses, or varying some of the factors
over new ranges. This potential saving can prove valuable,
with additional resources being available for subsequent
stages of experimentation.

Example 4.1 The Filtration Rate Experiment Consider
the filtration rate experiment in Example 3.2. The original
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design, shown in Table 3.6, is a single replicate of the 24
design. In this example, we found that the main effects 4,
C, and D and the interactions AC and AD were different
from zero. We will now return to this experiment and
simulate what would have happened if a half-fraction of
the 2* design had been run instead of the full factorial.

We will use the 247! design with / = ABCD, because this
choice of generator will result in a design of the highest
possible resolution (IV). To construct the design, we first
write down the basic design, which is a 23 design, as
shown in the first three columns of Table 4.3. Because the
generator ABCD is positive, this 2! design is the
principal fraction. The design is shown graphically in Fig.
4.3.

TABLE 4.3 The 2’ Design with the Defining Relation
I=ABCD

Basic Design s . :
2 Treatment Filtration

A B C D= ABC Combination Rate

= — - = (1) 45
t el 100
= - = : B 45
- ah 65

- -~ 4 [ ced 75
= - — o il

b 20

abeed Un

-l Wk — | ®m
=4

Figure 4.3 The 2iv' design for the filtration rate
experiment of Example 4.1.
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Using the defining relation, we note that each main effect
is aliased with a three-factor interaction; that is, 4 =
A*BCD = BCD, B = AB*CD = ACD, C = ABC*D = ABD,
and D = ABCD? = ABC. Furthermore, every two-factor
interaction is aliased with another two-factor interaction.
These alias relationships are AB = CD, AC = BD, and BC =
AD. The four main effects plus the three two-factor
interaction alias pairs account for the seven degrees of
freedom for the design.

At this point, we would normally randomize the eight runs
and perform the experiment. Because we have already run
the full 2* design, we will simply select the eight observed
filtration rates from Example 3.2 that correspond to the
runs in the 2iv' design. These observations are shown in
the last column of Table 4.3 and are also shown in Fig. 4.3.

The estimates of the effects obtained from this 2iv' design
are shown in Table 4.4. To illustrate the calculations, the
linear combination of observations associated with the A
effect is

260



TABLE 4.4 Estimates of Effects and Aliases from
Example 4.1

Estimate Alias Structure”
[4]=19.00 |[4] —A + BCD
[B]=1.50 |[B] =B+ ACD
[C]=14.00 |[C] —C+ABD
[D]=16.50 |[D] —D +ABC
[AB] =—-1.00 |[AB] —AB+ CD
[AC] =-18.50 | [AC] —AC + BD
[BC]=19.00 |[BC] —BC+AD

4Significant effects are shown in boldface type.

[A] = 3‘(—~45 + 100 — 45 + 65 — 75 + 60 — 80 4+ 96) = 19.00 — A + BCD

whereas for the 4B effect we obtain

[AB] = 41(45 — 100 =45 +654+75 - 60 —80+4+96) = -1.00 — AB+4+ CD

From inspection of the information in Table 4.4, it is not
unreasonable to conclude that the main effects 4, C, and D
are large and that the AC and AD interactions are also
significant. This agrees with the conclusions from the
analysis of the complete 24 design in Example 3.2.

Because factor B is not significant, we may drop it from
consideration. Consequently, we may project this 2iv'
design into a single replicate of the 23 design in factors A4,
C, and D, as shown in Fig. 4.4. Visual examination of this
cube plot makes us more comfortable with the conclusions
reached above. Notice that if the temperature (4) is at the
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low level, the concentration (C) has a large positive effect,
whereas if the temperature is at the high level, the
concentration has a very small effect. This is likely due to
an AC interaction. Furthermore, if the temperature is at the
low level, the effect of the stirring rate (D) is negligible,
whereas if the temperature is at the high level, the stirring
rate has a large positive effect. This is likely due to the AD
interaction tentatively identified previously.

Figure 4.4 Projection of the 2iv'design into 23 design in
A, C, and D for Example 4.1.
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Now suppose that the experimenter decided to run the
alternate fraction, given by I = -4ABCD. 1t is
straightforward to show that the design and the responses
are as follows:

262



Treatment Filtrstion

Run A fig C D= -=ABC Combination Rate
| - - - b d 43
2 - - a 71
3 = - b 48
4 + abd T4
5 = = + = s 68
4] - 4 + e 86
7 - + + + bed T0
8 + + + - abe 65

The linear combinations of observations obtained from this
alternate fraction are

[A] = 2425 — A — BCD
[B] =475 — B—ACD
[CT =575 — C—ABD
[DY = 12.75 — D —ABC
[AB] =125 — AB-CD
[ACT = —-17.75 — AC - BD
[BCY = —14.25 — BC —AD

These estimates may be combined with those obtained
from the original one-half fraction to yield the following
estimates of the effects:

i |rom MATHIADY [ o 1AL = 1A])
A |21.63 -4 22.63 -BCD

B [3.13 -B 21.63 -ACD

C 19.88 =»C 4.13 -ABD

D |[14.63 —-D 1.88 =ABC
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i |From 1141 + A1) From 3(14] — 1A1)
AB|0.13 4B 2113 5CD
AC|218.13 —AC 2038 —BD
BC|2.38 -BC 16.63 —>AD

These estimates agree exactly with those from the original
analysis of the data as a single replicate of a 2% factorial
design, as reported in Example 3.2.

Example 4.2 A 251 Design Five factors in a
manufacturing process for an integrated circuit were
investigated in a 2> design with the objective of learning
how these factors affect the resistivity of the wafer. The
five factors were 4 = implant dose, B = temperature, C =
time, D = oxide thickness, and £ = furnace position. Each
factor was run at two levels. The construction of the 2°~!
design is shown in Table 4.5. Notice that the design was
constructed by writing down the basic design having 16
runs (a 24 design in 4, B, C, and D), selecting ABCDE as
the generator, and then setting the levels of the fifth factor
E = ABCD. Figure 4.5 gives a pictorial representation of
the design.

TABLE 4.5 A 257! Design for Example 4.2
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Treaiment

Run A B C D E=ABCD Combination Resistivity
1 - - - - + ¢ 15.1
2 + - = = = a 206
3 = + = = — b 68.7
4 + + - - + abe 100.0
5 - i + = a € e
6 + + = + are 46.1
7 = + + = + bee 87.5
8 + + + = = abe 119.0
9 - == — + = d 11.3
10 + - - + + tde 19.6
11 - + - + + bde 62.1
12 + + = + = abd 103.2
13 = = + + + ede 27.1
14 + - + + - acel 40.3
15 = + + = bed 8.7
16 + - e - + abede 128.3

Figure 4.5 The 2\ 'design for Example 4.2.
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The defining relation for the design is / = ABCDE.
Consequently, every main effect is aliased with a
four-factor interaction:

[A] — A+ BCDE
[B] — B+ ACDE
[C] — C+ABDE

[D] — D+ ABCE
[E] — E+ABCD

Every two-factor interaction is aliased with a three-factor
interaction:
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[AB] — AB+CDE  [BD] — BD+ ACE
[AC] — AC+BDE [BE] — BE + ACD
[AD] — AD+BCE [CD] — CD+ABE
[AE] — AE+BCD [CE] — CE+ABD
[BC] — BC+ADE  [DE] — DE+ABC

This is a resolution V design. We would expect this 2t '
design to provide excellent information concerning the
main effects and all two-factor interactions.

The estimates of the effects are

[A] — A+ BCDE =23.2125
[B] — B+ ACDE = 68.0625
[C] — C+ABDE =209125
[D] — D+ABCE =—-14125
[E] — E+ABCD =0.3875

[AB] — AB+ CDE =13.1625  [BD] — BD+ ACE = 2.6875
[AC] — AC + BDE = 1.4125 [BD] — BE+ACD = —0.3125
[AD] — AD + BCE = 2.5875 [CD] — €D + ABE = 0.8875
[AE] — AE + BCD = 2.5875 [CE] — CE + ABD = 1.8875
[BC] — BC + ADE = 0.9675 [DE] — DE + ABC = —1.7375

The effects 4, B, C, and AB seem large. Figure 4.6 presents
a normal probability plot of the effect estimates from this
experiment. This plot confirms that the main effects of 4,
B, and C, and the 4B interaction are large. Remember that,
because of aliasing, these effects are really 4 + BCDE, B +
ACDE, C + ABDE, and AB + CDE. However, because it
seems plausible that three-factor and higher interactions
are negligible, we feel safe in concluding that only 4, B, C,
and 4B are important effects.
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Figure 4.6 Normal probability plot of effects for Example
4.2.
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Table 4.6 summarizes the analysis of variance for this
experiment. The model sum of squares is
SSmodel = 854+ 55 + SSc + 85w =" 2312763, and this
accounts for over 99% of the total variability in the
response. The regression model that would be used to
predict resistivity over the space of the three factors 4, B,
and C is

TABLE 4.6 Analysis of Variance for Example 4.2

Source of Sum of Degrees of Mean

Yaration Squares Freedom Square Fu

A 215528 | 215528 19320
B 18,530.02 | 18.530.02 1791.24
C 1749.33 | 1749.33 184.61
AB 693,01 | 693,01 73.78
Error 132.59 11 12.05

Total 23.260.22 15
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¥ = 60.65625 + 11.60625x; + 34.03125x2 + 10.45625x3 + 6.58125x1x2

where x1, x2, and x3 are coded variables on the interval —1,
+1 that represent 4, B, and C.

Figure 4.7 presents a normal probability plot of the
residuals from this model, and Fig. 4.8 is a plot of the
residuals versus the predicted values. Both plots are
satisfactory.

Figure 4.7 Normal probability plot of the residuals for
Example 4.2.
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Figure 4.8 Plot of residuals versus predicted resistivity,
Example 4.2.
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The three factors 4, B, and C have large positive effects.
The AB or implant dose— temperature interaction is plotted
in Fig. 4.9. This plot indicates that the implant dose has a
much stronger effect on resistivity when temperature is at
the high level.

Figure 4.9 Implant dose—temperature interaction, Example
4.2.

1283 -

B+
108.8 =
89.3

B+
69.8 ~

Prodicled resistivity

50.3 =

30.8 - /n_
B-

1.3 -

270



The 277! design will collapse into two replicates of a 23
design in any three of the original five factors. (Looking at
Fig. 4.5 will help you visualize this.) Figure 4.10 is a cube
plot in the factors 4, B, and C with the average resistivity
superimposed on the eight corners. It is clear from
inspection of the cube plot that highest resistivity values
are achieved with 4, B, and C all at the high level. Factors
D and FE have little effect on resistivity and may be set to
values that optimize other objectives (such as cost).

Figure 4.10 Projection of the 2V ' design in Example 4.2
into two replicates of a 23 design in the factors 4, B, and C.

87.6 123.7
(]
1
]
55_4./-: ./
Ll . 102.1
i
|
B |
JELH . /m ,
.-"‘, 4 c
Ll .
13.2 20.1
| ]
- *
A

43 THE ONE-QUARTER FRACTION OF THE ok
DESIGN

Fora moderately large number of factors, smaller fractions
of the 2K design are frequently useful. Consider a
one-quarter fraction of the 2k demfn This design contains
252 runs and is usually called a 2 ™ fractional factorial.
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The 272 design may be constructed by first writing down
a basic design consisting of the runs associated with a full
factorial in k& — 2 factors and then associating the two
additional columns with generators that are appropriately
chosen interactions involving the first £ — 2 factors. Thus, a
one-quarter fraction of the 2" design has two generators. If
P and Q represent the generators chosen, then /=P and I =
Q are called generating relations for the design. The signs
of P and Q (either + or —) determine which one of the
one-quarter fractions is produced. All four fractions
associated with the choice of generators +P and +Q are
members of the same family. The fraction for which both
P and Q are positive is the principal fraction.

The complete defining relation for the design consists of
all the columns that are equal to the identity column 1.
These will consist of P, O, and their generalized
interaction PQ; that is, the defining relationis /=P =0 =
PQ. We call the elements P, Q, and PQ in the defining
relation words. The aliases of any effect are produced by
the multiplication of the column for that effect by each
word in the defining relation. Clearly, each effect has three
aliases. The experimenter should be careful in choosing the
generators so that potentially important effects are not
aliased with each other.

As an example, consider the 262 design. Suppose we
choose I = ABCE and I = BCDF as the design generators.
Now the generalized interaction of the generators ABCE
and BCDF is ADEF; therefore, the complete defining
relation for this design is

! = ABCE = BCDF = ADEF
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Consequently, this design is of resolution IV. To find the
aliases of any effect (e.g., 4), multiply that effect by each
word in the defining relation. For 4, this produces

A = BCE = ABCDF = DEF

It is easy to verify that every main effect is aliased by
three-factor and five-factor interactions, whereas
two-factor interactions are aliased with each other and with
higher-order interactions. Thus, when we estimate A, for
example, we are really estimating 4 + BCE + DEF +
ABCDF. The complete alias structure of this design is
shown in Table 4.7. If three-factor and higher interactions
are negligible, this design gives clear estimates of the main
effects.

TABLE 4.7 Alias Structure for the 2" Design with I =
ABCE = BCDF = ADEF

A=BCE = DEF = ABCDF

AB = CE =ACDF = BDEF

B = ACE = CDF = ABDEF

AC = BE = ABDF = CDEF

C=A4BE = BDF = ACDEF

AD = EF = ABDF = CDEF

D =BCF =AEF =ABCDE

AE =BC=DF = ABCDEF

E=ABC = ADF = BCDEF

AF =DE = BCEF = ABCD

F=BCD = ADE = ABCEF

BD = CF=ACDE = ABEF

BF=CD=ACEF = ABDE

ABD = CDE = ACF = BEF

ACD = BDE = ABF = CEF

To construct the design, first write down the basic design,
which consists of the 16 runs for a full 2672 = 2* design in
A, B, C, and D. Then the two factors E and F are added by
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associating their plus and minus levels with the plus and
minus signs of the interactions ABC and BCD,
respectively. This procedure is shown in Table 4.8.

TABLE 4.8 Construction of the 2’ Design with the
Generators

I = ABCE and [ = BCDF

Fun A i C 2 E=ABC F=RBCD

20 =) B LA b el bJ =
|
|
|

=]

10 _ _ .

1 - } - ; ; -
12 - ; - a ~

13 - - 4 ; + .
14 ; - + 4 i 2
15 -

16 ' ; } ' a

There are, of course, three alternate fractions of this
particular 27 design. They are the fractions with
generating relationships / = ABCE and [ = -BCDF; [ =
—ABCE and [ = BCDF; and I = —-ABCE and [ = —BCDF.
These fractions may be easily constructed by the method
shown in Table 4.8. For example, if we wish to find the
fraction for which / = ABCE and [ = —BCDF, then in the
last column of Table 4.8 we set /' =—-BCD, and the column
of levels for factor F' becomes
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The complete defining relation for this alternative fraction
is [ = ABCE = —-BCDF = —ADEF. Certain signs in the alias
structure in Table 4.8 are now changed; for instance, the
aliases of A are A = BCE = -DEF = —ABCDF. Thus, the
linear combination of the observations [A4] actually
estimates A + BCE — DEF — ABCDF.

Finally, note that the 2 u  fractional factorial collapses to a
single replicate of a 24 design in any subset of four factors
that is not a word in the defining relation. It also collapses
to a replicated one-half fraction of a 2% in any subset of
four factors that is a word in the defining relation. Thus
the design in Table 4.8 becomes two replicates of a 2+

the factors ABCE, BCDF, and ABEF, because these are the
words in the defining relation. There are 12 other
combinations of the six factors, such as ABCD, ABDF, and
SO on for which the design projects to a single replicate of
the 2%, This design also collapses to two replicates of a2’
in any subset of three of the six factors or four replicates of
a2%in any subset of two factors.

In general, any 2%2 fractional factorial design can be
collapsed into either a full factorial or a fractional factorial
in some subset of » < k — 2 of the original factors. Those
subsets of variables that form full factorials in » =k — 2 are
not words in the complete defining relation. Any subset of
r =3 factors will give a full factorial design.

Example 4.3 The Injection Molding Experiment Parts

manufactured in an injection molding process are showing
excessive shrinkage. This is causing problems in assembly
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operations downstream from the injection molding area. A
quality improvement team has decided to use a designed
experiment to study the injection molding process so that
shrinkage can be reduced. The team decides to investigate
six factors—mold temperature (A4), screw speed (B),
holding time (C), cycle time (D), gate size (E), and holding
pressure (F)—each at two levels, with the objective of
learning how each factor affects shrinkage and also
something about how the factors interact.

The team decides to use the 16-run two-level fractional
factorial design in Table 4.8 along with four center points,
so that the linearity of the response function can be
investigated via a curvature test. The design is shown in
Table 4.9, along with the observed shrinkage (x10) for the
test part produced at each of the 20 runs in the design.

TABLE 4.9 A 2" Design for the Injection Molding
Experiment in Example 4.3
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Ohserved

Shrinkage
Run A i L fal E=ABC F=B8ChH (= 1)
1 - - - - - - (4]
2 = = = 1 = 10
3 32
4 + Gl
5 & = ; = + + 4
6 15
7 26
8 4 + = = i}
9 #
10 12
11 - - - 34
12 = = = 6l
13 1%
14 + - + = > 5
15 : = 37
16 + t + + t ¢ 52
17 0 0 0 0 0 L} 29
1% 0 0 1] 0 0 0 34
19 0 0 1] 0 0 0 26
20 0 0 0 0 0 [}] 30

A normal probability plot of the effect estimates from this
experiment is shown in Fig. 4.11. The only large effects
are A (mold temperature), B (screw speed), and the AB
interaction. In light of the alias relationships in Table 4.7,
it seems reasonable to adopt these conclusions tentatively.
Table 4.10 shows the analysis of variance for this
experiment. The pure error sum of squares is computed
from the replicate runs at the center, and the lack-of-fit
sum of squares is formed by pooling all the effects that
appeared small on the normal probability plot. Notice that
the lack-of-fit (higher-order interaction) and curvature
(quadratic) tests have small F-ratios, so the model is
correctly specified.
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Figure 4.11 Normal probability plot of effects for

Example 4.3.

Nermal probability, (1 - F;) = 100

T SR
=
-
g o
AR " =
L ]
| | | | | | |
10 15 20 25 30 35 40
Effect estimates

ﬂ;:!m

TABLE 4.10 Analysis of Variance for the Injection
Molding Experiment (Example 4.3)

Source of Sum of Degrees of Mean
Variation Squares Freedom Squares Fo P-Value
A T70.063 | TI0.063 41.033 118 x 107°%
& 5076.563 I 5076.563 270.505 525 x 107"
AB 564.063 | 564.063 30.056 L0001
Curvature 19.012 | 19.012 1.742 02786
Eesidual 281.500 15 18.767

Lack-of-fit (248.750) (12) 20.729 1.899 (0.3277

Pure ermor (32.75(00) [E}] 10.917
Total GT11.200 19

The plot of the AB interaction in Fig. 4.12 shows that the
process is insensitive to temperature if the screw speed is
at the low level but very sensitive to temperature if the
screw speed is at the high level. With the screw speed at
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the low level, the process should produce an average
shrinkage of around 10% regardless of the temperature
level chosen.

Figure 4.12 Plot of AB (mold-temperature—screw-speed)
interaction for Example 4.3.
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Based on this initial analysis, the team decides to set both
the mold temperature and the screw speed at the low level.
This set of conditions will reduce the mean shrinkage of
parts to around 10%. However, the variability in shrinkage
from part to part is still a potential problem. In effect, the
mean shrinkage can be substantially reduced by the above
modifications; however, the part-to-part variability in
shrinkage over a production run could still cause problems
in assembly. One way to address this issue is to see if any
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of the process factors affect the variability in parts
shrinkage.

Figure 4.13 presents the normal probability plot of the
residuals. This plot appears satisfactory. The plots of
residuals versus each factor were then constructed. One of
these plots, that for residuals versus factor C (holding
time), is shown in Fig. 4.14. The plot reveals that there is
much less scatter in the residuals at the low holding time
than at the high holding time. These residuals were
obtained in the usual way from the model for predicted
shrinkage

Figure 4.13 Normal probability plot of residuals for
Example 4.3.

| | | | |

—
o e,

P; x 100

Normal probability, (1 - Py} x 100

.
Y
o

Residuals

280



Figure 4.14 Residuals versus holding time (C) for
Example 4.4.
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¥ = bg + b1xy + baxas + byax1xo
= 27.3125 + 6.9375x) + 17.8125x2 + 3.9375x1x2

where x1, x2, and x1x2 are the coded variables that
correspond to the factors 4 and B and the AB interaction.
The residuals are then

e=y—7§

The regression model used to produce the residuals
essentially removes the location effects of 4, B, and AB
from the data; the residuals therefore contain information
about unexplained variability. Figure 4.14 indicates that
there is a pattern in the variability and that the variability
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in shrinkage of parts may be smaller when the holding
time is at the low level.

Figure 4.15 shows the data from this experiment projected
onto a cube in the factors 4, B, and C. The average
observed shrinkage and the range of observed shrinkage
are shown at each corner of the cube. From inspection of
this figure, we see that running the process with the screw
speed (B) at the low level is the key to reducing average
parts shrinkage. If B is low, virtually any combination of
temperature (4) and holding time (C) will result in low
values of average part shrinkage. However, from
examining the ranges of the shrinkage values at each
corner of the cube, it is immediately clear that setting the
holding time (C) at the low level is the only reasonable
choice if we wish to keep the part-to-part variability in
shrinkage low during a production run.

Figure 4.15 Average shrinkage (¥ and range of shrinkage
(R) in factors 4, B, and C for Example 4.3.
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In many response surface problems it is useful to actually
build a model for both the mean response and a measure of
the variability in response (such as the range, the variance,
or the standard deviation). In fact, we illustrated this in
Example 3.3. Then the optimization problem is a tradeoff
between these two criteria, such as minimizing the
variability while simultaneously moving the mean
response to a desired or target value. We will present
several techniques for doing this in subsequent chapters.

44 THE GENERAL 2¥? FRACTIONAL FACTORIAL
DESIGN

A 2% fractional factorial desi/gn containing %P runs s
called a 1/2” fraction of the 2" design or, more simply, a
2K fractional factorial design. These designs require the
selection of p independent design generators. The defining
relation for the design consists of the p generators initially
chosen and their 2” — p — 1 generalized interactions. In this
section we discuss the construction and analysis of these
designs.

The alias structure may be found by multiplying each
effect column by the defining relations. Care should be
exercised in choosing the generators so that effects of
potential interest are not aliased with each other. Each
effect has 27 — 1 aliases. For moderately large values of &,
we usually assume higher-order interactions (say, third- or
fourth-order and higher) to be negligible, and this greatly
simplifies the alias structure.

It is important to select the p generators for a okp
fractional factorial design in such a way that we obtain the
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best possible alias relationships. A reasonable crlterlon is
to select the generators such that the resulting AR design
has the hlghest possible resolution. Table 4.11 presents a
selection of 2¥7 fractlonal factorial designs for £ = 11
factors and up to n = 128 runs, adapted from Montgomery
(2005). The suggested generators in this table will result in
a design of the highest possible resolution. The alias
relationships for all of the designs in Table 4.11 for which
n = 64 are given in Appendix Table XlII(a—v) of
Montgomery (2005).

Example 4.4 Selection of a Fractional Factorial To
illustrate the use of Table 4.11, suppose that we have seven
factors and that we are interested in estimating the seven
main effects and getting some insight regarding the
two-factor interactions. We are willing to assume that
three-factor and higher interactions are negligible. This
information suggests that a resolution IV design would be
appropriate.

Table 4.11 shows that there are two resolutions IV
fractions available: the 2 design with 32 runs and the
2y" with 16 runs. Consider the 16-run design. This is a
one-eighth fraction with generators £ = +ABC, F = + BCD |
and & = £ ACD, and if we choose the principal fraction the
complete defining relation is

TABLE 4.11 Selected 2P Fractional Factorial Designs
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I = ABCE = BCDF = ADEF = ACDG = BDEG = ABFG = CEFG

Now because the design is of resolution 1V, it is clear that
the main effects will be aliased with at worst a three-factor
interaction. So if we can safely ignore these higher-order
interactions, this design will give excellent information on
the main effects. The two-factor interaction alias chains are

AB=CE=FG
AC = BE = DG
AD = EF = CG
AE = BC = DF
AF = DE = BG
AG = CD = BF
BD =CF = EG

when ignoring three-factor and higher interactions. Thus
this design would likely be satisfactory to satisfy the
experimenter’s objectives.

The complete design is shown in Table 4.12. Notice that it
was constructed by starting with the 16-run 24 design in 4,
B, C, and D as the basic design and then adding the three
columns £ = ABC, F = BCD, and G = ACD as suggested in
Table 4.11.

TABLE 4.12 A A 2" Fractional Factorial Design
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Basic Design

A B C 4] E=ABC F=BCD G = ACD

L=0- I = s e -~

16

Projection of the 2P Fractional Factorial The 257
design collapses into either a full factorial or a fractional
factorial in any subset of » = k — p of the original factors.
Those subsets of factors providing fractional factorials are
subsets appearing as words in the complete defining
relation. Furthermore, a design of resolution R will project
into a full factorial in any subset of R — 1 factors. These
results are particularly useful in screening experiments
when we suspect at the outset of the experiment that most
of the original factors will have small effects. The original
2¥ fractional factorial can then be projected into a full
factorial, say, in the most interesting factors. Conclusions
drawn from designs of this type should be considered
tentative and subject to further analysis. It is usually
possible to find alternative explanations of the data
involving higher-order interactions.

As an example, consider the elivh design from Example 4.4.

This is a 16-run design involving seven factors. It will
project into a full factorial in any four of the original seven
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factors that is not a word in the complete defining relation
(see Table 4.12). Thus, there are 28 subsets of four factors
that would form 2% designs. One combination that is
obvious upon inspecting Table 4.12 is 4, B, C, and D. It
will also form a replicated full factorial in any subset of
three of the original seven factors.

To illustrate the usefulness of this projection properly,
suppose that we are conducting an experiment to improve
the performance of a chemical process and the seven
factors are:

1. Concentration of reactant 4

2. Temperature

3. Feed rate

4. Time

5. Agitation rate

6. Concentration of reactant B

7. Catalyst type

We are fairly certain that time, temperature, catalyst type,
and concentration of reactant 4 will affect performance
and that these factors may interact. The role of the other
three factors is less well known, but it is likely that they
are negligible. A reasonable strategy would be to assign

these four factors to columns A4, B, C, and D, respectively,
in Table 4.12. The remaining three factors would be
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assigned to columns E, F, and G, respectively. If we are
correct and the “minor variables” E, F, and G are
negligible, we will be left with a full 2k design in the key
process variables.

4.5 RESOLUTION III DESIGNS

As indicated earlier, the sequential use of fractional
factorial designs is very useful, often leading to great
economy and efficiency in experimentation. We now
illustrate these ideas using the class of resolution III
designs. Box and Hunter (196la, b) are excellent
references for the technical details.

It is possible to construct resolution III designs for
investigating up to k = N — 1 factors in only N runs, where
N is a multiple of 4. These designs are frequently useful in
industrial experimentation. Designs in which N is a power
of 2 can be constructed by the methods presented earlier in
this chapter, and these are presented first. Of particular
importance are designs requiring 4 runs for up to 3 factors,
8 runs for up to 7 factors, and 16 runs for up to 15 factors.
If k= N — 1, the fractional factorial design is said to be
saturated.

A design for analyzing up to three factors in four runs is
=]

the design, presented in Section 4.2. Another very
useful saturated fractional factorial is a design for studying
up to seven factors in eight runs; that is, the 20t design.
This design is a one-sixteenth fraction of the 27 1t may be
constructed by first writing down as the basic design the
plus and minus levels for a full 23 design in 4, B, and C
and then associating the levels of four additional factors
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with the interactions of the original three as follows: D =
AB, E = AC, F = BC, and G = ABC. Thus, the generators
for this design are / = ABD, [ = ACE, I = BCF, and [ =
ABCG. The design is shown in Table 4.13.

TABLE 4.13 The Saturated 2ii' Design with the
Generators I = ABD, I = ACE, I = BCF, and I = ABCG

A B C D=Ab E=AC F=8C G = ABC

- = - cb 4 - - def

- = = - - afe
i . beg

- + - - - abd

cedg

s T 5 T et i ace

cidg

- - + - . abedefs

R L e e I
=
T

The complete defining relation for this design is obtained
by multiplying the four generators 4BD, ACE, BCF, and
ABCG together two at a time, three at a time, and four at a
time, yielding

I =ABD = ACE = BCF = ABCG = BCDE = ACDF = CDG
= ABEF = BEG = AFG = DEF = ADEG = CEFG = BDFG
= ABCDEFG

To find the aliases of any effect, simply multiply the effect
by each word in the defining relation. For example, the
aliases of B are

B =AD = ABCE = CF = ACG = CDE = ABCDF = BCDG = AEF = EG
= ABFG = BDEF = ABDEG = BCEFG = DFG = ACDEFG

This design is a one-sixteenth fraction; and because the
signs chosen for the generators are positive, this is the
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principal fraction. It is also of resolution III, because the
smallest number of letters in any word of the defining

contrast is three. Any one of the 16 different 2’ designs
in this family could be constructed by using the generators
with one of the 16 possible arrangements of signs in
I=+ARC, I =+ ACE, I =+ BCF, I = + ABCG.

The seven degrees of freedom in this design may be used
to estimate the seven main effects. Each of these effects
has 15 aliases; however, if we assume that three-factor and
higher interactions are negligible, then considerable
simplification in the alias structure results. Making this
assumption, each of the linear combinations associated
with the seven main effects in this design actually
estimates the main effect and three two-factor interactions:

[A] — A+BD+CE+FG
[B] — B+AD+CF+EG
(C] — C+AE+BF+DG
[D] — D+ AB+ CG+EF
|[E] — E+AC+ BG+ DF
[F] — F+BC+ AG+ DE
@.1) [G] — G+ CD+ BE+ AF

In obtaining these aliases, we have ignored the three-factor
and higher-order interactions, assuming that they will be
negligible in most practical applications where a design of
this type would be considered.
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The saturated i design in Table 4.13 can be used to
obtain resolution III designs for studying fewer than seven
factors in eight runs. For example, to generate a design for
six factors in eight runs, simply drop any one column in
Table 4.13, for example, column G. This produces the
design shown in Table 4.14.

TABLE 4.14 A 2’ Design with the Generators I =
ABD, I = ACE, and I = BCF

A B C D= AR E=AC F=BC

def
- = = = 2 af
be
abd
= = } 4 = = cd

= - = : = ace
bef
abedef

R R T N e -
=

|

|

I

It is easy to Verlfy that this design is also of resolutlon I11;
in fact, it is a 2iu ", or a one-eighth fraction of the 26 design.
The defining relatlon for the i’ demgn is equal to the
defining relation for the original i~ design with any
words containing the letter G deleted. Thus, the defining
relation for our new design is

I = ABD = ACE = BCF = BCDE = ACDF = ABEF = DEF

In general, when d factors are dropped to produce a new
design, the new defining relation is obtained as those
words in the original defining relation that do not contain
any dropped letters. When constructing designs by this
method, care should be exercised to obtain the best
arrangement possible. If we drop columns B, D, F, and G
from Table 4.13, we obtain a design for three factors in
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eight runs, yet the treatment combinations correspond to
two replicates of a 22 design. The experimenter would
probably prefer to run a full 2° design in 4, C, and E.

It is also possible to obtain a resolution III design for
studying up to 15 factors in 16 runs. This saturated 25"
design can be generated by first writing down the 16
treatment combinations associated with a 2% design in 4,
B, C, and D and then equating 11 new factors with the
two-, three-, and four-factor interactions of the original
four. In this design, each of the 15 main effects is aliased
with seven two-factor interactions. A similar procedure
can be used for the 2ii ~ design, which allows up to 31
factors to be studied in 32 runs.

Sequential Use of Fractions to Separate Effects By
combining fractional factorial designs in which certain
signs are switched, we can systematically isolate effects of
potential interest. The alias structure for any fraction with
the signs for one or more factors reversed is obtained by
making changes of sign on the appropriate factors in the
alias structure of the original fraction. This general
procedure is called fold-over, and it is used in resolution
IIT designs to break the links between main effects and
two-factor interactions. In a full fold-over, we add to a
resolution III fractional a second fraction in which the
signs for all the factors are reversed. We may now use the
combined design to estimate all the main effects clear of
any two-factor interactions. The following example
illustrates the technique.

Example 4.5 Fold-Over of a Fractional Factorial A
human performance analyst is conducting an experiment to
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study eye focus time and has built an apparatus in which
several factors can be controlled during the test. The
factors he initially regards as important are acuity or
sharpness of vision (A4), distance from target to eye (B),
target shape (C), illumination level (D), target size (E),
target density (F), and subject (G). Two levels of each
factor are considered. He suspects that only a few of these
seven factors are of major importance and that high-order
interactions between the factors can be neglected. On the
basis of this assumption, the analyst decides to run a
screening experiment to identify the most important factors
and then to concentrate further study on those. To screen
these seven factors, he runs the treatment combinations
from the 2" design in Table 4.13 in random order,
obtaining the focus times in milliseconds, as shown in
Table 4.15.

grs . .

TABLE 4.15 A ™' Design for the Eye Focus Time
Experiment

Eun A B C D=AB E=AC F=BC G = ABC Time
| def B5.5
2 - - - - ; afe 75.1
3 - = == == beg 93.2
4 } 5 abd 1454
5 = e L I = = + cidg 8317
6 = b = : = = ace 776
T - - - beff Q5.0
8 . - - 4 abedefg 141.8

Seven main effects and their aliases may be estimated from
these data. From Equation 4.1, we see that the effects and
their aliases are
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[A] = 20.63 — A+ BD+ CE + FG

[B] =3838 — B4 AD4CF4EG
[C]==028 — C+AE+BF+DG
[D]=2888 — D4 AB4COG+ EF
[E]=-028 — E+AC4 BG4+ DF
IFl=-063 — F+BC4+AGH+DE
[G]l=-243 — G+ CD4BE+AF

For example,

[A] =1(-B855475.1-93241454-83.74+77.6- 950+ 141.8)
= 20.63

The largest three effects are [4], [B], and [D]. The simplest
interpretation of the data is that the main effects of 4, B,
and D are all significant. However, this interpretation is
not unique, because one could also logically conclude that
A, B, and the AB interaction, or perhaps B, D, and the BD
interaction, or perhaps A4, D, and the 4D interaction are the
true effects.

Notice that ABD is a word in the defining relation for this
design. Therefore, this 2 ) design does not project into a
full 23 factorial in A, B, and D; instead, it projects into two
replicates of a 231 design, as shown in Fig. 4.16. Because
the 237! design is a resolution III design, 4 will be aliased
with BD, B will be aliased with AD, and D will be aliased
with 4B, so the interactions cannot be separated from the
main effects. The analyst here may have been unlucky. If
he had assigned illumination level to column C in Table
4.13 instead of D, the design would have projected into a
23 design.
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Figure 4.16 The 2t design projected into two replicates
Al
of a 2in design in 4, B, and D.
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To separate the main effects and the two-factor
interactions, a second fraction is run with all the signs
reversed. This fold-over design is shown in Table 4.16
along with the observed responses. Notice that when we
fold over a resolution III design in this manner, we (in
effect) change the signs on the generators that have an odd
number of letters. The effects estimated by this fraction are

Td
TABLE 4.16 Fold-over of the 21 Design in Table 4.15

Run 1 B By D=-AR E=-AC F=-BC G=ABC Time
| + 4 - - - + abeg 91.3
2 = - 4 - 4 = - bode 136.7
3 } acelf 224
4 - - B = -+ + <+ cefg T34
5 - - } b - abef 041
6 + } i bdfe 1438
7 4 - = + -+ - + adeg 87.3
g - = - - - - (n 719
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[Al=2063 — A+BD+CE+FG

[B]=3838 — B+AD+CF+EG
[Cl==0.28 — C+AE+BF4+DG
[D]=2888 — D4 AB+CG+EF
[E]l=-028 — E+AC+BG+DF
[Fl=-063 — F+BC+AG+DE
[Gl=-243 — G+ CD+BE +AF

By combining the effect estimates from this second
fraction with the effect estimates from the original eight
runs, we obtain the following estimates of the effects:

i |From $0i + LT From JUEUY

A|A =148 BD +CE+FG=19.15
B |B=38.05 AD + CF+ EG =0.33
C|C=-180 AE + BF + DG =1.53
D|D =29.38 AB + CG + EF = -0.50
E|E=0.13 AC + BG + DF =—-0.40
F|\F=0.50 BC+AG + DE =-1.53
G|G=013 CD + BE + AF = -2.55

The largest two effects are B and D. Furthermore, the third
largest effect is BD + CE + FG, so it seems reasonable to
attribute this to the BD interaction. The analyst used the
two factors distance (B) and illumination level (D) in
subsequent experiments with the other factors 4, C, E, and
F at standard settings and verified the results obtained
here. He decided to use subjects as blocks in these new
experiments rather than ignore a potential subject effect,
because several different subjects had to be used to
complete the experiment.
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While the full fold-over strategy illustrated in Example 4.5
is used very frequently, there is another variation of this
technique that occasionally proves helpful. In a
single-factor fold-over we add to a fractional factorial
design of resolution III a second fraction of the same size
with the signs for only one of the factors reversed. In the
combined design, we will be able to estimate the main
effect of the factor for which the signs were reversed as
well as all two-factor interactions involving that factor.

To illustrate, consider the 2t design in Table 4.13.
Suppose that along with this principal fraction a second
fractional design with the signs reversed in the column for
factor D is also run. That is, the column for D in the
second fraction is

__:_|____;__|__

The effects that may be estimated from the first fraction
are shown in Equation 4.1, and from the second fraction
we obtain

[A] — A—BD+ CE+ FG

[B] — B—-AD+ CF + EG
[C] — C+AE+BF - DG
[D — D-AB-CG-EF
that is,
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[D)] — —-D+AB+ CG+EF
[E] — E+AC+BG-DF
[F — F+BC+AG — DE
[GI — G- CD+ BE +AF

assuming that three-factor and higher interactions are

insignificant. Now from the two linear combinations of
Litil 4 i1 Leval — i1 )

effects 1117111 and 20011 we obtain

L+ iy | i =1

A+ CE+ FG|BD
B+ CF+EG|AD
C + AE + BF | DG
D AB+CG+EF
E +AC + BG|DF
F+BC+ AG|DE
G+ BE +AF |CD

Q=T ||~

Thus, we have isolated the main effect of D and all of its
two-factor interactions.

The Defining Relation for a Fold-over Design Combining
fractional factorial designs via fold-over as demonstrated
in Example 4.5 is a very useful technique. It is often of
interest to know the defining relation for the combined
design. Fortunately, this can be easily determined. Each
separate fraction will have L + U words used as generators:
L words of like sign and U words of unlike sign. The
combined design will have L + U — 1 words used as
generators. These will be the L words of like sign and the
U — 1 words consisting of independent even products of
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the words of unlike sign. (Even products are words taken
two at a time, four at a time, and so forth.)

To illustrate this procedure, consider the design in
Example 4.5. For the first fraction, the generators are

I=ABD, [I=ACE, [I=BCF, and I =ABCG
and for the second fraction, they are
I=—-ABD, [=-ACE, [|=—-BCF, and [ =ABCG

Notice that in the second fraction we have switched the
signs on the generators with an odd number of letters.
Also, notice that L + U =1+ 3 = 4. The combined design
will have / = ABCG (the like-sign word) as a generator,
and two words that are independent even products of the
words of unlike sign. For example, take / = ABD and [ =
ACE; then I = (ABD)(ACE) = BCDE 1is a generator of the
combined design. Also, take / = ABD and [ = BCF’; then [
= (ABD)(BCF) = ACDF 1is a generator of the combined
design. The complete defining relation for the combined
design is

I = ABCG = BCDE = ACDF = ADEG = BDFG = ABEF = CEFG

Because the defining relation for the combined design
contains only four-letter words, the combined design is of
resolution IV.

Plackett—Burman Designs These designs, attributed to

Plackett and Burman (1946), are two-level fractional
designs for studying up to k = N — 1 variables in N runs,
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where N is a multiple of 4. If N is a power of 2, these
designs are identical to those presented earlier in this
section. However, for N = 12, 20, 24, 28, and 36, the
Plackett-Burman designs are sometimes of interest.

The upper half of Table 4.17 presents rows of plus and
minus signs that are used to construct the Plackett—-Burman
designs for N = 12, 20, 24, and 36, whereas the lower half
of the table presents blocks of plus and minus signs for
constructing the design for N = 28. The designs for N =12,
20, 24, and 36 are obtained by writing the appropriate row
in Table 4.17 as a column (or row). A second column for
(or row) is then generated from this first one by moving
the elements of the column (or row) down (or to the right)
one position and placing the last element in the first
position. A third column (or row) is produced from the
second similarly, and the process continued until column
(or row) k is generated. A row of minus signs is then
added, completing the design. For N = 28, the three blocks
X, Y, and Z are written down in the order

TABLE 4.17 Plus and Minus Signs for the
Plackett—Burman Designs

k=11.N=12++
k=19, N=2X) 4 + i
BN=ML 4+ ++4+—4

k }
k=B N=¥6—-+—-+++———+++++

301



<IN
N ==
b e B N

and a row of minus signs is added to these 27 rows. The
design for N =12 runs and k£ = 11 factors is shown in Table
4.18, where the generator in Table 4.17 was used as a
column.

The Plackett—-Burman designs for N = 12, 20, 24, 28, and
36 have very messy alias structures. For example, in the
12-run design every main effect is partially aliased with
every two-factor interaction not involving itself. Thus, the
AB interaction is partially aliased with the nine main
effects C.0D.....K, Furthermore, each main effect is
partially aliased with 45 two-factor interactions. In the
larger designs, the situation is even more complex. We
advise experimenter to use these designs in screening
situations very carefully. However, as we will see in
subsequent chapters, they can be used in the construction
of certain types of second-order response surface designs.

The projection properties of the Plackett—-Burman designs
are not terribly attractive. For example, consider the 12-run
design in Table 4.18. This design will project into three
replicates of a full 2? design in any two of the original 11
factors. However, in three factors, the projected design is a
full 2% factorial plus a 2i' fractional factorial [see Fig.
4.17a]. The four-dimensional projections are shown in Fig.
4.17b. Notice that these three- and four-factor projections
are not balanced designs. This would complicate their
interpretation. Plackett—-Burman designs with N = 12, 20,
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24, 28, and 36 are often called nongeometric
Plackett-Burman designs.

TABLE 4.18 Plackett—Burman Design for N = 12, k =
11 Using Generator in Table 4.17

Run A B (4 D E F [ H ! J K

= R T N
1
)

-1
|
I
I

8

Q - = -~ N g 1 i } i 2
10 b - - - 4 } ; =

11 t

12 = — = e — ok — = — — e

Figure 4.17 Projection of the 12-run Plackett-Burman
design into three- and four-factor designs. (a) Projection
into three factors. (b) Projection into four factors.
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4.6 RESOLUTION IV AND V DESIGNS

A 27K fractional factorial design is of resolution IV if the
main effects are clear of twofactor interactions, but some
two-factor interactions are aliased with each other. Thus, if
three-factor and higher interactions are assumed negligible
and suppressed, the main effects may be estimated directly
ina 2" design. An example is the 2" design in Table 4.9.
Furthermore, the two combined fractions of the 2ii "’ design
in Example 4.5 yield a 2v " design.

Any Ziv" design must contain at least 2k runs. Resolution

IV designs that contain exactly 2k runs are called minimal
designs. Resolution IV designs may be obtained from
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resolution III designs by the process of fold-over. Recall
that to fold over a design, one simply adds to the original
fraction a second fraction with all the signs reversed. Then
the plus signs in the identity column / in the first fraction
can be switched in the second fraction, and a (k + 1)st
factor associated with this column. The result is a 2
fractional factorial design. The process is demonstrated in
Table 4.19 for the i’ design. It is easy to verify that the
resulting design is a 2! design with defining relation / =
ABCD.

TABLE 4.19 A 2iv' Design Obtained by Fold-Over

P
A B o

Original 2';'” L with 1 = ABC

Second :1'1“ U with Siens Switched

It is also possible to fold over resolution IV designs to
separate two-factor interactions that are aliased with each
other. One way to fold over a resolution IV design is to run
a second fraction in which the sign is reversed on every
design generator that has an even number of letters. To
illustrate, consider the 2iv’ design used for the injection
molding experiment in Example 4.3. The generators for
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the design in Table 4.11 are / = ABCE and [ = BCDF. The
second fraction uses the generators / = —4BCE and [ =
—BCDF, and the single generator for the combined design
is [ = ADEF. Thus, the combined design is still a resolution
IV fractional factorial design. However, the alias
relationships will be much simpler than in the original 20
fractional. In fact, the only two-factor interactions that will
be aliased are AD = EF, AE = DF, and AF = DE. All the
other two-factor interactions can be estimated from the
combined design.

Notice that when you start with a resolution III design, the
fold-over procedure guarantees that the combined design
will be of resolution IV, thereby ensuring that all the main
effects can be separated from their two-factor interaction
aliases. When folding over a resolution IV design, we will
not necessarily separate all the two-factor interactions. In
fact, if the original fraction has an alias structure with more
than two two-factor interactions in any alias chain, folding
over will not completely separate all the two-factor
interactions. Notice that in the foregoing example, the 2 °
has one such two-factor interaction alias chain. For more
information on fold-over of resolution IV designs, see
Montgomery and Runger (1996) and Montgomery (2005).

Resolution V designs are fractional factorials in which the
main effects and the twofactor interactions do not have
other main effects and two-factor interactions as their
aliases. These are very powerful designs, allowing the
unique estimation of all the main effects and two-factor
interactions provided that all the three-factor and higher
interactions are negligible. The smallest word in the
defining relation of such a design must have five letters.
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The 2> with the generating relation / = ABCDE is of
resolution V. Another example is the 2V design with the
generating relations / = ABCDG and I = ABEFH. Further

examples of these designs are given by Box and Hunter
(1961Db).

47  FRACTIONAL FACTORIAL  SPLIT-PLOT
DESIGNS

In Chapter 3 we introduced the split-plot design as a
technique for dealing with hard-tochange versus
easy-to-change factors in an experiment. Recall that the
hard-to-change variables are changed less frequently in the
experiment and placed in the whole plots, while the
easy-to-change variables are still reset for each
experimental run and are placed in the subplots. Factorial
experiments with three or more factors in a split-plot
structure often tend to be rather large experiments. On the
other hand, the split-plots structure often makes it easier to
conduct a larger experiment because we have reduced the
number of times the hard-to-change factors need to be
reset, and it can be quite easy and inexpensive to change
the levels of the subplot variables.

As the number of factors in the experiment grows, the
experimenter may consider using a fractional factorial
experiment in the split-plot setting. As an illustration,
consider an experiment involving five factors that
potentially affect uniformity in a single-wafer plasma
etching process. Three of the factors on the etching tool are
relatively difficult to change from run to run: 4 = electrode
gap, B = gas flow, and C = pressure. Two other factors are
easy to change from run to run: D =time and £ = RF (radio
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frequency) power. For subsequent clarity, we have used
bold-face letters to represent the easy-to-change factors.
The experimenters want to use a fractional factorial
split-plot (FFSP) design to investigate these five factors
because the number of test wafers available is limited. The
hard-to-change factors also indicate that a split-plot design
should be considered to reduce the total number of changes
required. The experimenters decide to use a 2> design
with factors 4, B, and C in the whole plots and factors D
and E in the subplots. The design generator is E = ABCD.
This produces a 16-run fractional factorial with eight
whole plots. Every whole plot contains one of the eight
treatment combinations from a complete 23 factorial
design in factors A, B, and C. Each whole plot is divided
into two subplots, with one of the treatment combinations
for factors D and E in each subplot. The resulting FFSP
design with measured responses of uniformity is shown in
Table 4.20.

TABLE 4.20 The Fractional Factorial Split-Plot Design
for the Plasma Etching Experiment
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Whole-Plot Faciors Subplot Factors

Whale Plots A B C n E Uniformity

- + 40,85
41.07
3567
+ + 51.15
= = 41.80
37.01
- 4 1.0
48.67
40.32
43.34
62.46
t IR.08
= t 31.99
41.03
70.31
81.03

3
I
I

We will assume that all three-, four- and five-factor
interactions are negligible. If this assumption is reasonable,
then with 16 total observations the 15 effects (5 main
effect and 10 two-way interactions) can be estimated. In
the whole plots all hard-to-change factors, 4, B, and C, and
their two-factor interactions, AB, AC, and BC, can be
estimated from the eight whole plots. There are seven
degrees of freedom available for estimating whole plot
effects, with the remaining degree of freedom from the
whole plot terms being assigned to ABC = DE. There are
eight degrees of freedom available for estimating subplot
terms, which are for the two main effects, D and E, and all
of the interactions involving a hard-to-change and
easy-to-change factor (4D, AE, BD, BE, CD, CE). This
illustrates one of the interesting trade-offs for using a
fractional factorial split-plot design: Since we have a
reduced number of runs for the experiment, and the
defining equation involves both hard-to-change and
easy-to-change factors, care needs to be taken to determine
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which terms can be estimated with which degrees of
freedom.

Each term in our model is confounded with one other
effect. Therefore, both should be examined to determine
how the effect will be estimated. If either of the two
confounded effects involves only hard-to-change factors,
then this term will need to be estimated with a whole-plot
degree of freedom. For example, since ABC = DE, the
two-factor interaction involving the two easy-to-change
factors, DE, will be estimated as a whole-plot term.

In general, any main effect or interaction that involves
only main effects will need to be compared to the
whole-plot error. This also includes any terms that are
aliased with higher-order terms that involve only
whole-plot factors. Terms that involve any combination of
factors that include at least one subplot factor in each term
of the defining equation should be compared to the subplot
error. See Montgomery (2005) for a more thorough
discussion.

In this example, all of the two-way interactions involving a
hard-to-change and easy-to-change factor are confounded
with a three-way interaction involving both hard- and
easy-to-change factors, and hence are estimated with
subplot terms. For example, AD = BCE both involve at
least one easy-to-change factor. Table 4.21 lists the effects
and their estimates, separated into whole- and subplot
terms. Since the terms of the model use all of the available
degrees of freedom, the effects can be assessed via a
normal probability plot. Because we have two error terms
in the model, one for the whole-plot and one for the
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subplot, separate normal probability plots are required.
Figure 4.18a is a half-normal probability plot of the effects
estimates for the whole-plot terms, 4, B, C, AB, AC, BC,
and DE (=ABC). Notice that factors, 4, B and the AB
interaction have large effects. Figure 4.18b 1is the
half-normal probability plot of the subplot effects, D, E,
AD, AE, BD, BE, CD, and CE. Only the main effect of E
and AE interaction are large.

TABLE 4.21 Effects for Plasma Etching Experiment
Separated into Whole Plot and Subplot Effects

Term Parameter Estimates | Type of Term
Intercept 49.73875

Gap (A4) 10.0625 Whole
Gas Flow (B) | 5.6275 Whole
Pressure (C) |1.325 Whole
Time (D) -2.0725 Subplot
RF Power (E) |5.12625 Subplot
AB 7.34625 Whole
AC 1.83125 Whole
AD -3.00875 Subplot
AE 6.505 Subplot
BC —0.60125 Whole
BD —1.35875 Subplot
BE -0.2125 Subplot
CD 1.86625 Subplot
CE —1.485 Subplot
DE 0.34 Whole
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Figure 4.18 Half-normal plots of the effects from the 231

fractional factorial split-plot design for the plasma etching
experiment. (@) Whole-plot effects. (b) Subplot effects.
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The design can be constructed using the JMP software
package, by specifying the number of whole plots (8) and
total observations (16) desired. The default design
recommended by the software is the 32-run design shown
in Table 4.22. This 32-run design is actually a full factorial
split-plot design with eight whole plots and four subplots
per whole plot, not a fractional factorial split-plot. It allows
estimation of both the whole-plot and subplot error terms.
It should be noted that the comparison between the two
designs in Tables 4.20 and 4.22 involves considering the
relative increase in cost from 16 to 32 runs, but since both
designs just involve eight whole plots, they both involve
the same number of changes to the hard-to-change factors.
Hence the actual cost of running the smaller design might
not be much different than the total cost of the full
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factorial. In this case, the restriction on the number of test
wafers available forces the choice of the FFSP.

TABLE 4.22 Default 32-Run Design from JMP for the
Plasma Etching Experiment
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Whole-Plot Factors Subplot Factors

Whole Plots A B C D E
1 it o L i e
= +
4
2 - - + - -
- +
+ +
3 - + - ~ -
- 4
+ s
+ 4
4 - b } - =
i +
4
5 ' - a— T —
- +
1
(4] 4 —_ + - —
- q
+ s
+ +
7 b - -
- +
1
8 + + + = =
- +
+ +

4.8 SUMMARY

This chapter has introduced the 2K fractional factorial
design. We have emphasized the use of these designs in
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screening experiments to identify quickly and efficiently
the subset of factors that are active and to provide some
information on interaction. The projection property of
these designs makes it possible in many cases to examine
the active factors in more detail. Sequential assembly of
these designs via fold-over is a very effective way to gain
additional information about interactions that an initial
experiment may identify as possibly important.

In practice, 2K fractional factorial designs with N = 4, 8§,
16, and 32 runs are highly useful. Table 4.23 summarizes
these designs, identifying how many factors can be used
with each design to obtain various types of screening
experiments. For example, the 16-run design is a full
factorial for 4 factors, a one-half fraction for 5 factors,
resolution IV fractional design for 6-8 factors, and a
resolution III fraction for 9—15 factors. All of these designs
may be constructed using the methods discussed in this
chapter. Montgomery (2005) gives the alias relationships
for many of these designs.

TABLE 4.23 Useful Factorial and Fractional Factorial
Designs from the 27 System

Number of Factors in Experiment

Design Type 4 b 16 32 runs
Full factorial 2 3 4 5
Hall-fraction 3 4 5 5]
Reselution 1V fraction 4 68 T-16
Reselution 11 fraction 3 5-7 9-15 17-31
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4.1 Suppose that in the chemical process development
experiment described in Exercise 3.6, it was only possible
to run a one-half fraction of the 2° design. Construct the
design and perform the statistical analysis by selecting the
relevant runs.

4.2 Suppose that in Exercise 3.9, only a one-half fraction
of the 2* design could be run. Construct the design and
perform the analysis by selecting the relevant runs.

4.3 Consider the plasma etch experiment described in
Exercise 3.10. Suppose that only a one-half fraction of the
design could be run. Set up the design and analyze the
data.

4.4 Example 4.2 describes a process improvement study in
the manufacture of an integrated circuit. Suppose that only
eight runs could be made in this process. Set up an
appropriate 25" demgn and find the alias structure. Use
the data from Example 4.2 as the observations in this
design, and estimate the factor effects. What conclusions
can you draw?

4.5 Continuation of Exerc1se 4.4. Suppose you have
made the eight runs in the 25" demgn in Exercise 4.4.
What additional runs would be required to identify the
factor effects that are of interest? What are the alias
relationships in the combined design?

4.6 R. D. Snee (“Experimenting with a Large Number of
Variables,” in Experiments in Industry: Design, Analysis
and Interpretation of Results, by R. D. Snee, L. B. Hare,
and J. B. Trout, editors, ASQC, 1985) describes an
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experiment in which a 251 design with / = ABCDE was
used to investigate that effects of five factors on the color
of a chemical product. The factors are 4 = solvent/reactant,
B = catalyst/reactant, C = temperature, D = reactant purity,
and D = reactant pH. The results obtained were as follows:

e = —0.63 d=6.79
a=2.5I ade = 5.47
b= -2.68 bde = 3.45
abe = 1.66 abd = 5.68
¢ = 2.06 cde = 5.22
ace = 1.22 acd = 4.38

bee = =2.09 bed = 4.30
abe = 1.93 abede = 4.05

(a) Prepare a normal probability plot of the effects. Which
effects seem active?

(b) Calculate the residuals. Construct a normal probability
plot of the residuals and plot the residuals versus the fitted
values. Comment on the plots.

(c) If any factors are negligible, collapse the 2> design
into a full factorial in the active factors. Comment on the
resulting design, and interpret the results.

4.7 An article in the Journal of Quality Technology (Vol.
17, 1985, pp. 198-206) describes the use of a replicated
fractional factorial to investigate the effect of five factors
on the free height of leaf springs used in a automotive
application. The factors are 4 = furnace temperature, B =
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heating time, C = transfer time, D = hold-down time, and £
= quench oil temperature. The data are shown in Table
E4.1

TABLE E4.1 The Leot Spring Experiment from
Exercise 4.7

A B C n E Free Height
- - - - - 7.78 7.78 7.81
; } 8.15 818 788
- 1 - t . T7.50 T.06 7.50
} } - - - 7.59 1.56 7.75
- } : 7.54 8.00 7.88
P - - 7.69 8.00 5.06
- + } - - 7.56 7.52 7.44
i i i - 7.56 7.81 7.69
7.50 7.25 7.12
+ - - 4 788 788 7.44
- i - i : 7.50 7.56 7.50
i i . 7.63 7.75 7.56
= - + b 7.32 7.44 7.44
- 4 - 4 7.56 7.69 762
; - 718 7.18 7.25
+ + 7.81 7.50 7.59

(a) Write out the alias structure for this design. What is the
resolution of this design?

(b) Analyze the data. What factors influence the mean free
height?

(c) Calculate the range and standard deviation of the free
height for each run. Is there any indication that any of

these factors affects variability in the free height?

(d) Analyze the residuals from this experiment, and
comment on your findings.
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(e) Is this the best possible design for five factors in 16
runs? Specifically, can you find a fractional design for five
factors in 16 runs with a higher resolution than this one?

4.8 Reconsider the experiment in Exercise 4.6. Suppose
that along with the original 16 runs the experimenter had
run four center points with the following observed
responses: 5.20, 4.98, 5.26, and 5.40.

(a) Use the center points to obtain an estimate of pure
error.

(b) Test for curvature in the response function and lack of
fit.

(c) What type of model seems appropriate for this
purpose?

(d) Can you fit the model in part (c) using the data from
this experiment?

4.9 An article in Industrial and Engineering Chemistry
(“More on Planning Experiments to Increase Research
Efficiency,” 1970, pp. 60-65) uses a 252 design to
investigate the effect of 4 = condensation temperature, B =
amount of material 1, C = solvent volume, D =
condensation time, and £ = amount of material 2 on yield.
The results obtained are as follows:

e=232 ad=169 cd =238 bde = 16.8
ab = 15.5 be=162 are=234 abede=18.1
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(a) Verify that the design generators used were [ = ACE
and / = BDE.

(b) Write down the complete defining relation and the
aliases for this design.

(c¢) Estimate the main effects.

(d) Prepare an analysis of variance table. Verify that the
AB and AD interactions are available to use as error.

(e) Plot the residuals versus the fitted values. Also
construct a normal probability plot of the residuals.
Comment on the results.

4.10 Reconsider the experiment in Exercise 4.9. Suppose
that four center points were run, and that the responses are
as follows: 20.1, 20.9, 19.8, and 20.4.

(a) Use the center points to obtain an estimate of pure
error.

(b) Test for lack of fit and curvature. What conclusions can
you draw about the type of model required for yield in this
process?

4.11 An industrial engineer is conducting an experiment
using a Monte Carlo simulation model of an inventory
system. The independent variables in her model are the
order quantity (A4), the reorder point (B), the setup cost (C),
the backorder cost (D), and the carrying cost rate (E). The
response variable is average annual cost. To conserve
computer time, she decides to investigate these factors
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using a 2in~ design with /= ABD and I = BCE. The results
she obtains are de =95, ae = 134, b = 158, abd = 190, c¢d =
92, ac =187, bce = 155, and abcde = 185.

(a) Verify that the treatment combinations given are
correct. Estimate the effects, assuming three-factor and
higher interaction are negligible.

(b) Suppose that a second fraction is added to the first. The
runs in this new design are ade = 136, e = 93, ab = 187, bd
= 153, acd = 139, ¢ = 99, abce = 191, and bcde = 150.
How was this second fraction obtained? Add these runs to
the original fraction, and estimate the effects.

(¢) Suppose that the fraction abc = 189, ce = 96, bcd =
154, acde = 135, abe = 193, bde = 152, ad = 137, and (1) =
98 was run. How was this fraction obtained? Add these
data to the original fraction, and estimate the effects.

4.12 Carbon anodes used in a smelting process are baked
in a ring furnace. An experiment is run in the furnace to
determine which factors influence the weight of packing
material that is stuck to the anodes after baking. Six
variables are of interest, each at two levels: 4 = pitch/fines
ratio (0.45, 0.55); B = packing material type (1, 2); C =
packing material temperature (ambient, 325 C); D = flue
location (inside, outside); E' = pit temperature (ambient,
195 C) and F = delay time before packing (zero, 24
hours). A 26 des1gn is run, and three replicates are
obtained at each of the design points. The weight of
packing material stuck to the anodes is measured in grams.
The data in run order are as follows: abd = (984, 826,
936); abcdef = (1275, 976, 1457); be = (1217, 1201, 890);
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af = (1474, 1164, 1541); def = (1320, 1156, 913); cd =
(765, 705, 821); ace = (1338, 1254, 1294); and bcf =
(1325, 1299, 1253). We wish to minimize the amount of
stuck packing material.

(a) Verify that the eight runs correspond to a 24 design.
What is the alias structure?

(b) Use the average weight as a response. What factors
appear to be influential?

(¢) Use the range of the weights as a response. What
factors appear to be influential?

(d) What recommendations would you make to the process
engineers?

413 A 16-run experiment was performed in a
semiconductor manufacturing plant to study the effects of
six factors on the curvature, or camber, of the substrate
devices produced. The six variables and their levels are
shown in Table E4.2. Each run was replicated four times,
and a camber measurement was taken on the substrate. The
data are shown in Table E4.3.

TABLE E4.2 Factors Levels for the Experiment in
Exercise 4.13
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Lamination  Lamination  Lamination Firing Firing Firing

Temperture Time Pressure Temperature Cycle Dew Point
Run {'C) (sec) {1om}) °Ch Time (hr) ("C)
1 35 10 h] 1580 17.5 20
2 75 10 5 1580 29 26
3 33 25 5 1580 29 20
4 15 25 5 1580 17.5 26
5 55 10 10 1580 29 26
] 75 10 10 1580 17.5 20
7 35 25 10 1580 17.5 26
& 75 25 10 1580 29 20
9 35 10 5 1620 17.5 26
10 75 10 5 1620 29 20
1 55 25 5 1620 29 26
12 75 25 5 1620 17.5 20
13 55 10 10 1620 29 20
14 75 10 10 1620 17.5 26
15 35 25 10 1620 17.5 20
16 75 25 10 1620 29 26

TABLE E4.3 Data for the Experiment in Exercise 4.13

Camber for Replicate (in. /in.) Total (10~ Mean (107 Standard

Run | 2 3 4 in.fin.) in./in.) Dieviation
1 00167 00128 00149 00185 629 157.25 24418
2 00062 00066 00044 00020 192 48.00 20.976
3 00041 00043 0.0M2 00050 176 44.00 4.0825
4 00073 0.0071 L0039 0.0030 223 5575 25.025
5 00047 00047 040 00089 223 55.75 22,410
[ 00219 00258 00147 0,029 920 230.00 63.639
7 00121 00090 00092 00086 389 97.25 16.029
8 00255 00250 00226 00169 Q00 225.00 39.42

9 0.0032 00023 00077 00069 201 50.25 26.725
10 00078 00158 00060  0.0045 341 85.25 50.341
11 00043 00027 00028 00028 126 31.50 7.681
12 00186 00137 00158 00159 640 160.00 20.083
13 00010 00086 00100 00158 455 113,75 32
14 00065 00109 00126 0.007] 371 92,75 29.51

15 00155 00158 00145 00145 603 150.75 6.75
16 00093 00124 000HI0 00133 460 115.00 17.45

(a) What type of design did the experimenters use?

(b) What are the alias relationships in this design?
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(¢) Do any of the process variables affect average camber?

(d) Do any of the process variables affect the variability in
camber measurements?

(e) If it is important to reduce mean camber as much as
possible, what recommendations would you make?

(f) Fit an appropriate model for both mean camber and the
standard deviation of camber. If we would like to reduce
the variability in camber while keeping the mean camber
as close as possible to 100 x 107 in./in., what
recommendations would you make?

4.14 A spin coater is used to apply photoresist to a silicon
wafer. This operation usually occurs early in the
semiconductor manufacturing process, and the average
coating thickness and the wvariability in the coating
thickness have important effects on downstream
manufacturing steps. Six variables are used in the
experiment. The variables and their high and low levels are
shown in Table E4.4. The experimenter decides to use a
2671 design, and to make three readings on resist thickness
on each test wafer. The data are shown in Table E4.5.

TABLE E4.4 Factors and Levels for the Experiment in
Exercise 4.14

Factor Low Level | High Level
Final spin speed 7300 rpm | 6650 rpm
Acceleration rate 5 20

Volume of resist applied | 3 cc Scc
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Factor Low Level | High Level
Time of spin 14s 6s

Resist batch variation | Batch 1 Batch 2
Exhaust pressure Cover off |Cover on

TABLE E4.5 Data for the Experiment in Exercise 4.14

Resist Thickness

A B C i E F

Run  Volume Butch Time Speed Ace Cover  Lelt Center  Right  Average
1 5 Baich 2 14 T350 L. Off 4531 4531 4515 45257
2 5 Batch | 6 7350 5 ofr 4446 4464 4428 4446

3 3 Baich 1 ] G50 5 Ofr 4452 44090 4452 44047
- 3 Baich 2 14 Ti50 20 Off 4316 43128 4308 4317.3
5 3 Batch | 14 7350 5 ofr 4307 425 4289 4297

[ ] 5 Baich | ] G500 20 Ofr 4470 4492 4495 44857
7 3 Baich | i T3S0 5 On 4490 4502 482 44933
8 5 Batch 2 14 6650 0 ofr 4542 4547 4538 45423
9 5 Batch | 14 G50 5 ofr 4621 4643 4613 46257
1 3 Baich | 14 a5 5 On 4653 4670 A A6H50

11 3 Batch 2 14 6650 0 On 4480 4486 44TO 44787
12 3 Batch | i T350 20 ofr 4221 4233 4217 42237
13 5 Baich | & x50 5 On 4620 A6 4619 A626.7
14 3 Batch 1 L3 6650 0 On 4455 4480 4466 4467

15 o Batch 2 14 7350 20 On 4255 4238 4243 4262

16 5 Baich 2 & Ti50 5 On 4490 4534 4523 45157
17 3 Batch 2 14 7350 5 On 4514 4551 4540 4535

1% 3 Batch | 14 Gfa 500 20 off Rt 4503 4496 44977
19 5 Baich 2 & Ti50 20 Off 4293 430 4302 43003
20 3 Batch 2 3 7350 5 ofr 4534 4545 4512 45303
21 5 Batch | 14 Ga500 20 On Elii] 5T 4436 4451

22 3 Baich 2 & fa 50 3 On 4650 AGEE 4656 Afha. T
23 5 Batch | 14 7350 0 oir 4231 4244 4230 4235

24 3 Batch 2 o 7350 20 On 4225 4228 4208 422003
25 5 Bach | 14 Tas0 5 On 4381 4391 4376 43827
26 3 Batch 2 & BHS0 0 ofr 4533 4521 4511 45217
27 3 Batch | 14 T350 20 On 4194 4230 4172 4198.7
28 5 Bach 2 & B S0 5 Off A6 4605 4672 46777
29 5 Batch | 3 7350 20 On 4180 4213 4197 41967
30 5 Batch 2 i a5 20 On 4465 406 4463 244747
31 5 Basch 2 14 6450 5 On 4653 4683 4665 46677
32 3 Ratch 2 14 6650 k1 ofr 4683 4712 4677 46907
(a) Verify that this is a 2671 design. Discuss the alias

relationships in this design.

(b) What factors appear to affect average resist thickness?
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(c¢) Since the volume of resist applied has little affect on
average thickness, does this have any important practical
implications for the process engineers?

(d) Project this design into a smaller design involving only
significant factors. Display the result graphically. Does this
aid in interpretation?

(e) Use the range of resist thickness as a response variable.
Is there any indication that any of these factors affect the
variability in resist thickness?

(f) Where would you recommend that the process
engineers run the process?

4.15 Consider the leaf spring experiment in Exercise 4.7.
Suppose that factor £ (quench oil temperature) is very
difficult to control during manufacturing. Where would
you set factors 4, B, C, and D to reduce variability in the
free height as much as possible regardless of the quench
oil temperature used?

4.16 Construct a 2772 design by choosing two four-factor
interactions as the independent generators. Write down the
complete alias structure for this design. Outline the
analysis of variance table. What is the resolution of this
design?

4.17 Consider the 2° design in Exercise 3.12. Suppose that
only a one-half fraction could be run. Furthermore, two
days were required to take the 16 observations, and it was
necessary to confound the 231 design in two blocks.
Construct the design and analyze the data.
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4.18 Analyze the data in the first replicate of Exercise 3.9
as if it came from a 2iv' design with 7 = ABCD. Project the
design into a full factorial in the subset of the original four
factors that appear to be significant.

4.19 Repeat Exercise 4.18 using / = —ABCD. Does use of
the alternate fraction change your interpretation of the
data?

4.20 Project the 2iv' design in Example 4.1 into two
replicates of a 2? design in the factors 4 and B. Analyze
the data and draw conclusions.

4.21 Construct a 2’ design. Determine the effects that
may be estimated if a second fraction of this design is run
with all signs reversed.

4.22 Consider the 2’ design in Exercise 4.21. Determine
the effects that may be estimated if a second fraction of
this design is run with the signs for factor 4 reversed.

4.23 Fold over the 2ii design in Table 4.13. Verify that
the resulting design is a 2" design. Is this a minimal
design?

4.24 Fold over a 2" design. Verify that the resulting
design is a 2" design. Compare this design with the 2iv"
design in Table 4.14.

4.26 Reconsider the experiment described in Exercise
4.13. Suppose that “firing temperature” is hard to change.
Construct an appropriate fractional factorial split-plot
design for this problem.
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4.27 Reconsider the spin coating experiment from Exercise
4.14 with the factor “resist batch variation” as hard to
change. Construct an appropriate fractional factorial
split-plot design for this problem.
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PROCESS IMPROVEMENT  WITH  STEEPEST
ASCENT

In previous chapters we dedicated considerable attention to
constructing and applying designed experiments with
views toward model building. The designs discussed are
very efficient for development of empirical equations that
relate controllable factors to an important response.
Clearly these empirical regression equations serve to
provide information about the properties of the system
from which the data are taken. Signs and magnitudes of
coefficients and the presence or absence of interaction in
the system underscore important pieces of information for
the user. Often the primary purpose of the model is for
interpretations such as these.

There are many other situations in which a model is used
for process optimization or process improvement. The
result of a model-building procedure is an equation. A
statistical analyst is armed with mathematical and
analytical techniques, the purpose of which is to optimize
the process. This and other chapters that follow will deal
with process optimization for a variety of situations. Here
we assume that the practitioner is experimenting with a
system (perhaps a new system) in which the goal is not to
find a point of optimum response, but to search for a new
region in which the process or product is improved.
Perhaps the current working region for designed
experiments is only based on an educated guess, or on
preliminary experiments on a different manufacturing
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scale (such as a pilot plant). It is felt that improvement can
be found. For example, in a chemical process one seeks to
find a new region where improved yields will be
experienced.

The experimental design, model-building procedure, and
sequential experimentation that are used in searching for a
region of improved response constitute the method of
steepest ascent. The type of designs used are those
discussed in Chapters 3 and 4, namely, two-level factorial
and fractional factorial designs. One must keep in mind
that the strategy involves sequential movement from one
region in the factors to another. As a result the total
operation may involve more than one experiment. Thus,
design economy and model simplicity may be very
important. One begins by assuming that a first-order model
(a planar representation) is a reasonable approximation of
the system in the initial region of x1, x2,..., xt. Then the
method of steepest ascent consists of the following steps:

1. Fit a first-order model (a plane or hyperplane) using an
orthogonal design. Two-level designs will be quite
appropriate, although center runs are often recommended.

2. Compute a path of steepest ascent if maximizing the
response is required. If minimum response is required, one
should compute the path of steepest descent. The path of
steepest ascent is computed so that one may expect the
maximum increase in response. Steepest descent
produces a path that results in a maximum decrease in
response.
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3. Conduct experimental runs along the path. That is, do
either single runs or replicated runs, and observe the
response value. The results will normally show improving
values of the response. At some region along the path the
improvement will decline and eventually disappear. This
stems from the deterioration of the simple first-order
model once one strays too far from the initial experimental
region. A good rule of thumb is to continue
experimentation along the path of steepest ascent until two
consecutive rows result in decreased response values.
Often the first experimental run should be taken near the
design perimeter (at coordinates corresponding to a value
of 1.0 in an important variable) to serve as a confirming
experiment.

4. At some point where an approximation of the maximum
(or minimum) response is located on the path, a base for a
second experiment is chosen. The design should again be
a first-order design. It is quite likely that center runs for
testing curvature, and degrees of freedom for
interaction-type lack of fit, are important at this point.

5. A second experiment is conducted, and another
first-order model is fitted to the data. A test for lack of fit
is made. If the lack of fit is not significant, a second path
based on the new model is computed. This is often called a
mid-course correction. Single or replicated experiments
along this second path are conducted. It is quite likely that
the improvement will not be as strong as that enjoyed in
the first path. After improvement is diminished, one
typically has a base for conducting a more elaborate
experiment and a more sophisticated process optimization.
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This step-by-step procedure is meant to be only a
guideline. It is quite possible that only one stage (and
hence one path) will be used. Clearly, if interaction or
quadratic lack-of-fit contributions are prominent at the
second stage, the analyst will likely not conduct
experiments along a path that is based on a planar model.
Augmentation of the first-order design to allow
higher-order models will be discussed in more detail in
Chapter 6.

5.1 DETERMINING THE PATH OF STEEPEST
ASCENT

5.1.1 Development of the Procedure

The coordinates along the path of steepest ascent depend
on the signs and magnitudes of the regression coefficients
in the fitted first-order model. The following describes the
movement in, say, x; (j = 1, 2,..., k) relative to the
movement of the other factors. Remember that the
variables are in coded form with the center of the design at
x1=x2=-=x,=0.

The movement in x; along the path of steepest ascent is
proportional to the magnitude of the regression coefficient
bj with the direction taken matching the sign of the
coefficient. Steepest descent requires the direction to be
opposite the sign of the coefficient.

For example, if the experiment and the resulting first-order
model analysis produces an equation y = 20 + 3x1 — 1.5x2,
the path of the steepest ascent will result in x; moving in a
positive direction and x2 in a negative direction. In

332



addition, x1 will move twice as fast; that is, x| moves two
units for every single unit movement in x2. Figure 5.1
indicates the nature of the path of steepest ascent for this
example. The path is indicated by the arrow. Note that the
path is perpendicular to lines of constant response. This is
clearly the most rapid movement (steepest ascent) toward
large response values. For k£ > 3, these lines become planes
(or hyperplanes) and the path of steepest ascent moves
perpendicular to these planes.

Figure 5.1 The path of steepest ascent. (a) Contour plot.
(b) Three-dimensional response surface view.
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While a path created by moving x; a relative distance that
is proportional to the regression coefficient b; is a
reasonable and intuitive selection, one may appreciate and
better understand the procedure through a mathematical
development of the procedure. Consider the fitted
first-order regression model

¥y =bg+b1xy + baxs + -« + brxy
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By the path of steepest ascent we mean that which
produces a maximum estimated response with the

constraint that 2i-1% = Constrained optimization must
be used, because maximizing the fitted response » from the
first-order model results in all of the x’s at infinity. In other
words, of all points that are a fixed distance » from the
center of the design, we seek that point x1, x2, x3,..., xk for
which ¥ is maximized. Remember that in the metric of the
coded design variables the design center 18 (0 0,..., 0). As

A b
a result, the constraint given by 2 5= s that of a
sphere with radius .

The solution to this optimization problem involves the use
of Lagrange multipliers. Maximization requires the partial
derivatives with respect to x;j (j = 1, 2,..., k) of

(5.1)
J
L=by+bxy+baxs+ -+ bpxg — A er —r"

The derivative with respect to x; is

dL |
ﬁzhf_z""‘} (j=1,2;vc0,0)

Setting 0L/0xj = 0 gives the following coordinate of x; of
the path of steepest ascent
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Now, the quantity 1/2A = p may be viewed as a constant
of proportionality. That is, the coordinates are given by

(5.2) %1 = pby,xy =pby, ..., . = phy

where, for steepest ascent, the constant p is positive. For
steepest descent, p is taken to be negative. Now, this
implies that the choice of p, which is related to A, merely
determines the distance from the design center that the
resulting point will reside. As a result, of course, the
constant p is determined by the practitioner.

One can view the path of steepest ascent as being
generated as shown in Fig. 5.2. Suppose again that y = 20
+ 3x1 — 1.5x2. The points on the path are viewed as
locations of maximum values of ¥ at fixed radii. Each point
on the path then, is a point of maximum response. Again,
note that the path involves a movement in a positive
direction for x1 and a negative direction for x2, with a
change of two units in x1 for every single unit change in
x2.

Figure 5.2 The path of steepest ascent as the path passing
through the maximum value of y at a fixed distance  from
the design center.
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3.00

=1.50

5.1.2 Practical Application of the Method of Steepest
Ascent

We now give two examples illustrating the calculations to
determine the path of steepest ascent. We also give some
practical guidance regarding its use.

Example 5.1 The Plasma Etch Process A common
processing step in semiconductor manufacture is plasma
etching of silicon wafers. The etch rate is the typical
response of interest. Table 5.1 presents data from a 22
factorial design with four center points used to study this
process. The process variables of interest are the
anode—cathode gap (x1) and the power applied to the
cathode (x2). The etch rates observed here are too low, and
the experimenter would like to move to a region where the
etch rate is around 1000 A /min.
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TABLE 5.1 The Plasma Etch Experiment

Gap (cm) Power (W) X Xz ¥ {Eich Rate A /min}
1.20 275 =it -1 775
1.60 275 +1 = 670
1.20 e : ' o0
1.60 ¥ =T766.25 — 66.25x; + 43.75x, 730
1.40 AU u u T45
1.40 300 0 0 T60
1.40 300 0 0 TE0
| .40 300 0 il T20

Table 5.2 shows the condensed analysis of this experiment
from Design-Expert. Notice that the interaction term is not
significant and there is no indication of lack of fit.
Therefore, we will use the first-order model

¥ = 766.25 — 66.25x; + 43.75x;

to construct the path of steepest ascent.

TABLE 5.2 Analysis of the Etch Rate Experiment
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Response: Exch rate
ANOWA for Selecied Factorial Model
Analysis of Variance Table [Partial sum of squares]

Sum of

Source Squares DF Mean Square F-Value Prob > F
Madel 2596875 3 8656.25 13.53 0.0300
A 17556.25 | 17556.25 27.45 00135
B 7656.25 | T656.25 11.97 0.0406
AR 756,25 | 756.25 1.18 0.3564
Curviturne 450.00 | 45000 .70 04632
Purc Ermor 1918.75 3 639.58
Cor Total 28337.50 T
Sud, Dev. 2529  R-Squared 0.9312
Mean 758,75 Adj R-Squared (L8624
C.V. 333 Adeq Precision 004

Coeflicient Standard 95% C1
Factor Estimate DF Ermor 954 Cl Low High VIF
Intercept T66.25 I 12.64 726.01 B06.49
A-gap — 6,25 1 12.64 — 106.49 —26.01 1.00
B-Power 4375 1 12.64 331 33.99 1.00
AB —13.75 | 12.64 -53.99 26,49 1040
Center —15.00 | 17.88 —-71.91 4191 1060

Point

Final Equation in Terms of Coded Factors:

Etch mle =
= 766.25
=66.25 "A
+43.75 ‘B
-13.75"A'B

Final Equation in Terms of Actual Factors:

Etch mte =
—450.00000
49375000 * gap
+ 3.60006) * power
—2.75000 * gap® power

Since the sign of x1 is negative and the sign of x2 is
positive, we will decrease the gap and increase the power
in order to increase the etch rate. Furthermore, for every
unit of change in the gap (x1), we will change the power by
43.75/66.25 = 0.66 units. Consequently, if we choose the
gap step size in coded units to be Ax; = —1.0, then the
power step size in coded units is Ax2 = 0.66. In natural
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units the step sizes are Agap = —0.20 cm and Apower =
16.5 W.

Table 5.3 and Fig. 5.3 show the results of applying steepest
ascent to this process. The first point on the path of
steepest ascent, denoted Base +A in Table 5.3, has the
setting gap = 1.20 cm and power = 316.5 W. The observed
response at this point is y = 845 A /min. Notice that this is
very close to the 840-A /min contour passing near to this
point. It is always a good idea to run the first point on the
path near to the original experimental region as a
confirmation test, to ensure that conditions experienced
during the original experiment have not changed. At Base
+2A the etch rate response has increased to 950A /min, and
at base +3A it has reached 1040 A /min. Clearly we have
arrived at a region close to the desired etch rate of 1000 A
/min.

TABLE 5.3 Computation of the Path of Steepest Ascent
for the Plasma Etch Process, Example 5.1

Coded Variables Natural Vanables
Paint Gap (cm) Power (W) X Ts ¥
Base (starting point) 1.40 300 {0 L]
A -0.20 16.5 -1 0.66
Base + A 1.20 1165 —1 .66 845
Base 4+ 2A 1.00 33 2 1.32 950
Base + 34 (L850 3495 =3 1.98 1040

Figure 5.3 The path of steepest ascent for the plasma etch
experiment in Example 5.1.
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Because the plasma etch experiment in Example 5.1 has
only two process variables, an experimenter could actually
implement the method of steepest ascent graphically, just
by reference to a contour plot such as Fig. 5.3. However,
when there are more than & = 2 design factors, a formal
procedure can be helpful.

It is easy to give a general algorithm for determining the
coordinates of a point on the path of steepest ascent.
Assume that the point x1 = x2 = ... = xx = 0 is the base or
origin point. Then

1. Choose a step size in one of the process variables, say
Ax;. Usually, we select the variable we know the most
about, or we select the variable that has the largest (or
nearly the largest) absolute regression coefficient |bj.
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2. The step size in the other variables is (from Eq. 5.2)

o .Ir?‘l. - f - -
(53) 'i".f ) hfl.-"li_!.']-. J = Loy A. i # ]

3. Convert the Ax;j from the coded variables to the natural
variables.

We will illustrate this procedure with a four-variable
example.

Example 5.2 A Four-Variable Illustration of Steepest
Descent Many manufacturing companies use molded parts
as components of the process. Shrinkage is often a
problem. Often a molded die for a part will be built larger
than nominal to allow for part shrinkage. In the following
experiment a new die is being produced, and ultimately it
is important to find the proper settings to minimize
shrinkage. In the following experiment, the response
values are deviations from nominal—that is, shrinkage.
The factor levels in natural and design units are as follows:

Factor Design Units
-1 |+

x1: Injection velocity (ft/sec) | 1.0 |2.0
x2: Mold temperature (°C) | 100 |150
x3: Mold pressure (psi) 500 |1000

x4: Back pressure (psi) 75 120

The design was an unreplicated 2% factorial. The response
is in units of 107* cm. The actual data are not given, but
the first-order model fit to the data is
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¥y=80—528x —6.22x; — 1.21x; — 1.07x,

This linear regression model relates predicted shrinkage to
the design variables in coded design units. It appears that
movement to a region with higher injection velocity and
mold temperature will be beneficial. In addition, a slight
increase in mold pressure and back pressure may be
beneficial. One must keep in mind that we are searching
for the path of steepest descent. Then an increase
proportional to the regression coefficient in each factor
will define the proper path for future experiments.

Suppose that we select x1 as the variable to define the step
size (note that x1 has one of the two largest regression
coefficients). We will let Ax1 = 1, corresponding to 0.5 ft/
sec in injection velocity. Then from Equation 5.3 we have

b 6.22 . i w .
Axy = ﬁ =328 1.178 design units increase in x;
L 1.21 . o .
Axy = ;—:' e 0.23 design units increase in x3
L 1.07 : g ,
Axy = ;—JI' T 0.203 design units increase in xy

The corresponding change in terms of the natural units are

A(mold temperature) = (1.178)[(150 — 100)/2] = (1.178)(25) = 29.45
A(mold pressure) = (0.23)(250) = 57.5

A(back pressure) = (0.203)(22.5) = 4.57
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Table 5.4 shows the path of steepest descent in terms of
both coded (design) units and natural units. The strategy
involves making experimental runs along this path until no
further improvement in shrinkage is observed.

TABLE 5.4 The Path of Steepest Descent for Example

Coded Units Natural Units
Xy £ X3 Xy it/ sec C psi psi
Base L] L[] i} i} 15 125 750 97.50
Increment = A 1.0 1.178 0.23 0.203 L5 2045 5715 4.57
Base + A 1.0 L1738 (.23 0.203 2.0 154.45 R7.5 102.07
Base + 24 20 2,356 (L46 (.40 2.5 183,90 B65.0 | (.6
Base 4+ 3A 3.0 3534 (.69 (L609 30 213.35 9225 111.21
Base + 44 4.0 4,712 .92 0812 15 242,80 QR0 115.78

Practical Notes Regarding Steepest Ascent

1. Steepest ascent is a first-order gradient-based
optimization technique. It works very well when starting a
long way from the optimum. When used near an extreme
point on the true response surface, steepest ascent will
usually result in a very short movement away from the
starting point. This could be an indication to consider
expanding the model by adding higher-order terms.

2. We have illustrated making individual observations at
each point on the path. In some cases replicates, or repeat
runs, will be useful. For example, if we are optimizing a
process such as chemical vapor deposition, the variability
in layer thickness will generally increase with the average
thickness of the deposited layer. Using repeat
measurements at different sites on the unit or processing
several units at the same time and determining both the
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average and the standard deviation of the response can be
very useful.

3. Other first-order optimization techniques can be
employed as alternatives to steepest descent. These more
automatic hill-climbing procedures do not provide the
feedback of process information about factor effects
obtained from the factorial design.

4. Some experimenters will adjust the step size after the
first few steps, depending on the results obtained. For
example, if the response is changing slowly, the step size
can be lengthened. This should be done very carefully,
however, as it is easy to overshoot the region of the
optimum if the step size is too big. If no other information
is available, choosing the variable with the largest
coefficient for setting Ax may be an appropriate
conservative choice.

5.2 CONSIDERATION OF INTERACTION AND
CURVATURE

As we indicated earlier in this chapter, typically that no
more than two rounds of the steepest ascent (or descent)
procedure will be needed. This general strategy is at its
best when the researcher begins experimentation far from
the region of optimum conditions. Here one expects the
first-order approximation to be quite reasonable. As the
experimental region moves near the region of optimum
conditions, it is expected that curvature will be more
prevalent and, of course, interactions among the factors
will become more important. As a result, the experimental
design used to carry out the strategy should allow
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estimation (and testing) of potentially important
interactions. In later stages of the strategy, the design
should allow some information regarding model curvature.
The use of center runs allows a single-degree-of-freedom
estimate of quadratic curvature (see Section 3.6). Clearly,
if interactions are found to be important and/or a test for
curvature finds significant quadratic terms, the researcher
will suspect that the steepest ascent (descent) methodology
will become ineffective. Augmentation of the design to
allow the fitting of a complete second-order model should
then be done.

When second-order terms describing interaction and pure
quadratic curvature (s 45, begin to dominate, then
continuing the ascent exercise and experimentation will be
self-defeating. However, the question arises, “What do we
mean by ‘dominant’?” It is possible that second-order
terms can be statistically significant, yet the first-order
approximation  allows a  reasonably  successful
experimental strategy. One must keep in mind that
“statistical significance” only implies that the effects are
real in comparison with experimental error. The
second-order effects may be small in magnitude compared
to their first-order counterparts. As a result, there will
certainly be situations where one should compute the path
and take experimental trials even though certain
second-order effects are significant.

Figure 5.4 shows the contour plot for the plasma etch
experiment in Example 5.1 with the interaction term
included in the model. The path of steepest ascent is now
the curved path shown in the figure. Here the interaction is
quite small, so the effect of ignoring it is negligible. Even
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when interactions are moderately large, ignoring them will
usually cause the computed path of steepest ascent to differ
only modestly from the true path. In practice, this should
have little effect on the final outcome. It can lead to an
extra round of steepest ascent to compensate for the errors
in estimating the path.

Figure 5.4 The plasma etch experiment in Example
5.1with the interaction term included in the model.
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Example 5.3 Another Four-Variable Illustration of
Steepest Ascent For this example, we consider an
illustration of a steepest ascent experiment in which it is of
interest to maximize the reaction yield. Four factors, 4
(amount of reactant A), B (reaction time), C (amount of
reactant C), and D (temperature), are being considered.
The natural and coded levels are given as follows:
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Coded Levels

Maturil Levels 10 15 {Toctor A, grams)
| 2 { factor B, mimtes)
25 i5 { factor C, grams)
75 g5 {factor £, "C)

A 2% fractional factorial was used as the design, with the
yield values given as follows:

(1 620 ad: 618
ab; 69.0 he: 64.7
cd: 510 bed: 622
ac: 64.5 abed: 0663

The fitted linear regression model is given by

¥ =063.44 + 1.9625x) + 2.1125x; — 0.3125x3 — 1.6125x,

The basis for computation of points along the path was
chosen to be 1 gram of reactant A. This corresponds to
1/2.5 = 0.4 design units. As a result, the corresponding
movements in the other design variables are (2.1125/
1.9625)(0.4) = 0.4306 design units for x2, (-0.3125/
1.9625)(0.4) = —0.0637 design units for x3, and (-1.6125/
1.9625)(0.4) = —0.3287 design units for x4. The movement
along the path will be positive for x1 and x2, and negative
for x3 and x4. Table 5.5 shows the appropriate coordinates
along the path in the natural variables. At some location
along the design perimeter, experimental runs should be
made. In this case, runs were made at base +4A (after four
increments): Runs 9, 10, 11, and 12 indicate new
experimental runs. Theoretically, one expects an increase
in response as runs are taken along the path. Eventually, of
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course, deterioration should occur when the first-order
approximation that produced the original path is no longer
valid because the true response surface is now influenced
by interaction and quadratic curvature. In this case a
reduction in yield is experienced after run 11. Any further
follow-up experiment should involve an experimental
design centered in the vicinity of run 11.

TABLE 5.5 Coordinates on the Path of Steepest Ascent
in Natural Variables for Example 5.3

Run xj X3 Yy X3 v
Base 12.5 ] 30 80
a 1.0 (0.4306H0.5) (—=0.0637K5) (—=03287K5)

= 0215 — —0319 = —1.643
Base + A 13.5 1.715 29.681 78.357
Base 4+ 2A 14.5 1.930 20362 T76.714
Base + 34 15.5 2.145 20,043 75.071
9 Base + 44 16.5 2360 28724 73428 74.0
10 Base + 64 18.5 2,790 28.086 T0.142 77.0
11 Base + 84 20.5 3.220 27448 73.856 1.0
12 Base + 94 215 3435 27.129 65213 787

5.2.1 What About a Second Phase?

As we indicated earlier, one should expect that the
evidence of curvature in the system and interaction among
the factors will eventually necessitate an abandonment of
steepest ascent. Any additional phases (or mid-course
corrections) of the procedure beyond the first will usually
not bring about the level of success enjoyed in the initial
phase. In addition, one should be careful to use a design in
the second phase that allows for testing lack of fit that
includes interaction and curvature induced by quadratic
terms. In Example 5.3 a reasonable design for the second
stage is the other half of the original 2+ design (forming
a complete 24) augmented by center runs. This allows for
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three degrees of freedom for testing interaction type lack
of fit and one degrees of freedom for testing curvature. If
the lack of fit is significant, one might expect little or no
success with steepest ascent.

5.2.2 What Happens Following Steepest Ascent?

It should be emphasized at this point that quality
improvement through analysis of designed experiments,
when successful, is usually an iterative process. This is
illustrated quite well in dealing with the strategy of
steepest ascent. In our example the investigator may well
invest in a 2% factorial with, say, five center runs for a
second phase of steepest ascent. However, if curvature and
interaction are found to be quite evident, the steepest
ascent procedure will certainly soon be truncated. At this
point the investigators will surely be interested in finding
optimum conditions through the use of a fitted
second-order model. This allows computation of
estimated optimum conditions. The first-order two-level
design with center runs is nicely augmented to allow
estimation of second-order terms. For example, a PAR
fractional factorial (resolution IV) with five center runs is
augmented with the alternate fraction and axial runs as
shown in Table 5.6.

TABLE 5.6 The Central Composite Design Resulting
from Augmenting an Initial 2+ Design
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| | o | -1
1 -1 | |
1 -] -1 I
=1 | | -1
-1 | -1 I
| =] I I > Initial design
| | | |
1] ] 0 |
1] (1 0 ]
Lt] (1 0 ]
] ] 0 ]
0 (i i} []_J
| o | -] - I_'.‘I
= | -1 -1
=] | | -1
=1 =1 -] I
1 I i =}
| | -1 |
-1 1 1 I
! -1 ! l Augmentation
-2 ] 0 ]
" 1] 1] 0
[i] -2 0 {
LA 2 0 0
0 (1 5 0
i) () 2 ()
i) ] 0 -2
0 0 0 2_J

The complete design allows for efficient estimation of the
terms in the model

4 4 4
y=5+ Z Bixi + Z Br‘;-‘ﬁ]-: + ZZB'I‘T’“} + €
i=1

i=l i<j=2
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This is the second-order response surface model and it is
widely used for process optimization. The design is called
the central composite design. Process optimization with
the second-order model is discussed in Chapter 6. Designs
for fitting second-order models, including the central
composite design, are discussed in Chapters 7 and 8.

The point made here is that the total strategy of product
improvement or optimization can very well involve both
steepest ascent (region seeking) and more formal response
surface optimization in an iterative procedure. The
transition from one to the other can be made quite easily
without any waste of experimental effort.

5.3 EFFECT OF SCALE (CHOOSING RANGE OF
FACTORS)

The methodology of proceeding along the path of steepest
ascent is generally a precursor to a more elaborate
experimental effort and optimization involving a more
sophisticated model and analysis. In Chapters 3 and 4,
considerable attention was paid to two-level designs, with
variable screening being an important goal. It was
suggested at that point that choosing ranges on the factors
is a vital decision and something that the researcher should
not take lightly. Clearly, variable screening and steepest
ascent are early steps in the process optimization
experience. Sloppy decisions with little forethought in
these early stages may lead to very inefficient process
optimization at a later stage. It should be clear by now to
the reader that there is a connection between selection of
ranges of the variables and the choice of scale. For
example, the coding in Example 5.2 suggests a decision in
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which one design unit in injection velocity is 0.5 ft/sec. An
equivalent unit in mold temperature is 25°C. This choice
of scale is a decision that is made by the practitioner. Note
that the regression coefficient on back pressure (x4) is
considerably smaller in magnitude than those or x1 and x?.
Perhaps the implication is that the choice of range (and
hence, choice of scale) on back pressure was incorrect.
Choosing design factor ranges certainly should improve
with increased experience with the system. If variable
screening has already been accomplished, then one would
expect a more educated choice of scale for the
hill-climbing exercise of steepest ascent. One can only use
the latest information available.

A change of scale does not change the direction that a
factor should move along the path of steepest ascent.
However, it changes the relative magnitude of movement
of the factor. Suppose now we have an ideal situation with
time (x1) and temperature (x2) in which the true regression
structure involving yield y is as follows:

E{ _\'} = Bn + ﬁ,\'] + IB.‘.-:

where f is a coefficient that corresponds to a (+1, —1)
scaling for ranges of temperature of 50°C and time of 1.0
hr. Suppose researcher A chooses the above ranges with
(+1, —1) scaling while researcher B chooses a 50°C range
of temperature, but a 0.5 range of time, again with (+1, —1)
scaling on the true factors. The model that is relevant to
researcher B is given by

E(y) = By + Bx; + (B/2)x;
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Thus the expected value of the time regression coefficient
by for researcher B is one-half that of the same coefficient
for researcher A. As a result, the relative movement in x2
with respect to x1 along the path, in design units, will be
half as great. As an example, suppose design levels are as
follows for the researchers:

Researcher A

Matural Levels  Coded Design Units

Temperature  200°F  250°F =1 + 1
Timie 1.0 20 =1 +1

Researcher B

Matural Levels  Coded Design Units

Temperature  200°0F  250°F o | +1
Time .25 1.75 -1 +1

Suppose both researchers use 22 factorial experimental
plans. Let us assume that the steepest ascent coordinates
are to be based on a change of 25°F in temperature. The
steepest ascent picture is as follows:

A B
Base 225 1.5 225 1.5
A 25 .5 25 0.125
Biase + A 250 2.0 250 1.625
Buse + 24 275 2.3 275 1.750

Note that the actual change in time for researcher B is
one-fourth the change incurred by researcher A. The
0.125 incremental change for researcher B results from the
fact that the change per coded unit change in x2 is only
one-half that experienced by researcher A on the average.
In addition, the computation of the coordinates for the
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natural variable must take into account that the design unit
described by researcher B is only one-half that described
by researcher A. As a result the reader should be able to
ascertain the following general rule that reflects the
distinction between steepest ascent coordinates in a
k-variable problem.

Suppose researcher 4 chooses scale factor (range) rl,
1) rk and researcher B chooses ri- 75 .... ri, where
“, =1/ Refer to the relative movements along the path in
the natural variables as follows: A1, A2,...,Ax and
A1 A2y e -3-.1 for researcher 4 and B, respectively; then

AN =dl forj=1,2,...k

This does suggest that the user of steepest ascent must use
whatever knowledge of the system is at his or her disposal
to determine the range of the variable and hence the
scale—that is, the definition of a design unit. As we
indicated earlier, each experimental experience with a
particular system allows for a more educated choice of
intervals on the variable being studied. One can view this
general procedure as one in which there are truly many
paths of steepest ascent (or descent) that will lead to a
region where the response is improved. The method itself
can be a learning device that will allow for a better choice
of ranges in future experiments, particularly those
experiments in which the goal is to find optimum process
conditions. One should not let that difficulty in choosing
ranges prohibit the use of this region-seeking method. The
methodology allows the user to be the beneficiary of more
appropriate regions and ranges for future experiments.
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5.4 CONFIDENCE REGION FOR DIRECTION OF
STEEPEST ASCENT

It is useful to take into account sampling variation in
assessing the nature of the path of steepest ascent. One
must remember that the path is based on the regression
coefficients and these coefficients have sampling
properties characterized by standard errors. As a result, the
path has sampling variation. This sampling variation can
lead to a confidence region for the path itself. The value of
the confidence region may be derived by plots, say in the
case of two or three variables. A graphical analysis may
indicate the amount of flexibility the practitioner has in
experiments along the path. A tighter region gives the user
confidence that the path is being estimated well.

Suppose there are k design variables and, indeed,
coefficients b1, b2,..., bi provide estimates of the relative
movement of variables along the path. Assuming that the
first-order model is correct, the true path is defined by
parameters f1, 52,...,0k and

Eb)=8 (i=12,....k

and the true coefficients are proportional to the relative
movement along the path (i.e., Eq. 5.2) implies

GHBi=7 (=12,..., k)

where X; are the direction cosines of the path. In other
words, X1, X2,..., Xk are constants that, if known, could be
used to compute any coordinates on the true path. We can
view the relationship in Equation 5.4 as a regression model
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without an intercept. The subject of the statistical inference
here will be the X;. Though the regression structure may
appear to be rather unorthodox, we consider the model

GsSHbi=i+tea (=1,2,...,k

The variance of the b; is constant across all coefficients if
one uses a standard two-level orthogonal design. Call the
estimated variance %.A second Variance,-"f-', is found from
the error mean square of the regression of Equation 5.5.
The quantity % is given by

k
(b — ¥XY

k-1

Then, of course, £ — 1 is the number of error degrees of
freedom for the regression. As a result,

1.;':
5 ~Fr-1, w
(56) Sh

where vp is the number of error degrees of freedom

associated with the estimate (from the steepest ascent
experiment). Values of X1, X2,..., Xk that fall inside the
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confidence region are those for which the resulting values
of /% do not appear to refute Equation 5.6. In particular,
coordinates outside the confidence region are those for
which %" is significantly larger than si. As a result, the
100(1 —a)% confidence region is defined as the set of
values X1, X2,..., Xk for which

(bi =X [(k — 1)

3 < Fai-1w
(5.7) i1 b
where Fax- 1. is the upper 100(1 —a)% point of the Fi-1.4,
distribution.

What Does the Confidence Region Mean? One must
understand that specific coordinates X1, X2,..., Xk specify
the direction along the path. For example, X1 = v0.5, X, =
w03, and X3 = /0.2 specify a direction and also represent
coordinates that are a unit distance away from the design
origin. (Keep in mind that we remain in design unit
scaling.) The confidence region turns out to be a cone (or a
hypercone in more than three variables) with the apex at
the design origin and all points a unit distance from the
origin satisfying

)

L 2
i (Z f?fxf)
Z b Lol

- o2
i = A = E "'IHJF".A. 1w,

.|:_'
= k—13 Xx?
(5.8) EI

Example 5.4 An Example with & =2 Consider the path of
steepest ascent illustrated in Fig. 5.1. The coefficients are
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b1 =3 and b2 = —1.5. Suppose further that the estimates of
the variances of the coefficients are both : and there are
four error degrees of freedom. The value F0.052.4 = 7.71.
As a result, the 95% confidence region for the path of
steepest ascent at fixed distance Xi + X3 = 1.0 s determined
by solutions (X1, X2) to

9 +2.25 — (3X; — 1.5X,)* < 1(7.7)

or
(5.9) 3X1 — 1.5X5)* > 9.3225

As a result, the total confidence region on the path is as
illustrated in Fig. 5.5. Similar graphical approaches to the
problem are reasonable for £ = 3. See Box and Draper
(1987). For k > 3 one cannot display a graphical picture of
the confidence region. Of course, one can always
substitute any value (X1, X2,..., Xk) into Equation 5.7 to
determine if the point falls inside the confidence region. In
general, it may be rather difficult to determine the relative
size of the confidence region, and yet the user needs to
have some indication of whether or not it is permissible to
continue. Box and Draper describe an interesting analytic
procedure for determining what percentage of the possible
directions was excluded by the 95% confidence region.
This then produces some impression about how “tight” the
confidence region is for any specific example. In our
simple k& = 2 example, this might correspond to the
determination of the angle 6 in Fig. 5.5. It turns out that
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k= DsEF, o1
! = arcsin ( JSpF k1. v;

(5.10) =

For our example, we have

o= Qo)

= arcsin[0.413]

Figure 5.5 Confidence region on path of steepest ascent in
Fig. 5.1.

Ly

Thus 0 = 24.4°. As a result, the confidence region
illustrated by Fig. 5.5 sweeps an angle of 20 = 48.8°. Of
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interest is the ratio 48.8/360 = 0.135, suggesting that
86.5% of the possible directions taken from the design
origin are excluded. Clearly, the larger the percentage
excluded, the more accurate the computed path. For £k = 3
the confidence region is a cone and the quality of the
confidence region depends on the fraction of the area of
the total sphere that is taken up by the solid angle created
by the confidence cone. Consider, for example, Fig. 5.6.
The dashed line represents the computed path. The ratio of
the shaded area to the total area of the sphere determines
the quality of the computed path.

Figure 5.6 Confidence come for direction of steepest
ascent for k£ = 3. [From Box and Draper (1987), with
permission. ]

Fractional
solid angle
a=0.145

Direction
of steepest
ascent

5.5 STEEPEST ASCENT SUBJECT TO A LINEAR
CONSTRAINT

Anytime a researcher encounters a task of sequential
experimentation that involves considerable movement,
there is the possibility that the path will move into an area
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of the design space where one or more of the variables are
not in a permissible range from an engineering or scientific
point of view. For example, it is quite possible that an
ingredient concentration may exceed practical limits. As a
result, in many situations it becomes necessary to build the
path of steepest ascent with a constraint imposed in the
design variables. Suppose, in fact, that we view the
constraint in the form of a boundary. That is, we are
bounded by

(.1 o+ cx +exa + -+ =0

This bound need not involve all & variables. For example,
Xj = co may represent a boundary on a single design
variable. One must keep in mind that in practice the
constraint must be formulated in terms of the natural
(uncoded) variables and then written in the form of coded
variables for manipulation.

Figure 5.7 illustrates, for £ = 2, the necessary steepest
ascent procedure when a linear constraint is to be applied.
The procedure is as follows:

1. Proceed along the usual path of steepest ascent until
contact is made with the constraining line (or plane for £ >
2). Call this point of contact point O.

2. Beginning at point O, proceed along an adjusted or
modified path.

3. Conduct experiments along the modified path, as usual,

with the stopping rule based on the same general principles
as those discussed in Sections 5.1 and 5.2.
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Figure 5.7 Steepest ascent with a linear constraint.

2

S Gg¥ €)%y Fopxa =0

Modified path

x1

What is the Modified Path? Figure 5.7 clearly outlines the
modified path for the & = 2 illustration. In general,
however, the proper direction vector is one that satisfies
the constraint and still makes the greatest possible progress
toward maximizing (or minimizing) the response. (Clearly
the modified path in our illustration is correct.)

It turns out (and is intuitively reasonable) that the modified
path is given by the direction vector

A1) bi—dei (i=12,...,k

for which

k
Z (b; — dc; P

i=l
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is minimized. That is, the direction along the constraint
line (or plane) is taken so as to be “closest” to the original
path. Once again we can consider this to be a simple
regression situation in which the b; are being regressed
against the ¢;. As a result, the quantity d plays the role of a
regression slope, and minimization of the residual sum of
squares produces the value

L

> b

i=l
d =

k
>

(5.13) =1

Thus, the modified path begins at point O and proceeds
using the direction vector b1 — dc1, b2 — dca,. .., bi — dck.

It remains then to determine the point O, that is, the point
that lies on the original path but is also on the constraint
plane. From Equation 5.2 we know that x; = pb; for j = 1,
2,..., k. But we also know that for point O, the constraint
equation (Eq. 5.10) must hold. As a result, the collision
between the original path of steepest ascent and the
constraint plane must occur for p = po satisfying

Co+ {{'].’?] == I."jhj R f.',;:;JHH] =10

Thus,
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As a result, the modified path starts at xj,0 = pob; (forj =1,
2,..., k) and moves along the modified path, being defined
by

(5.15) Xim = X0 o ,-'a_fh}- - (f{'},-:l {Ji =1,2,.... %

where d is given by Equation 5.13 and A is a
proportionality constant. Note that the modified path is like
the standard path except it does not start at the origin and
the regression coefficient b; is replaced by b; — dc; in order
to accommodate the constraint.

Linear constraints on design variables occur frequently in
practice. In the chemical and related fields, constraints are
often imposed in situations in which the design variable
represents concentrations of components in a system. In a
gasoline blending system there will certainly be constraints
imposed on the components in the system. General
information regarding designs for mixture problems will
be presented in Chapters 11 and 12. In the example that
follows we illustrate steepest ascent in a situation where
mixture factors are involved and a linear constraint must
be applied to modify the path of steepest ascent.

Example 5.5 The Fabric Strength Experiment Consider
a situation in which the breaking strength (in grams per
square inch) of a certain type of fabric is a function of the
amount of three important components in a kilogram of
raw material. We will call the components £1, &2, and &3.
The levels used in the experiment are as follows:
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Material Amount in Grams
—1 +1

1 100 150

2 50 100

3 20 40

The remaining ingredients in the raw material are known
to have no effect on fabric strength. However, it is
important that ;1 and £, the amounts of material 1 and 2
respectively, be constrained by the following equation:

& + & <500

The design-factor centering and scaling are given by

—125
X = i;}-_?— & =25x; + 125
& —T5
Xg = — L E—:=2‘S1+?5
X3 25 £ X3
& — 30
Xy =2 5 & =105+30

As a result, the constraint reduces to

25x) + 25x2 < 300

Suppose the fitted regression function is given by

y= 150+ 1.7x; + 0.8x2 + 0.5x3
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Because it is desired to find the condition for increased
fabric strength, the unconstrained path of steepest ascent
will proceed with increasing values of all three
components. The increments along the path are to
correspond to changes in &1 of 25 g/in.z, or one design
unit. This corresponds to changes in x2 and x3 of 0.47 and
0.294 units, respectively.

Now, based on the above information, the standard path of
steepest ascent can be computed. But at what point does
the path make contact with the constraint and with the
constraint plane? From Equation 5.14 we obtain

4.8

— 3m = 3{}[’ —
0= 2517+ @25)08) 625
As a result, the modified path starts at
Xj0= 4.&'[}_.,' [_j = 1,2.3)
which results in the coordinates (8.16, 3.84, 2.4) in design

units. As a result, the coordinates of the modified path are
given by Equation 5.14; that is,

-1'_,".m = 4.3.’.?). + ::'IHJJ. — {]"{'Ji} {_||' = 1. 1.. 3}

where

(25)(1.7) + (25)(0.8)
| = — 0.05
. 1250

As a result, the modified path is given by
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X = 8.16 4+ A(0.45)
X2 g = 3.84 + A(—0.45)

X3 = 2.4 + A0.5)

Thus, Table 5.7 shows a set of coordinates on the path of
steepest ascent, followed by points along the modified
path. For the modified path we are using A = 1.0 for
convenience. Note that all points on the modified path
satisfy the constraint.

TABLE 5.7 A Constrained Path of Steepest Ascent

Xy 5] X3

Base il 1]} ]

A | 0.47 0.294

Base + & 1 0.47 0.294

Base + 24 2 0.94 0.598

Base + 54 & 2.35 1.470

Paint O 216 384 24
a6l 30 29
006 2.94 34

9.51 2.49 39

5.6 STEEPEST ASCENT IN A SPLIT-PLOT
EXPERIMENT

In previous sections we have discussed how the method of
steepest ascent operates when the experiment used to fit
the first-order model is a completely randomized design
(CRD). Sometimes in the steepest ascent environment we
will encounter easy-to-change and hard-to-change factors.
That is, the experimental situation in which the first-order
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model is fit is a split-plot. The split-plot nature of the
experimental situation can necessitate some modification
of the steepest ascent procedure. This problem is discussed
in detail by Kowalski, Borror and Montgomery (2005).
Here we describe their recommendations.

We will let the hard-to-change factors be the whole-plot
variables, denoted by z;, i = 1, 2,..., k1 and the
easy-to-change factors as the subplot variables, denoted by
xj,j =1, 2,..., k2. The fitted first-order model is

k| .‘.:
_{' = h[] + E (2 i E b_r.\.'“'
i=1 i=1

This model is used to calculate the path of steepest ascent.

Because split-plot experiments contain two types of
factors, we let A; represent the step size in the whole-plot
factors and Aj to represent the step size in the subplot
factors. There are several reasons for the choice of two
distinct As:

1. It is consistent with the way the experiment was carried
out; that is, in a split-plot, which separates the two types of
factors.

2. The hard-to-change factors have a different standard
error than the easy-to-change factors; therefore, selecting
the largest regression coefficient across all factors to
define a single step size could be misleading.
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3. By their very nature, some factors are hard to change,
and so choosing the step size for the path based on the
regression coefficient of an easy-to-change factor may lead
to a level that is either very difficult or not possible for one
of the hard-to-change factors.

For example, it may be easier to change temperature in
steps of, say 10°F than to have an easy-to-change factor
dictate that temperature be changed in steps of, say,
6.42°F. On the other hand, having a hard-to-change factor
dictate the step size in the easy-to-change factors may
require the steps to be larger than desired and may force
the path to the boundary of the region. Although the
experimenter can choose to have a common step size (A; =
Aj = A), we will allow for the use of two separate As for
the reasons mentioned above.

Let r1 represent the radius for the whole-plot factors,

32515 =1, and let 72 represent the radius for the subplot

. B s .
factors, 2-;1% =’ Then there are two equations

involving Lagrange multipliers:

Ly =by+ iﬂf:i + A (JZI ": 2 ";;)

=1 =]

and

Lr=by+ Z bizi + A2 Zlf - ?"_{}

ks b
i=I

=]
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where A1 and A are the Lagrange multipliers. Because we
are assuming a first-order model with no interactions
between the whole-plot and subplot factors, these two
equations can be solved separately. Therefore, taking
partial derivatives of L1 with respect to each of the z; and
A1 will result in the equations

L,

oz =a;—2Mz=0

and

o Rzl-zwi—u
g\ =T

Likewise, similar equations will result from taking the
partial derivatives of L2 with respect to each x; and A2.
Hence, the solutions will be % = @;/2\1 and % = bj/2)2.
Therefore, two variables, =, and %, and their amount of
change must be chosen to determine the path. There will
be two centers or base points; one for the whole-plot
factors (Basel) and one for the subplot factors (Base2).
Each base point will be (0, 0,..., 0) in the coded variables.

Kowalski et al. (2005) describe an experiment to study the
image quality of a printing process. There are five
important factors: 4 = blanket type (in units of thickness),
B = paper type (in units of thickness), C = cylinder gap, D
= ink flow, and E = press speed. Figure 5.8 is a diagram of
this part of the printing press. Changing the cylinder gap,
ink flow, and press speed is a very simple procedure
simply consisting of making an adjustment on a control
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panel while the printing press is still running. Therefore,
these are the easy-to-change factors in the experiment.
Changing the blanket type and paper type, on the other
hand, requires the press to be stopped and a manual
replacement of the blanket and/or paper type. Thus, these
two factors are hard-to-change factors. A completely
randomized full factorial design would run the 32
treatment combinations in random order, requiring
frequent stopping of the press so that the blanket type and/
or paper type could be changed. Instead, a split-plot design
is used with two whole plot variables, z1 and z2 (A and B),
and three subplot variables, x1, x2, and x3 (C, D, and E).
The levels of these factors in the natural units are provided
in Table 5.8. Let

(5.16) ¥ = 60 + 4.2z + 6.8z + 1.4x; — 3.6x; + 2.2x;

be the fitted first-order model. Suppose a change of two
natural units in z2 (the whole-plot variable with the largest
effect), equivalent to one coded unit, is chosen for
determining the path in the whole-plot variables. Then A1 =
6.8/2(1) = 3.4, and the corresponding change in z1 is 4.2/
2(3.4) = 0.618. Now suppose that a change of five natural
units in x2 (the subplot variable with the greatest effect),
equivalent to one coded unit, is chosen for determining the
path in the subplot variables. Then A2 = -3.6/2(1) = —1.8
and the change in xj is b;j/2(]A2|). So the change in x3 is 2.2/
2(1.8) = 0.611 and the change in x1 is 1.4/2(1.8) = 0.389.
Table 5.9 shows the steps for the path of steepest ascent in
the coded units.

Figure 5.8 The printing press.
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"‘__._,_.- Blanket (image carriar)

Blankel cylinder
Cylinder gap
\ Paper

Impression cylinder

TABLE 5.8 Printing Press Factor Levels in the Natural
Units

L] 2 Xy X2 X3

Low 10 4 20 5 2
High 20 8 40 15 &

TABLE 5.9 Steps in the Coded Variables Along the
Path of Steepest Ascent for the Printing Press Example

I 2 Xy Xz X3

Basel 1} 0 Base2 0 0 0

A, 618 1.0 _\,I ().389 —1.0 (L.61]
Basel 4 A, Lo18 1.0 Base2 4 A (.389 - 1.0 0611
Basel + 24, 1.236 2.0 Base2 + 24 0.778 =2.0 1,223
Basel + 34, 1.854 o Base2 + 34 1.167 —-3.0 1.833

When the experiment is completely randomized, runs are
typically carried out one at a time on the path of steepest
ascent. This is not realistic in the split-plot setting. When
setting up the order of the split-plot runs, careful
consideration has to be given to the restricted
randomization. After a setting in the whole-plot factors is
determined, several subplots should be run. One must
decide how to run the various whole-plot settings as well
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as which subplot settings will go in each whole plot.
Kowalski et al. (2005) propose three methods for carrying
out the method of steepest ascent in a split-plot
experiment. We will use the model in Equation 5.16 to
illustrate the methods. Also, throughout this discussion, we
will use m = 1 for the first step along the whole plot and
subplot paths. Typically, there are only 46 steps along the
path before the response starts to drop off.

Method 1 This method fixes a whole plot setting and
carries out the subplot path. Then, using the result from the
subplot path it carries out the whole plot path with fixed
subplot settings. Using m = 1, the first whole-plot setting is
Basel + A;. Within this setting of the whole-plot factors,
many subplots can be used for the subplot path. For
example, say we use six subplots: Base2 + A;, Base2 +
2A,..., Base2 + 6A; run in random order. This determines,
the subplot setting with the highest response. Now steps
are made along the path in the whole-plot factors. The
whole-plot path starts with Basel + A; and Basel +2 A;. In
each of these whole-plot settings, some replicates, say
four, of the highest response setting in the subplot factors
from the previous subplot path are run. The average of
these four subplot runs serve as the response value for the
whole-plot path. Continue running new whole-plot setting
along the path until the average response values drop off.
This factor setting along the whole-plot path and the
previously determined subplot settings from the subplot
path could be used as the center for any follow-up
experimentation.

Consider the model fit in Equation 5.16. Then, as an
example of Method 1, first the runs in Table 5.10 are
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carried out in random order. The subplot path gives the
setting Base2 + 3A; because it has the highest response
(75). Next, more whole-plot settings are used, all with the
same subplot setting Base2 + 3A;. The average response of
the subplots will be the whole-plot response. From Table
5.11, the whole-plot response drops off after Basel + 2A;.
Thus, this example produces the setting of Basel + 2A; in
the whole-plot variables and the setting of Base2 + 3A; in
the subplot variables as the center of the follow-up
experiment. The design point in coded units for this setting
1sz1 =1.236,2z2=2.0,x1 =1.167, x2 = -3, and x3 = 1.833.

TABLE 5.10 First Whole-Plot Run with Setting
Basel+A;, Using Method 1

Subplot Runs x T X3 Response
Base2 + A (1.389 —1 (L&611] [
Base2 + 24, 0.778 2 1.222 73
Basc2 + 3A, 1167 -3 1,833 75
Base2 -+ 44, 1.556 —4 2444 73
Base2 + 54, 1.945 = 3.055 70
Base2 + 04, 2334 -6 1.666 66

TABLE 5.11 New Whole-Plot Runs Using Subplot
Setting Base2 + 3Aj, Using Method 1

Whole Plot Settings

Basel 4+ 4, Basel + 24, Base | 4+ 34,
Subplot Setting Response Response Response
Base2 + 34, 76 79 74
Base2 + 34, 75 77 75
Buse2 + 34, Th 77 74
Base2 + 34, 75 76 73
Average 75.5 71.25 74.0

The number of steps required in this particular example,
using the split-plot Method 1 approach, was five. It is
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important to keep in mind the split-plot nature in
determining the steps to termination of the path. In this
example, even though 18 runs were carried out, the path
terminates after only two steps in the whole-plot variables
and three steps in the subplot variables.

Method 2 Method 2 essentially reverses the roles of whole
and subplots from Method 1. Instead of determining the
ideal subplot setting first and then finding the whole-plot
setting, method two finds the whole-plot setting first and
then determines the subplot setting. Therefore, one would
start by running two whole-plot settings, Basel + A; and
Basel + 2A;, with each containing, say, four replicates of
Base2 + A;. Using the average of the subplot runs as the
response, continue running whole-plot settings along the
whole-plot path until the average response drops off. This
will determine the whole-plot setting. Then, in this
whole-plot setting, say, six subplots can be run: Base2 +
Aj, Base2 + 2Aj,..., Base2 + 6A;. These can be used to
determine where the subplot responses drop off. The
setting from this subplot path and the previously
determined whole-plot setting from the whole-plot path
could serve as the center for any follow-up
experimentation.

Using Equation 5.16 to provide an example of Method 2,
the runs in Table 5.12 are carried out, resulting in Basel +
2A; as the choice for the whole-plot variables. Next,
subplot settings are run in random order, all with the same
whole-plot setting Basel + 2A; from the whole plot path.
From Table 5.13, the subplot response drops off after
Base2 + 3A;, so Basel + 2A; in the whole-plot variables
and Base2 + 3A; in the subplot variables can be used as the
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center for any follow-up experimentation. The design point
for this setting would be z1 = 1.236, z2 = 2.0, x1 = 1.167, x2
=-3, and x3 = 1.833. In this example, the same termination
point is achieved from Methods 1 and 2, although this will
not always be the case.

TABLE 5.12 Whole-Plot Runs with setting Base2 + Aj,
Using Method 2

Whaole-Plot Settings

Subplot Seuing Basel 4+ A, Basel + 24, Basel + 34,
Base2 + A, T0 73 71
Base2 + A, 72 75 73
Base2 4 A, 69 72 70
Base2 + A, 60 72 70
Average T0.0 73.0 71.0

TABLE 5.13 Subplot Settings at the Best Whole-Plot
Setting, Basel + 2A;, Using Method 2

Subplot Runs X 5] X3 Eesponse
Base2 + & 0.389 -1 0.611 73
Base2 + 24 0.778 2 1.222 76
Base2 + 34, 1.167 -3 1.833 78
Base2 4 44, 1.556 -4 2444 75
Base2 + 54 1.945 5 3.055 73
Base2 + 64, 2334 - 1666 [

It should be noted that both Methods 1 and 2 rely heavily
on the assumption of no interaction between whole-plot
and subplot factors. However, when the method of steepest
ascent is applied in the usual completely randomized RSM
experiments, a strict first-order model is assumed to be
adequate. Therefore, the assumption of no interaction
between whole-plot and subplot factors is not an additional
assumption, and is consistent with typical RSM situations.
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Choosing Between Methods 1 and 2 There is no simple
way to choose between Methods 1 and 2 in an optimum
fashion, where, by optimum, we mean choosing the
method that would result in the most rapid movement to
the region of the maximum. The optimum choice depends
on the starting point in the true response surface and the
shape of this surface. These are, of course, unknown to the
experimenter. The authors report examining many types of
surfaces and used different starting points to study this
question empirically. They report that applying Methods 1
and 2 to these surfaces resulted in very little difference in
terms of the total number of runs needed. Figures 5.9 and
5.10 illustrate the two methods on one such surface for one
starting point (the bold symbols indicate steps along the
whole plot path and the + symbol indicates steps along the
subplot path). Figure 5.9 uses Method 1, while Fig. 5.10
illustrates Method 2. Both methods require two steps along
the whole plot path and 4-5 steps along the subplot path.
From a practical point of view, if the largest standardized
regression coefficient (coefficient/ standard error of the
coefficient) belongs to a hard-to-change factor, Method 2
seems like an obvious choice. This would allow the
experimenter to make great leaps in the hard-to-change
factors toward the optimum and then minor refinements in
the easy-to-change factors. On the other hand, if the largest
standardized regression coefficient belongs to an
easy-to-change factor, Method 1 seems like a better choice
because movement in the easy-to-change factors should
provide the quicker ascent.

Figure 5.9 Trajectory using Method 1.
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Z

Figure 5.10 Trajectory using Method 2.

Ending Pt Base 1 +20edn, Base2+40oka
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It is possible to combine or switch between the two
methods. Suppose while using Method 1 there is very little
change in the response as the steps along the path in the
easy-to-change factors are carried out. This may lead the
experimenter to switch to Method 2 and implement steps
along the path in the hard-to-change factors to move more
quickly to an optimum point.

Method 3 In this method, we propose running a certain
number of whole plots, each with the same number of
subplots. This can be thought of as one experiment that
carries out both paths at the same time. This approach is
preferred if the time to obtain responses is lengthy and
collecting data in batches is more time- or cost-effective.
Suppose it is practical to run four whole plots, each with
six subplots. The whole-plot settings of Basel + A;, Basel
+ 2A;, Basel + 3A;, and Basel + 4A; should be
randomized. In each of these settings, the subplot settings
of Base2 +Aj, Base2 + 2A;,..., Base2 + 6A; should be
separately randomized for each whole-plot setting. We
assume there is no whole-plot by subplot interaction,
which is consistent with RSM applications and the model
in Equation 5.16. There are two ways to determine the
response setting that will serve as the center of a follow-up
experiment. One approach is to first find the average of the
subplot settings for each whole-plot setting. These can be
compared to determine the maximum. Next, the average of
the same subplot settings across the whole plots can be
calculated to determine the maximum in the subplot
settings. Combining these two gives an appropriate point.
Another approach is to simply take the highest response
from the 24 runs and make this the new center for a
follow-up experiment.
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Using Equation 5.16 as an example, suppose an
experiment with four whole plots and six subplots is
chosen, with the resulting runs displayed in Table 5.14. In
this example, the highest response occurs at (Basel + 2A;,
Base2 + 3Aj). Also, the highest average subplot setting is
Base2 + 3Aj, and the highest average whole-plot setting is
Basel + 2A;. The design point at this setting would be z1 =
1.236, zp = 2.0, x1 = 1.167, x2 = -3, and x3 = 1.833. This
agreement between the highest overall setting and the
highest average settings may not occur in all situations.
The advantage of Method 3 compared with Methods 1 and
2 is that all the data for the experiment are collected
together. This can be important in some industrial settings.
For example, in semiconductor manufacturing, multiple
runs may be performed on a single-wafer tool during one
time period. These runs involve changing both
hard-to-change and easy-to-change factors on the tool. The
wafers are then sent to a lab for processing, and it may take
up to a week to get the response values back. Therefore, it
is important to collect all of the data at one time, and it
would be impractical to attempt to collect the
measurements sequentially, as is required with Methods 1
and 2.

TABLE 5.14 Experimental Runs for Method 3 (Bold
Numbers Indicate Highest Responses)

Subplots Basel + A, Basel + 24, Basel + 34, Basel + 44, Average
Base2 + A 70 72 72 6 70.25
Base2 + 24 74 75 73 7l 73.25
Base2 + 34, T4 T4 76 75 T6.00
Base2 + 44, 73 75 75 71 73.50
Base2 4+ 54 70 74 73 70 71.75
Base2 + 04, a7 70 70 a7 G50
Average 7133 T4.16 7316 70.50
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One possible disadvantage of Method 3 is that the response
may not drop off after, say, four steps in the
hard-to-change factors and/or six steps in the
easy-to-change factors. When using any of these methods,
it is useful to have a rule for deciding when to stop
conducting experiments along the path. The rule of thumb
that we have suggested previously is to continue
experimenting along the path of steepest ascent until two
consecutive runs have resulted in a decrease in the
response.

EXERCISES

5.1 Given the fitted response function

y=T2.0+ 3.6x; — 2.5x,

which is found to fit well in a localized region of (x1, x2).

(a) Plot contours of constant response, y, in the (x1, x2)
plane.

(b) Calculate and plot the path of steepest ascent generated
from this response function. Use x| to determine the path,
with Axy = 1.

5.2 Suppose a fitted first-order model is given by

y=2544x; + 3x; — 2.5x;

Suppose that we wish to maximize the response. Calculate
several points along the path of steepest ascent.
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5.3 Reconsider the model in Exercise 5.1. Construct a path
of steepest ascent, using x2 to define the path, with Axp =
1.

(a) Plot this path as the same graph that you constructed in
Example 5.1.

(b) How different are the two paths that you have
constructed?

5.4 Consider the injection molding experiment in Example
5.2.

(a) Use the coded design units to determine how far the
point Base + 4A is from the design center.

(b) Suppose that we had selected x2 to express the points
on the path of steepest descent with Ax2 = 1. Recompute
the points in Table E5.4. Use the point Base + 4A, and
compute the distance of this point from the design center.

(c) How different are the two points you have computed?

5.5 In a metallurgy experiment it is desired to test the
effect of four factors and their interactions on the
concentration (percent by weight) of a particular
phosphorus compound in costing material. The variables
are: A, percent phosphorus in the refinement; B, percent
remelted material; C, fluxing time, and D, holding time.
The four factors are varied in a 2% factorial experiment
with two castings taken at each factor combination. The 32
castings were made in random order, and the data are
shown in Table E5.1.
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(a) Build a first-order response function.

(b) Construct a table of the path of steepest ascent in the
coded design variables.

(c) It is important to constrain the percentage of
phosphorus and the percentage of remelted material. In
fact, in the metric of the coded variables we obtain

X+xn=27

where x1 is percent phosphorus and x2 is percent remelted
material. Recalculate the path of steepest ascent subject to
the above constraint.

TABLE ES5.1 Data for Exercise 5.5

Weight % of Phosphoms Compound

Treatment Combination Replication | Replication 2 Tonal
(1) 303 28.6 589
d 28.5 il4 59.9
fr 24.5 254 50.1
alr 259 7.2 531
IS 248 234 48.2
ac 26,9 238 0.7
b 24.8 27.8 326
b 222 249 47.1
o 37 335 65.2
audl 24.6 26.2 50.8
il 27.6 M6 58.2
abd 26.3 2.8 4.1
ed 20.9 7.7 576
acd 26.8 24.2 510
brcel 264 249 51.3
b 26.9 29.3 56.2
Total 428.1 4369 650
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5.6 Consider the 22 factorial design featured in the
illustration in Figure 3.1 in Chapter 3. Factor A is the
concentration of a reactant, factor B is the feed rate, and
the response is the viscosity of the output material. As one
can tell by the computed effects and the analysis of
variance shown, the main effects dominate in the analysis.

(a) Fit a first-order model.
(b) Compute and plot the path of steepest ascent.

(c) Suppose that in the metric of the coded variables, the
concentration cannot exceed 3.5 and the feed rate cannot
go below —2.7. Show the practical path of steepest
ascent—that is, the path that takes account of these
constraints.

5.7 1t is stated in the text that the development of the path
of steepest ascent makes use of the assumption that the
model is truly first-order in nature. However, even if there
is a modest amount of curvature or interaction in the
system, the use of steepest ascent can be extremely useful
in determining a future experimental region. Suppose that

in a system involving x1 and x2 the actual model is given
by

E(v)= 14+ 5x; — 10x; + 3xyx2
Assume that x1 and x2 are in coded form.

(a) Show a plot of the path of steepest ascent (based on
actual parameters) if the interaction is ignored.
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(b) Show a plot of the path of steepest ascent for the model
with interaction. Note that this path is not linear.

(¢) Comment on the difference in the two paths.

5.8 If the first-order model regression coefficients are

scaled to a unit vector (:fr 1 bj = ), then any point on the
path of steepest ascent is just a multiple of that unit vector.
Use this to answer the following questions regarding the
model in Exercise 5.1.

(a) Is the point x1 = 1.23 and x2 = —3.75 on the path of
steepest ascent?

(b) Is the point x; = 1.75 and x2 = —4.0 on the path of
steepest ascent?

(c) Is the point x1 = 1.44 and x2 = —1.0 on the path of
steepest ascent?

(d) Is the point x; = 2.0 and x2 = —1.5 on the path of
steepest ascent?

5.9 Consider Example 3.3 in Chapter 3.

(a) Using a first-order regression model plot the path of
steepest ascent.

(b) Indicate expected responses in a table for various
points on the path.

(c¢) The test for curvature indicated that no quadratic terms
are significant. Suppose that, instead of having center runs,
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four additional runs were placed on the factorial points
(one at each point). Will the steepest ascent be improved?
Explain.

(d) Refer to part (c) above. Give an argument for
improvement that takes the confidence region on the path
of steepest ascent into account.

5.10 Consider Example 3.5 in Chapter 3. There are two
design variables and four blocks. The experiment involves
complete blocks, and it is assumed that there is no
interaction between blocks and the design variables.

(a) Write the linear regression model for this experiment.
Assume blocks are a part of the model. Assume no
interaction between the design variables.

(b) Show that the path of steepest ascent is the same
whether or not blocking is involved in the experiment.

(c) Suppose the block effects are extremely important.
Explain how blocking will improve the precision of the
path of steepest ascent.

5.11 Consider the fractional factorial experiment illustrated
in Exercise 4.9.

(a) From the analysis, write out a first-order regression
model. All factors are quantitative. Assume that the levels

are centered and scaled to +1 levels.

(b) Construct a table giving the path of steepest ascent for
achieving maximum yield.
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(¢) Suppose, for example, that the CE interaction is
extremely important but the analyst does not realize it.
How does this effect the computed path in part (b)? Give a
qualitative explanation.

5.12 Consider the data in Table E5.2. Apply the method of
steepest ascent and create an appropriate path.

TABLE ES5.2 Data for Exercise 5.12

Natural Variables Coded Vanables
& £ x X Response
bd] L1 = | -1 15
100 40 I 1 32
80 60 I | 25
100 60 I 1 40
a0 50 i} 0 33
a0 50 i} 0 27

Qi 50 1]} W] 30

5.13 Suppose the model you fitted in Exercise 5.12 was the
following:

v =28+ 8x; —4.5x

(Note that this is not necessarily the model you actually
found when you worked this problem. It’s just one that we
will use in this question, under the assumption that it is the
correct model.)

(a) Which variable would you use to define the step size
along the path of steepest ascent in this model, and why?

(b) Using the variable you selected in part (a), choose a

step size that is large enough to take you to the boundary
of the experimental region in that particular direction. Find
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and show the coordinates of this point on the path of
steepest ascent in the coded variables x1 and x2.

(¢) Find and show the coordinates of the point from part
(c) in terms of the natural variables.

(d) Are the points &1 = 107.4 and & = 59.8 on the path of
steepest ascent?

5.14 Consider the data in Table E5.3, which were observed
during an experiment conducted to apply the method of
steepest ascent (or descent) to a process.

(a) Fit a first-order model (without interaction) to these
data. Show the model in terms of the coded variables.

(b) Which variables would you retain in your model as
being important? Justify your answer.

TABLE ES5.3 Data for Exercise 5.14

Maturaf Vanables Coded Variables

Response
4] & & ) 5] x5 ¥
40 10 80 -1 -1 -1 20
&l 10 80 1 1 1 29
40 30 a0 | 1 -1 I8
&l in 80 1 | -1 32
40 10 120 -1 -1 1 29
6l 10 120 1 | 1 28
40 0 120 -1 1 1 17
1 | 1

60 30 120 25

5.15 This problem refers to the design used in Exercise
5.14. Assume that the experimenter also included the
center runs shown in Table E5.4 in his/her design.
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TABLE ES5.4 Center Runs for the Experiment in Table
ES.3

MNatural Variables Coded Vanables

Response
& & & X1 X2 Az B4
50 20 100 0 0 0 32
50 20 100} 0 0 0 36
50 20 100 0 0 0 39
50 20 100 0 0 0 33

(a) Find an estimate of o, the standard deviation of the
process.

(b) Use the new observations to test for lack of fit of the
first-order model. Specifically, does there seem to be an
indication of curvature (either interaction or pure
second-order effects) present?

5.16 Suppose that you have fit the following model

$ =20+ 10x; —4x; + 12%;

(a) The experimenter decides to choose x| as the variable
to define the step size for steepest ascent. Do you think
that this is a good choice for defining step size? Explain
why or why not.

(b) The experimenter decides to make the step size exactly
one coded unit in the x| direction. Find the coordinates of
this point from the design center on the path of steepest
ascent.

(c) Suppose that you had used x3 as the variable to define
the direction of steepest ascent. Assuming a step size of
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one coded unit, find the coordinates of the first step in this
direction away from the design center.

(d) Find the distance between the two points found in parts
(b) and (c), respectively.

5.17 Suppose that you have fit the following response
surface model in terms of coded design variables:

¥ =100+ 10x; + 15x; — 4x3

The design used to fit this model was a 23 factorial.

(a) The experimenter is going to use the method of
steepest ascent. He/she decides to make the step size
exactly one coded unit in the x2 direction. Find the
coordinates of this point from the design center on the path
of steepest ascent in terms of the coded variables.

(b) Suppose that the experimenter had chosen x3 as the
variable to define the step size for steepest ascent. Do you
think that this is a good choice for defining step size?
Explain why or why not.

(c) Suppose that the levels of the natural variables &1, &2,
and &3 used in the 23 design were (100, 200), (10, 20), and
(50, 80), respectively. What are the coordinates of the
point on the path of steepest ascent from part (a) in terms
of the natural variables?

(d) Find the coordinates of the unit vector defining the
path of steepest ascent.
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(e) Suppose that the experimenters want to run the process
at the point (in the natural variables) &1 = 204, & = 23.1,
and &3 = 71.6. Assuming that the base point is the design
center, is this point on the path of steepest ascent?

5.18 Suppose that you have fit the following response
surface model in terms of coded design variables:

y = 250 + 20x; + 25x; — 8x3
The design used to fit this model was a 23 factorial.

(a) The experimenter is using the method of steepest
ascent. He/she decides to make the step size exactly one
coded unit in the x1 direction. Find the coordinates of this
point from the design center on the path of steepest ascent
in terms of coded design variables.

(b) Suppose that the experimenter had chosen x2 as the
variable to define the step size for steepest ascent. Once
again, the length of the step is one coded unit. Do you
think that this is a better choice for defining step size than
was used in part (a)? Explain why or why not.

(c) Suppose that the levels of the natural variables £1, &2,
and &3 used in the 23 design were (100, 150), (10, 20), and
(60, 80), respectively. What are the coordinates of the
point on the path of steepest ascent from part (b) in terms
of the natural variables?

(d) Find the distance separating the two points that you
found in parts (a) and (b).
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5.19 Suppose that you have fit the following response
surface model in terms of coded design variables:

¥ =200+ 25x; 4+ 30x; — 12x3
The design used to fit this model was a 23 factorial.

(a) The experimenter is using the method of steepest
ascent. He/she decides to make the step size exactly one
coded unit in the x1 direction. Find the coordinates of this
point from the design center on the path of steepest ascent
in terms of coded design variables.

(b) Suppose that the experimenter had chosen x2 as the
variable to define the step size for steepest ascent. Once
again, the length of the step is one coded unit. Do you
think that this is a better choice for defining step size than
was used in part (a)? Explain why or why not.

(c) Suppose that the levels of the natural variables &1, &2,
and &3 used in the 23 design were (100, 200), (10, 12), and
(60, 100), respectively. What are the coordinates of the
point on the path of steepest ascent from part (b) in terms
of the natural variables?

(d) Find the distance separating the two points that you
found in parts (a) and (b).

5.20 Consider Example 5.2 in the textbook. In this
example, the variable with the second-largest coefficient
(in absolute value) was used to define the path of steepest
ascent. Rework this example using the factor with the
largest absolute value regression coefficient (x2).
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(a) Construct a table similar to Table 5.4 in the textbook
that shows the first four steps taken along the path,
assuming that the step size in coded units is Ax2 = 1.

(b) Find the distance separating the point that you have
found after the fourth step from part (a) above and the
fourth step from Table 5.4 in the text. Use coded units.

5.21 Consider the first-order model

_i' = 100 4 5x; + Bx — 3.1',‘-.

This model was fit using a 23 design in the coded variables
-1 <xi<+1,i=1, 2, 3. The model fit was adequate. The
region of exploration on the natural variables was

¢1 = temperature (100, 110°C) & = time (1, 2 hr)
&3 = pressure (50, 75 psi)

(a) Which variable would you choose to define the step
size along the path of steepest ascent, and why?

(b) Using the variable in part (a), choose a step size large
enough to take you to the boundary of the experimental
region in that particular direction. Find and show the
coordinates of this point on the path of steepest ascent in
the coded variables x;.

(¢) Find and show the coordinates of this point on the path
of steepest ascent from part (b) using the natural variables.
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(d) Find a unit vector that defines the path of steepest
ascent.

(e) What step size multiplier for the unit vector in (d)
above would give the same point on the path of steepest
ascent you found in parts (b) and (c)?

5.22 Consider the fitted first-order model

y=15.96 + 1.02x; + 3.4x; — 2.4x;

where x; is a coded variable such that —1 < x; < 1, and the
natural variables are

Pressure(x1) 24-30 psig

Time(x2) 1-2 min

Amount of caustic(x3) | 2—4 1b

If the step size in terms of the natural variable time is 1.5
min, find the coordinates of a point on the path of steepest
ascent.

5.23 Reconsider the model in Exercise 5.22. Are the
following points on the path of steepest ascent?

(@)x1=15,x2=39,x3=-1.8.
(b) x2=3.0,x2="7.5,x3=-1.0.

(¢) Pressure = 22 psig, time = 1 min, amount of caustic =
2.2 points.
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5.24 Consider the data of Exercise 5.12. Show graphically
a confidence region for the path of steepest ascent.

5.25 Reconsider the data of Exercise 5.12. Perform tests
for interaction and curvature. From these tests, do you feel
comfortable doing the method of steepest ascent? Explain
why or why not.

5.26 Reconsider the situation described in Exercise 5.1.
Suppose that the variance of the regression coefficients is
0.5 and that there are four error degrees of freedom. Find
the 95% confidence region on the path of steepest ascent.
What fraction of the possible directions from the design
origin are excluded by the path of steepest ascent that you
have computed?

5.27 Rework Exercise 5.26 assuming that the variance of
the regression coefficients is 0.25 with four error degrees
of freedom. Compare your new results with those obtained
previously. What impact does the improved precision of
estimation have on the results?
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6

THE ANALYSIS OF SECOND-ORDER RESPONSE
SURFACES

6.1 SECOND-ORDER RESPONSE SURFACE

In previous discussions we have confined ourselves to
models that either are first-order in the design variables or
contain first-order plus interaction terms. In Chapters 3
and 4, attention was focused on two-level designs. These
designs are natural choices for fitting models containing
first-order main effects and low-order interactions. Indeed,
the material in Chapter 5 dealing with steepest ascent made
use of first-order models only. Nevertheless, we have often
mentioned the need for fitting second-order response
surface models. For example, in Chapter 3 we discussed
the use of multiple center runs as, an augmentation of the
standard two-level design. Interest centered on the
detection of model curvature, that is, the detection of pure
quadratic terms Bii¥i-Bnt. - . By Recall that the use of
center runs to augment a standard two-level design allows
only a single degree of freedom for estimation of (and thus
testing of) these second-order coefficients. As a result,
efficient estimates of f11, f22,..., Pkk separately require
additional design points.

In Chapter 5, we indicated that in most attempts at product
improvement through the gradient technique, called
steepest ascent, the investigator will encounter situations
where the lack of fit attributable to curvature from these
pure second-order terms is found to be quite significant. In
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these cases it is likely that the model containing first-order
terms and, say, two-factor interaction terms f12, f13,...,
Pk-1k 1s woefully inadequate. As a result, a second-order
response surface model, discussed in the next section, is a
reasonable choice.

6.2 SECOND-ORDER APPROXIMATING FUNCTION

In Chapter 1 the notion of approximating polynomial
functions was discussed. In response surface methodology
(RSM) work it is assumed that the true functional
relationship

6.1) ¥ = fi(x, 0)+&

1s, in fact, unknown. Here the variables x1, x2,..., xk are in
centered and scaled design units. The genesis of the
first-order approximating model or the model that contains
first-order terms and low-order interaction terms is the
Taylor series approximation of Equation 6.1. Clearly, a
Taylor series expansion of Equation 6.1 through
second-order terms would result in a model of the type

(6.2)
2 2
2= ﬁl] + IE"I-J‘-I + lGE-‘:: SR o ﬁﬁ.l’_{ +ﬁ“_1'r_ o el o BH-"‘; ES ﬁ'l}"ll-rl
+ Braxixs + o+ By 1M1k + €

k i k
=By + }: Bixi + Z Bix; + zz Bjxixj+ €
i=1 =1 i<j=2

The model of Equation 6.2 is the second-order response
surface model. Note that it contains all model terms
through order two. The term 1 is the usual random error
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component. The assumptions on the random error are those
discussed in Chapters 2, 3, and 4.

6.2.1 The Nature of the Second-Order Function and
Second-Order Surface

The model of Equation 6.2 is an interesting and very
flexible model to describe experimental data in which
there is curvature. We do not mean to imply here that all
systems containing curvature are well accommodated by
this model. There are often times in which a model
nonlinear in the parameters is necessary. In some cases one
may even require the use of cubic terms (say *ix2. %) and so
on) to achieve an adequate fit. In other cases the curvature
may be quite easily handled through the use of
transformation on the response itself; for example, in the
case where k=2,

Iny = ,B[] -+ ﬁl.n 4 ,B:.l'} -+ ﬁi:-l'l_rg + &

In other situations, transformation of the design variables
may lead to a satisfactory approximating function—for
example,

y=08;+8Inx;+B;Inx;+ &

At times transformation of both response and design
variables may be needed.

The second-order model described in Equation 6.2 is quite
useful and is easily accommodated via the use of a wide
variety of experimental designs. Families of designs for
fitting the second-order model are discussed in Chapters 7
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and 8. Note from Equation 6.2 that the model contains 1 +
2k + k(k — 1)/2 parameters. As a result, the experimental
design used must contain at least 1 + 2k + k(k — 1)/2
distinct design points. In addition, of course, the design
must involve at least three levels of each design variable to
estimate the pure quadratic terms.

The geometric nature of the second-order function is
displayed in Figs. 6.1, 6.2, and 6.3. This will become vital
in Section 6.3 as we discuss the location of estimated
optimum conditions. Figures 6.1 and 6.2 show contours of
constant response for a hypothetical situation with &k = 2
variables. In Fig. 6.1 the center of the system, or
stationary point, is a point of maximum response. In Fig.
6.2 the stationary point is a point of minimum response. In
both cases the response picture displays concentric
ellipses. In Fig. 6.3, a hyperbolic system of contours is
displayed. Note that the center is neither a maximum nor a
minimum point. In this case, the stationary point is called a
saddle point and the system of contours is called a saddle
or minimax system. The detection of the nature of the
system and the location of the stationary point are an
important part of the second-order analysis. Modern
computer graphics blend nicely with this type of analysis.
Three-dimensional graphics can be very helpful to the data
analyst in the determination and understanding of the
nature of a response surface.

Figure 6.1 Second-order system displaying a maximum.
(a) Contour plot. (b) Response surface.
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Figure 6.2 Second-order system displaying a minimum.
(a) Contour plot. (b) Response surface.
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Figure 6.3 Second-order system displaying a saddle point.
(a) Contour plot. (b) Response surface.
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6.2.2 Ilustration of Second-Order Response Surfaces

The nature of the response surface system (maximum,
minimum, or saddle point) depends on the signs and
magnitudes of the coefficients in the model of Equation
6.2. The second-order coefficients (interaction and pure
quadratic terms) play a vital role. One must keep in mind
that the coefficients used are estimates of the p’s of
Equation 6.2. As a result the contours (or surfaces)
represent contours of the estimated response. Thus, even
the system itself (saddle, maximum, or minimum points) is
part of the estimation process. The stationary point and the
general nature of the system arise as a result of a fitted
model, not the true structure.

Consider the example in Fig. 6.1, for which the fitted
second-order model is given by

¥ =100+ 5x; + 100y — 8x] — 1223 — 12x;x2

An analysis of this response function would determine the
location of the stationary point and the nature of the
response system. Because £ = 2 in this case, some simple
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graphics deals with both issues. Figure 6.1 shows the
response surface with contours of constant y plotted
against x1 and x2. It shows that the system produces a
stationary point that has maximum estimated response.
The stationary point is the solution to

av oy

——=—=)
i, £

This results in the system of linear equations

16x; +12xz =5
12x; + 24x; = 10

yielding the solution for the stationary point

Al — 0, Xy —

The estimated response at the stationary point is given by §
=102:08.

In the following sections we deal in a general way with the
determination of the nature of the response surface
contours and the stationary point. Graphical analysis,
including contour plotting, plays an important role.
However, there are many times when the formal analysis is
very helpful. This is particularly true when several (k > 2)
design variables are involved. The formal analysis can
shed much light on the nature of the response surface.
Often the nature of the system is elucidated through a
combination of analytical techniques and graphical
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displays. In addition, it is often necessary for the scientist
or engineer to use constrained optimization to arrive at
potential operating conditions. This is particularly true
when the stationary point is a saddle point or point of
maximum or minimum response that resides well outside
the experimental region, or where several response
variables must be simultaneously considered. It turns out
that the strategy that results in process and quality
improvement simultaneously is profoundly dependent on
the nature of the response system.

6.3 A FORMAL ANALYTICAL APPROACH TO THE
SECOND-ORDER MODEL

Consider again the second-order response surface model of
Equation 6.2. However, let us consider the fitted model in
matrix notation as

(6.3) 3 = bo + xb + x'Bx

where b0, b, and B are the estimates of the intercept, linear,
and second-order coefficients, respectively. In fact x" = [x,
X2,..., Xk], ' = [b1, b2,..., br], and B is the k x k symmetric
matrix

by biaf2 -+ b2
. by oo+ by /2
B=
(6.4) Sy by
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Note that the term x'Bx contributes the pure quadratics
from the diagonals and the two-way interactions from the
sum of two off-diagonal elements 2( s P4ix)),

6.3.1 Location of the Stationary Point

It is straightforward to give a general expression for the
location of the stationary point, say Xs. One can
differentiate y in Equation 6.3 with respect to x and obtain

B9/ = b+ 28z

Setting the derivative equal to 0, one can solve for the
stationary point of the system:

B 'p

[T -

(6.5)% = —
The predicted response at the stationary point is
v, =byp+x.b+ xiﬁx‘
= by +x'b + (— 1B Bx,
= by +3x'b _
6.3.2 Nature of the Stationary Point (Canonical Analysis)

The nature of the stationary point is determined from the
signs of the eigenvalues of the matrix B. The relative
magnitudes of these eigenvalues can be helpful in the total
interpretation. For example, let the £ X k matrix P be the
matrix whose columns are the normalized eigenvectors
associated with the eigenvalues of B. We know that

404



6.6) PBP = A

where A is a diagonal matrix containing the eigenvalues of
B as main diagonal elements. Now if we translate the
model of Equation 6.3 to a new center, namely the
stationary point, and rotate the axes corresponding to the
principal axes of the contour system, we have

Z=X—X;
6.7)w =Pz

The process is illustrated graphically in Fig. 6.4. The
translation gives

Figure 6.4 Canonical form of the second-order model.
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y=by+@E+x)b+ (z+ x;)B(z + x,)
= [by + X'b+ x'Bx,] + zb + 2Bz + 2x'Bz

=y, + 2Bz

because 2X;Bz = —z'b from Equation 6.5. The rotation gives

3 =3, + wPBPw
6.8) =¥+ w Aw

The w-axes are the principal axes of the contour system.
Equation 6.8 can be written

k

A A 3
y=y+ E Aiwy

(6.9) i=1

where ys is the estimated response at the stationary point
and A1, A2,..., Ak are the eigenvalues of B. The variables
w1, w2,..., wk are called canonical variables.

The translation and rotation described above leads to
Equation 6.9. This equation nicely describes the nature of
the stationary point and the nature of the system around the
stationary point. The signs of the A’s determine the nature
of x5, and the relative magnitude of the eigenvalues help
the user gain a better understanding of the response
system:

1. If A1, A2,..., Ak are all negative, the stationary point is a
point of maximum response.
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2. If M, A2,..., Ak are all positive, the stationary point is a
point of minimum response.

3. If A1, A2,..., Ak are mixed in sign, the stationary point is a
saddle point.

This entire translation and rotation of axes described here
is called a canonical analysis of the response system.
Obviously, if a saddle system occurs, the experimenter will
often be led to an alternative type of analysis. However,
even if a maximum or minimum resides at X, the
canonical analysis can be helpful. This is true even when
one is dealing with a relatively small number of design
variables. For example, suppose £k = 3 and one seeks a
large value for the response. Suppose also that xs is a point
of maximum response (all three eigenvalues are negative)
but [A] = Oand [A2] = 0. The implication here is that there is
considerable flexibility in locating an acceptable set of
operating conditions. In fact, there is essentially an entire
plane rather than merely a point where the response is
approximately at its maximum value. In fact, it is simple to
see that the conditions described by

W3 = 0

may in fact describe a rich set of conditions for nearly
maximum response. Now, of course, w3 = 0 describes the
plane

X — X,
'
Wi =Py |X2—Xz2, | = ]
X3 — X3 ¢
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where the vector p3 is the normalized eigenvector
associated with the negative eigenvalue A3.

Example 6.1 Canonical Analysis In Section 2.8 we
presented a complete example of fitting a second-order
response surface model. The example involved a chemical
process in which temperature and concentration were
studied, and the response variable was conversion. We
used a central composite design, originally shown in
Table 2.8, but repeated for convenience in Table 6.1. The
fitted model is

TABLE 6.1 Central Composite Design for Chemical
Process Example

A B
Ohservation Temperature ("C) & Conc. (%) & X X3 ¥
I 200 15 -1 -1 43
2 250 15 1 1 78
3 200 25 -1 1 69
4 250 235 | I 7
5 189.65 20 ~1.414 0 48
Li] 260,35 20 1414 1} 76
7 225 1293 0 1414 ik}
8 225 27.07 L] 1414 T4
9 225 20 0 1] 76
10 225 20 0 1] 79

I ¥

225
L]

0
20

L]
1]

1]
1]

B3
81

$=79.75 + 10.18x; + 4.22x; — 8.50x; — 5.25x3 — 7.75x1x2

and the contour plot for this model is in Fig. 6.5.

Figure 6.5 Contour plot of predicted conversion for
Example 6.1.
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The Central Composite Design. Before we embark on a
discussion of the analysis, we should make a few
comments about the experimental design. Notice that there
are five levels in an experimental design that involves
three components. They are: (i) a 22 factorial, at levels £1;
(i1) a one-factor-at-a-time array given by

X1 X2
-1.414|0
1.414 |0
0 -1.414
0 1.414

and (ii1) four center runs. A graphical depiction of this
design was given in Fig. 2.7. The design essentially
consists of eight equally spaced points on a circle of radius
v2 and four runs at the design center. The four design
points of type (i1) displayed above are called axial points.
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This terminology stems from the fact that the points lie on
the x1 or the x2 axis. Note also that in the axial portion of
the design the factors are not varying simultaneously but
rather in a one-factor-at-a-time array. As a result, no
information regarding the x1x2 interaction is provided by
this portion of the design. However, the axial portion
allows for efficient estimation of pure quadratic terms, that
is, xiand xi. In Chapter 7, we will discuss the central
composite design and several other design families in a
more thorough way.

Canonical Analysis. We begin the canonical analysis by
determining the location of the stationary point. Note that

- l—H.EI{J --3.3?5] h_[uuz]

B=|_3875 —s525 4.22

and from Equation 6.6

x;=—1B7'b
_l[—u_lm U.I.’:{]‘:}HH}.IE]
| 0.1309 —0.2871)| 4.22
0.6264
N [—ﬁ.ﬂﬁﬂd]

The predicted response at the stationary point (x7, x2) =
(0:6263, —0:0604) is ys = 82:81. In the natural units, the
stationary point is

Temperature = 225 + 25x1 5 = 225 + 25(0:6263) = 240:7°C
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Concentration = 20 + 5x2.s = 20 + 5(-0:0604) = 19:7%

This is in close agreement with the location of the
optimum that would be obtained by visual inspection of
Fig. 6.5.

The eigenvalues of the matrix B are the solutions to the
equation

B — Al =0

or

—850—X —375 i
—3.875 -525=A|| "

This reduces to the quadratic equation
A* +13.75A +29.61 = 0

The roots of this equation, A1 = —11.0769 and A2 =
—2.6731, are the eigenvalues. Thus the canonical form of
the second-order model is

y=y,+ ﬂ,u'ﬂf + J’Lgu'i

82.81 — 11.0769w7 — 2.6731w;

Since both eigenvalues are negative, the stationary point is
a maximum (as is obvious from inspection of Fig. 6.5).
Furthermore, since |A1| > |A2|, the response changes more
quickly as we move along the w1 canonical direction. The
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surface is somewhat elongated in the w2 canonical
direction with greater distance between the contour lines.

6.3.3 Ridge Systems

Variations of the pure minimum, pure maximum, and
saddle point surfaces are fairly common. In fact, we
suggested such a situation at the conclusion of the previous
section, where there were k& = 3 variables and two of the
eigenvalues were approximately zero (A1l = 0. Azl =01~ A
very small (essentially zero) eigenvalue implies
considerable elongation of the response surface in that
canonical direction, resulting in a ridge system.

Stationary Ridge Consider the situation shown in Fig. 6.6
for k = 2, where A1 < 0 and A=< 0with [A;|=0. The
canonical model for this surface is

Figure 6.6 Stationary ridge system for £ = 2. (a) Response
surface. (b) Contour plot.

() =00
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The stationary point is in the region of the experimental
design. This type of response surface is a stationary ridge
system. The stationary point is a maximum, and yet there
is an approximate maximum on a line within the design
region. That is, there is essentially a line maximum.
Consider locations in the design region where wy = 0; the
insensitivity of the response to movement along the
wi-axis results in little change in response as we move
away from the stationary point. The contours of constant
response are concentric ellipses that are greatly elongated
along wi-axis. Sizable changes in response are experienced
along the w2-axis.

Rising Ridge There are other ridge systems that signal
certain changes in strategy by the analyst. While the
stationary ridge suggests flexibility in choice of operating
conditions, the rising (or falling) ridge suggests that
movement outside the experimental region for additional
experimentation might warrant consideration. For
example, consider a k = 2 situation in which the stationary
point is remote from the experimental region. Assume also
that one needs to maximize the response. Consider the case
where A1 and A2 are both negative, but A1 is near zero. This
condition is displayed in Fig. 6.7. The remoteness of the
stationary point from the experimental region might
suggest here that a movement (experimentally) along the
wi-axis may well result in an increase in response values.
Indeed the rising (or falling) ridge often is a signal to the
researcher that he or she has perhaps made a faulty or
premature selection of the experimental design region.
This is not at all uncommon in applications of RSM.
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Figure 6.7 Rising ridge system for k = 2. (a) Response
surface. (b) Contour plot.
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The rising ridge is signaled by a stationary point that is
remote from the design region. In addition, one of the
eigenvalues is near zero. The limiting condition for three
variables is displayed in the illustration in Fig. 6.8. Here
the eigenvalues for wi, wp, and w3 are (——, =0).
Experimentation along the w3-axis toward the stationary
point is certainly suggested if these represent feasible
operating conditions.

Figure 6.8 Rising ridge conditions in k = 3 variables.
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Xy at
infinity

Consider the data in Table 6.2 from an experiment on a
square region with two factors, 4 and B, using a central
composite design (22 factorial, four axial runs) with three
center runs. The output from Design-Expert is shown in
Table 6.3 with the estimated predicted response of

TABLE 6.2 Design and Data for Rising Ridge System

Standard Observation

Order # A B Response
| | o | =1 523
2 B | =] 3.3
3 3 = [ 46.7
4 T | | 44.2
5 ] el i 58.5
6 1 I 0 3315
7 2 ] I 328
8 [ ] I 49.2
9 10 ] 0 493
10 4 0 0 50.2
i 5 i 0 51.6

TABLE 6.3 Design-Expert Output for Rising Ridge
System
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Sum of Mean
Source Sqquares DF Square F-Nalue Prob = F

ANOVA for Response Surface Quadratic Model

Model 2159.04 5 431.81 750041 < 0.0001
Residual 288 5 0.58

Lack of fit (.20 3 0.06R 0.051 0.9813

Pure Error 2.67 2 1.34
Cor Total 216192 4]
Rom MSE .76 R-Squared 0.94987
Dep Mean 43.06 Adj R-Squared 0.9873
C.V. 1.76 Pred R-Squared 0.9970
PRESS 6,45 Adeq Precision 95.237 Desire = 4

Cocfficient Standard t for Hy

Factor Estimate DF Emor Coeff =0 Prob = 1| VIF
Intercept 50.27 1 0.39
A=A - 12.42 1 031 —40.09 < 00001 1.00
B-B 828 1 0.31 26.75 < (,0001 1.00
A2 —4.11 1 048 ~8.63 0.0003 1.038
B =911 1 (.48 = 19.12 < (L0001 1.038
AB 113 1 0.38 2933 < (,0001 .00

$=5027 - 12.42A+828B—4.11A*> —9.11 B* + 11.13 AB.

Solving for the canonical form, we find that the response
can be re-expressed as

¥ =3 — 0.509%7 — 12.71w;

where x5 = (-5.18, =2.71) and the w1 and w2 directions are
shown in Fig. 6.9b

In this case the maximum of the system is located well
outside the experimental region, and so it may be helpful
to examine both the contour plot of the response for the
region where data were observed in Fig. 6.9a and
extending the region to include the stationary point in Fig.
6.9b. Note that for each unit moved in the w; direction, a
0.509 unit change in the response is observed, while
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moving a single unit in the w2 direction results in a 12.71
unit change.

Figure 6.9 Contour plot of rising ridge system for k£ = 2 for
data in Table 6.2. (a) Experimental region. (b) Expanded
region to include stationary point.
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Examples of ridge systems will be seen in illustrations in
other portions of this text. In Section 6.3.4 we discuss the
role of contour plots in the practical analysis of the
second-order fitted surface.

An Alternate Canonical Form The canonical form of the
second-order model given in Equation 6.8 is usually called
the B-canonical form. It is very useful for determining the
nature of the fitted response surface, particularly in
identifying saddle systems and ridges. When the fitted
surface is a rising ridge, it can be useful to use a slightly
different canonical form, namely

(6.10) ¥ = ao + u'a + u'Au

417



This is usually called the A-canonical form. It basically
assumes that the axes have been rotated exactly as in the
B-form, but not first translated to the stationary point. In
the A-canonical form, the first-order coefficients are

a=Pb

The first-order terms are useful in determining the
direction of movement along the rising ridge towards the
optimum.

6.3.4 Role of Contour Plots

Contour plots, or contour maps, provide one of the most
revealing ways of illustrating and interpreting the response
surface system. The contour plots are merely
two-dimensional (or sometimes three-dimensional) graphs
that show contours of constant response with the axis
system being a specific pair of the design variables, say x;
and x;j, while the other design variables are held constant.
Modern graphics allow interesting interpretations that can
be of benefit to the user. In fact, in almost all practical
response surface situations, the analysis should be
followed with a display of contour plotting. The reader
should recall the contour plot in Example 6.1. The plots
are particularly necessary when the stationary point is not
of practical significance (a saddle point, or, say, a
maximum point when one seeks a point of minimum
response) or when the stationary point is remote from the
design region. Clearly, ridge systems can only be
interpreted when one can observe two-dimensional
systems as a set of “snapshots” of the design region. Of
course, if there are a large number of design variables,
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contour plotting is more difficult, since many factors need
to be held constant. The method of ridge analysis (Section
6.4) can often aid the user in an understanding of the
system.

The prediction profiler in JMP is a dynamic alternative to
contour plots. Figure 6.10 illustrates a single view of the
slices of the response surface which can be explored using
this tool for Example 6.1. Here we have selected scaled
temperature = 0 and scaled concentration = 0, but by
moving the vertical lines, any combination of temperature
and concentration can be examined.

Figure 6.10 Prediction Profiler in JMP for Example 6.1
response surface.

¥ = Prediction Profiler

- B & B ee B = W -
I (- - I = =

i i

Temparature Concentration

Each plot shows the response surface line conditioned on
the other input factor being held constant.

One cautionary note regarding contour plots must be made

at this point. The investigator must bear in mind that the
contours are only estimates, and if repeated data sets were
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observed using the same design, the complexion of the
response system may change slightly or drastically. In
other words, the contours are not generated by
deterministic equations. Every point on a contour has a
standard error. The prediction profiler includes uncertainty
bounds on the surface which are helpful reminders that the
response surface line is an estimate. This will be illustrated
in a more technical way in a subsequent section.

Example 6.2 Contour Plotting of Survival Data The
following data are adapted from an experiment designed
for estimating optimum conditions for storing bovine
semen to obtain maximum survival. The variables under
study are percent sodium citrate, percent glycerol, and the
equilibration time in hours. The response observed is
percent survival of motile spermatozoa. The data with the
design levels in coded design units are shown in Table 6.4

TABLE 6.4 Survival Data for Example 6.2
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Percent

Treatment Sodium Percent Equilibrium Percent
Combination Citrate Glyeerol Time ihr} Survival
I I | I 57
2 [ -1 -1 40
3 = | =1 19
4 I | ~1 40
5 -1 -1 I 4
6 [ -1 1 41
T =1 | 1 21
& I I I 43
9 i 0 i} o0
10 0 0 0 70
I 0 [] 1] 62
12 i 0 0 72
13 -2 0 ] 28
14 2 0 1] 11
15 0 -2 0 2
16 0 Z ] 15
17 i [] 2 56
18 0 0 2 46

The design levels relate to the natural levels in the
following way:

=2 -1 ] I 2

Sodinm citrate 1.6 23 10 3.7 4.4
Glycerol 20 5.0 30 110 140
Equilibration time 4.0 100 160 220 280

Note that the design consists of a 23 factorial component,
four center runs and six axial or one-factor-at-a-time
experimental runs in which each factor is set at level +2
and —2. The 18 experimental runs, involving three factors
at five evenly spaced levels, is another example of a
central composite design. The fitted second-order response
function is given by
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¥=166.73 — 1.31x; — 2.31x; — 1.06x; — 11.44x;] — 13.82x]

— 3.57x3 + 9.13x;x + 0.63x1x3 + 0.8Tx213

From Equation 6.6 the stationary point is given by

.1‘|__1 _ﬂ-l 12
X, = |x.| =|-0126
X35 —0.174

and the eigenvalues of the matrix B are

Al = —3.508, Ax=—7.973, A;=—17.349

The canonical and stationary point analysis indicates that
the stationary point is a point of maximum estimated
response—that is, maximum estimated percent survival.
The estimated response at the maximum is § = 67:041. As
a result, the estimated condition sought by the
experimenters is found inside the experimental design
region at the stationary point. Figure 6.11a shows the
response surface contours in the vicinity of the optimum
with equilibration time 14.96 hr.

Figure 6.11 Contours of constant percent survival for
Example 6.2. (a) Equilibrium time 14.96 hours. (b)
Equilibrium time 14 hours. (¢) Equilibrium time 12 hours.
(d) Equilibrium time 10 hours.
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Clearly, in this case, the researcher may be quite satisfied
to operate at the conditions of the computed stationary
point. However, because of economic considerations and
scientific constraints of the problem, it is often of interest
to determine how sensitive the estimated response is to
movement away from the stationary point. In this regard,
contour plotting can be very useful. For example, in this
case, the stationary point xs corresponds to 2.9% sodium
citrate, 7.61 glycerol, and 14.96 hr equilibration time. The
equilibration time may be viewed as being somewhat long
from a practical point of view, even though the optimum
level is inside the experimental design region. Scientific
curiosity suggests the need to determine how much is lost
in estimated percent survival if equilibration time is set at
14, 12, and 10 hr. An analytical procedure would answer
the question, but one gains considerably more information
from the set of pictures produced from contour plotting.
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Figures 6.11b—d reveal the two-dimensional plots giving
contours of constant estimated percent survival for fixed
values of equilibration times of 14, 12, and 10 hr,
respectively. For 14-hr equilibration time, the maximum
estimated survival time is over 66%. In fact, Fig. 6.11d
reveals that an equilibration time as low as 10 hr can result
in an estimated survival time that exceeds 64%. As a
result, one could recommend using values of the
equilibration time considerably below the optimum and
still not sacrifice much in percent survival.

6.4 RIDGE ANALYSIS OF THE RESPONSE SURFACE

Often the analyst is confronted with a situation in which
the stationary point itself is essentially of no value. For
example, the stationary point may be a saddle point, which
of course is neither a point of estimated maximum nor
minimum response. In fact, even if one encounters a
stationary point that is a point of maximum or minimum
response, if the point is outside the experimental region, it
would not be advisable to suggest it as a candidate for
operating conditions, because the fitted model is not
reliable outside the region of the experiment. Certainly the
use of contour plotting can be beneficial in these
situations. Of course, the goal of the analysis is to
determine the nature of the system inside or on the
perimeter of the experimental region. As a result, a useful
procedure involves a constrained optimization algorithm.
It is particularly useful when several design variables are
in the response surface model. The methodology, called
ridge analysis, produces a locus of points, each of which
is a point of maximum response, with a constraint that the
point resides on a sphere of a certain radius. For example,
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for £ = 2 design variables a typical ridge analysis might
produce the locus of points as in Fig. 6.12. The origin is x|
= x2 = 0, the design center; a given point, say Xp, is a point
of maximum (or minimum) estimated response, with the
constraint being that the point must be on a sphere of
radius 3% =% In other words, all points are
constrained stationary points. Indeed, if the stationary
point of the system is not a maximum (or minimum) inside
the experimental region, then the point on the path at the
design perimeter is the point of maximum (minimum)
estimated response over all points on the path. This, then,
may be viewed as a reasonable candidate for
recommended operating conditions.

Figure 6.12 A ridge analysis locus of points for k£ = 2.

2

Perimeter of design
region

X1

6.4.1 What is the Value of Ridge Analysis?
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The purpose of ridge analysis is to anchor the stationary
point inside the experimental region. The output of the
analysis is the set of coordinates of the maxima (or
minima) along with the predicted response, y, at each
computed point on the path. From this, the analyst gains
useful information regarding the roles of the design
variables inside the experimental region. He or she is also
given some candidate locations for suggested improved
operating conditions. This is not to infer that additional
information would not come from the contour plots.
However, when one is faced with a large number of design
variables, many contour plots may be required. Typical
output of ridge analysis might simply be a set of
two-dimensional plots, despite the value of k. For example,
consider Figs. 6.13a and b.

Figure 6.13 Maximum response (a) and constrained
optimum conditions (b) plotted against radius.

(a) ib)

=20~

In this case there are three design variables; let us assume
that the perimeter of the experimental design is at radius
V3. If one seeks to maximize response, a candidate set of
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conditions is given by x1 = 1.5, x2 = 0.4, x3 = —0.7. The
estimated maximum response achieved is given by ¥ = 60.
Another useful feature of ridge analysis is that one obtains
some guidelines regarding where future experiments
should be made in order to achieve conditions that are
more desirable than those experienced in the current
experiment.

One must keep in mind that while ridge analysis as a
formal tool is closest to ideal when the design region is
spherical, often the design that has been used is not
spherical but rather cuboidal in nature. In the latter case,
one can still gain important practical information about the
behavior of the response system inside the experimental
region, particularly when one encounters several important
design variables.

6.4.2 Mathematical Development of Ridge Analysis

In this section we sketch the development of ridge
analysis. Many of the details are similar to those of
steepest ascent. In fact, ridge analysis is steepest ascent
applied to second-order models. The reader should recall
that the intent of steepest ascent was to provide a path to
an improved product in the case of a system that had not
been well studied. A rather inexpensive first-order
experiment is the usual vehicle for steepest ascent.
However, ridge analysis is generally used when the
practitioner feels that he or she is in or quite near the
region of the optimum. Nevertheless, both are constrained
optimization procedures.
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Consider the fitted second-order response surface model of
Equation 6.3:

3= by +x'b + xX'Bx

We maximize y subject to the constraint

3

x'x = R°

where x" = [x1, x2,..., xx] and the center of the design
region is taken to be x1 =x2 = ... = xx = 0. Using Lagrange
multipliers, we need to differentiate

(6.11) L=by+xb+ xBx — ,w[xfx ;?3].

with respect to the vector x. The derivative 0L/Ox is given
by

JL
X

:h+2l§x—2,ux

To determine constrained stationary points we set 0L/ 0x =
0. This results in

(6.12)“1 — ul)x = —%h

As a result, for a fixed u, a solution x of Equation 6.12 is a
stationary point on R = (x'x)1/2. However, the appropriate
solution x is that which results in a maximum y on R or a
minimum y on R, depending on which is desired. It turns
out that the appropriate choice of u depends on the
eigenvalues of B. The reader should recall the important
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role of these eigenvalues in the determination of the nature
of the stationary point of the response system (see Section
6.3.2). The following are rules for selection of values of u:

1. If i exceeds the largest eigenvalue of B, the solution x in

Equation 6.12 will result in an absolute maximum for y on
R= (x'x)l/ 2,

2. If i is smaller the smallest eigenvalue of B, the solution
in Equation 6.12 will result in an absolute minimum for y
onR= (x'x)l/z.

Consider the orthogonal matrix P that diagonalizes B. That
18,

PBP=A

A 0
A3

0 At |

where the A; are the eigenvalues of B. The solution x that
produces locations where 0L/ 0x = 0 is given by

(B — phx = —1b

If we premultiply B — uI by P’ and postmultiply by P, we
obtain

P(B—ulP=A—pul
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because P'P = Ir. If B — ul is negative definite, the
resulting solution x is at least a local maximum on the
radius R = (x'x)l/ 2. On the other hand, if B — ul is positive
definite, the result is a local maximum. Because

(B—ul)=A — pul
(A — 1 0 |
Az —

L 0 A —

we see that if g > Amax, then B — ul is negative definite,
and if # < Amin, then B — ul is positive definite.

The above development does not prove that the solutions x
are absolute maxima or minima. For further details see
Draper (1963) or Myers (1976).

We should also reflect at this point on the relationship
between R and u. The analyst desires to observe results on
a locus of points like that depicted in Fig. 6.14. As a result,
of course, the radii of the solution to Equation 6.12 should
fall in the interval [0, Rp], where Rp is a radius
approximately representing the boundary of the
experimental region. The value R is actually controlled
through the choice of u. In the working regions of u,
namely u# > Ak or mu < A1, where A1 is the smallest
eigenvalue of B and A is the largest eigenvalue of B, R is a
monotonic function of u. In fact, Fig. 6.14 gives the
relationship between R and g throughout the spectrum of
the eigenvalues.
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Figure 6.14 Relationship between R and u in ridge
analysis.
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As a result, a computer algorithm for ridge analysis
involves the substitution of 4 > Ar (for a designed
maximum response) and increases g until radii near the
design perimeter are encountered. Future increases in u
results in coordinates that are closer to the design center.
The same applies for 4 < A1 (for desired minimum
response), with decreasing values of u being required.

Example 6.3 Ridge Analysis of a Saddle Point Surface
A chemical process that converts 1,2-propanediol to
2,5-dimethylpiperazine is the object of an experiment to
determine optimum process conditions—that is, conditions

for maximum conversion [see Myers (1976)]. The
following factors were studied:
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_ amount of NH; — 102
51
temperature — 250
i 20
amount of H.O — 300
B 200
~ hydrogen pressure — 850
o 350

As in previous examples, the type of design used for fitting
the second-order model was a central composite design.
The design matrix and observation vector are as follows:
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X3 Xg

-1 =%

+1 =]
+1 ~1
+1 =1
+1 =1
= +1
-1 +1
-1 +1
-1 +1
+1 +1
+1 +1
+1 +1
+1 =1
0 0
0 0
0 0
0 0
0 0
—-1.4 0
+1.4 0
0 -1.4
0 +1.4 ]
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[58.27
23.4
21.9
21.8
14.3

6.3

4.5
21.8
46.7
53.2
23.7
40.3

1.5
13.3
49.3
20.1
32.8
31.1
28.1
17.5
49.7
49.9
34.2
31.1
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The fitted second-order model is given by

3 =40.198 — 1.51 1x; + 1.284x; — 8.739x3 + 4.955x; — 6.3320
+2.194x;x7 — 4.29223 — 0.144x,x3 + 8.006:2x5 + 0.0196x]

+ 1.58 Lxyxy + 2.806x004 + 0.294x3x4 — 2.506x]

Table 6.5 shows a computer printout of the ridge analysis
of maximum response. The accompanying plot of the
response versus radius is shown in Fig. 6.15. The
stationary point (in design units) is given by x1,5 = 0.265,
x2,s =1.034, x3 5 =0.291, and x4 5 = 1.668. The response at
the stationary point is ys = 43:52, but the eigenvalues of
the matrix B are —7.55, —6.01, —2.16, and +2.60, indicating
a saddle point. They indicate that a ridge analysis might
reveal reasonable candidates for operating conditions, with
the implied constraint that the candidates lie inside or on
the boundary of the experimental design. In this case the
factorial points are at a distance of two units from the
design center. Note that among the reasonable candidates
for coordinates, we have

TABLE 6.5 Ridge Analysis of Data in Example 6.3
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Design Factor Levels

Estimated Standard Error of

Radius Response Prediction x Xz Xy Xa

4] 40,1958 B.321 1] L] i ]

[URIN] 41.207 8.304 -0.0125 00063 —0.0870 00470
0.20 42,195 8.254 =0.0217 -0.0012 -0.1772 0.0900
0.30 43.175 B8175 -0.0287 -0014] -02698 (L1270
(.40 44,159 8.073 =00345 =0.0379 =0.3640 (0.1575
0.50 45,157 7.960 —-0.0398 —0.0685 —04591 C0.1814
0.60 46.176 7848 =0.0450 =0.1044  -0.5543  0.1993
0.70 47222 7.757 =0.0502 =0.1443 -=0.6493 02120
0.80 48,300 7.707 —-0.0556 —0.1873  —0.7438 0.2202
0.90 49416 7.724 =00611 -02324 -0.8376 (.2247
1.00 50.571 7.832 =0.0668 =02793 =09307 02262
110 51.767 8055 00727 -03274 —-1.0231 0.2251
1.20 53.007 8414 —-00787 -0.3765 —1.1147  0.2219
1.30 54.201 8.920 -0.0849 =04263 =1.2057 0.2170
1.40 55.621 9.581 =0.0912 04767 —1.2961 0.2106
1.50 56,998 10.394 =0.0976 -0.5276 — 13859 (L2029
1.60 58423 11.357 =0.1041 =05788 —14752 (.1942
1.70 59,806 12.461 =0.1107  —0.6303 —1.5640 0.1846
1.80 61418 13.69% =0.0173  —0.6820 —1.6524 (L1742
1.90 62989 15.061 —0.1240  —0.7340 17404 01631
2.00 64.610 16.543 =0.1308 —0.7860 —1.8281 0.1514

Figure 6.15 Maximum predicted response versus radius
for data in Example 6.3.
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at a radius of two units. The estimated response is given by
ys = 64:61. Note also that the estimated standard error of
prediction at this location is given by

5; = 16.543

This, of course, reflects the variability in y conditioned on
the given set of coordinates; that is, given that prediction is
desired at the location indicated in x1, x2, x3, and x4. Note
how this standard error begins to grow rather rapidly after
a radius of 1.4. Recall that the axial distance in the design
is 1.4, and the factorial points are at a distance of 2.0. It
turns out that a better choice of axial distance would have
been 2.0. This would have prevented the quick
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acceleration of the standard error of prediction as one
approaches the design perimeter. In fact, in this case one
might feel obliged to recommend conditions at radius 1.4
or 1.5, where the predicted response is smaller but the
standard error is considerably smaller. We will shed more
light on the standard error of prediction in the next section
and in future chapters. This criterion plays a critical role in
discussions that relate to the choice of experimental design
and comparisons among designs.

For further discussion and developments related to ridge
analysis the reader is referred to Hoerl (1959, 1964), who
originated the concept, and Draper (1963), who developed
the mathematical ideas behind the concept. The paper by
Hoerl (1985) and the book by Box and Draper (2007)
provide additional insights into this technique.

6.5 SAMPLING PROPERTIES OF RESPONSE
SURFACE RESULTS

In response surface analysis there is considerable attention
given to the use of contour plots and the estimation of
optimum conditions—either absolute ones, or constrained
ones as in the case of ridge analysis. It is always a
temptation to offer interpretations that treat these optimum
conditions or observed contours of constant response as if
the values were scientifically exact. One must bear in mind
that in any RSM analysis the computed stationary point is
only an estimate, and any point on any contour (and,
indeed, the contour itself) possesses sampling variability.
Thus, standard errors and, at times, confidence regions
afford the analyst a more realistic assessment of the quality
of the point estimate. In addition, it forces the researcher to
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properly “tone down” or temper interpretations in many
cases. Interpretations that are made as if the results were
deterministic can be erroneous and highly misleading. It is
our impression that too often in practice the randomness
and resulting noise associated with an RSM result are
completely ignored.

The first type of sampling property we shall introduce
deals with the standard error of predicted response, or
standard error of estimated mean response. This concept
was discussed briefly in the development of standard
regression analysis in Chapter 2. It was also discussed in
the previous section.

6.5.1 Standard Error of Predicted Response

The most fundamental sampling property in any model
building exercise is the standard error of the predicted
response at some point of interest X, often denoted sy(x),
where in the most general framework

1;{ x} _— h’“" I-"h

and b = (X'X)_IX’y. Here, of course, the model matrix X
is as discussed in Chapter 2. The vector x" is a function
of the location at which one is predicting the response; the
(m) indicates that X s just x expanded to model space;
that is, the vector reflects the form of the model as X does.
For example, for £ = 2 design variables and a second-order
model we have
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¥ > ¥
x4 =1, xp-X2, X7 X3, X2

b‘r - [-;?“., f][_ b:, |‘i‘| 1s -’?]3_ ||r}|gl

Under the usual i.i.d. error assumptions for first-and
second-order models and, of course, with the assumption
of constant error variance 02, we have

VEII‘[ f‘{h‘.]l ! x[m'hf{ xrx} - Ixi.l:'rr”_l

As a result, an estimated standard error of y(x) is given
by

(6.13) itw = ¥ \.;/ X (X'X) " xm

where s = vM5¢ p is the square root of the mean square
error of the fitted response surface—that is, for a fitted
model with p parameters,

k

L Z (yi — _i‘r-}zﬁn - P)

=]

The standard error s3(xX) is used in constructing confidence
limits around a predicted response. That is, for y(x) =
x(m)'b, a prediction at some location x, the 100(1 —a)%
confidence interval on the mean response E(y|x) is given

by

/
(6 14) j'{x} + Lo /2, ii—pS 1l'|"| xlmll{x-’x}- I.'{l:"”
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The standard error sp(x) of predicted value and the
corresponding confidence intervals are the simplest form
of sampling properties associated with an RSM analysis.
The standard error can provide the user with a rough idea
about the relative quality of predicted response values in
various locations in the design region. For example, Fig.
6.16 and Table 6.5 show how the standard error of
prediction value changes as a function of where we wish to
predict in the design space for the ridge system of Example
6.3. Figure 6.16 shows three slices of the design space for
fixed values of x3 and x4. Because of the symmetry of the
central composite design, the roles of x1, x2, x3, and x4 are
interchangeable in terms of the standard error of
prediction. The dotted lines on each plot indicate a radius
of 2 from the center of the design space. Note how
prediction with this second-order response surface
becomes worse as one gets near the design perimeter. This
may very well lead, in some cases, to the conclusion that a
reasonable choice of recommended operating conditions
might be further inside the perimeter when the predicted
value at the optimum on the boundary has a relatively
large standard error. The standard error of prediction
should be computed at any point that the investigator
considers a potentially useful location in the design region.

Figure 6.16 Contour plots of standard error of predicted
value for different x3 and x4 values for Example 6.3
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Standard Error of Prediction as a Function of Design
Because of the prominent role of (X'X)_1 in Equation 6.13,
it should be apparent that s3(x) is very much dependent on
the experimental design. In Table 6.5, the larger standard
error that is experienced close to the design perimeter is a
result of the choice of design. In the case of the central
composite design, the choice of the axial distance (1.4 in
this case) and the number of center runs have an important
influence on the quality of y(x) as a predictor. In Chapter 7
we deal with properties of first- and second-order designs.
Much attention is devoted to Var[)?(x)]/a2 =
xM' XXy 'x™. In fact, designs are compared on the
basis of relative distribution of values of x'(X'X) 'x")
in the design space.

What Are the Restrictions on the Standard Error of
Prediction? The user of RSM can learn a great deal about
relative quality of prediction using the fitted response
surface in various locations in the design space. The
prediction standard error—a function of the model, the
design, and the Ilocation x—is quite fundamental.
However, it is important for the reader to understand what
the standard error of prediction is not as well as what it is.
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The value sj(x) in Equation 6.13 is an estimate of the
standard deviation of j(x) over repeated experiments in
which the same design and model are employed, and thus
repeated values of y are calculated at the same location x.

As a result, if the analyst calculates a stationary point Xy (a
point of maximum estimated response) and determines the
standard error of prediction at X, it cannot be said that the
resulting confidence interval is a proper confidence
interval on the maximum response. One must keep in mind
that repeated experiments would not produce
xs-coordinates at the same location. Indeed, repeated
experiments may not all result in stationary points that are
maxima. The computed confidence interval here is a
confidence interval conditional on prediction at the point
X5, which only happens to be a stationary point in the
present experiment. The confidence region on the location
of the stationary point and the confidence interval on the
maximum response are considerably more complicated.

6.5.2 Confidence Region on the Location of the Stationary
Point

There are instances where the computed stationary point is
of considerable interest to the user. It may be the location
in the space of the design variables that represents
recommended operating conditions for the process.
However, there remains the obvious question, “How good
are the estimates of these coordinates?” Perhaps there is
sufficient noise in the estimator that a secondary, less
costly set of conditions results in a mean response that is
not significantly different from that produced by the
location of the stationary point. These issues can be dealt
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with nicely through the construction of a confidence region
on the location of the stationary point.

Suppose we again consider the fitted second-order
response surface model

k k k
X =bo+ > bxi+ Y bt +Y Y bynix;
=1 i=1 i=j=2

= by + x'b + x’ﬁx

One should recall from Section 6.3 that the stationary point
is computed from setting the derivatives 0y(x)/0x to zero.
We have

ANx)/Ox = b + 2Bx

wﬁj
= X,
4

The jth derivative, c{,‘(x), can be written dj(x) = b;j +

where the vector B is the jth row of B, the matrix of

quadratic coefficients described by Equation 6.5. These
derivatives are simple linear functions of x1, x2,..., xx. We
denote the vector of derivatives as the k-dimensional
vector d(x). Now, suppose we consider the derivatives
evaluated at t, where the coordinates of t are the
coordinates of the true stationary point of the system
(which of course are unknown). If the errors around the
model of Equation 6.2 are i.i.d. normal, N(0, o), then

dit) ~ N(0, Var[d(t)])
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where Var[d(t)] is the variance—covariance matrix of d(t).
As a result [see Graybill (1976), Myers and Milton
(199D)],

d'(t)[Var[d(t)]]'d(t)
(6.15) k

firl F&.n—p

where Fi;n—p 1s the F-distribution with k and n — p degrees
of freedom. It is important to note that Var[d(t)] is a k X k
matrix that contains the error variance ¢ > as a multiplier.
In addition, Var[d(t)] is clearly a function of t. For
example, in the case of two design variables,

bis
di(t) = by + 2(1’?[[{[ +%f3)
&

N

dy(t) = by + 2 (%h + f)g:f:)

and

Var|d,(t)] Cov|d,(t), d2(t)]

Yarld(p)] = l Cov[di(t), d>(t)] Var[d>(D)]

One can easily observe that elements in this matrix came
from (X'X)" (52, the variance— covariance matrix of
regression coefficients. The role of 71 and # should also be
apparent. In Equation 6.15 the " in {Varld)]} merely
implies that o is replaced by the familiar s2, the model
error mean square. Now, based on Equation 6.15 we have
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. -1
Pr{d’{t}{wr[d(t}]} dit) < kF,r_;_,,..f,} =]1—a
(6.16)

where Fy:k:n—p 1s the upper ath percentile point of the
F-distribution for k and n — p degrees of freedom. Note that
while t is truly unknown, all other quantities in Equation
6.16 are known. As a result, values 71, £2,..., t; that fall
inside the 100(1 — a)% confidence region for the stationary
point are those that satisfy the following inequality:

o |
II Vi e Kl =
(6.17)d{t1{ lr[drt}l} d(t) < kF s n_,

This useful and important approach was developed by Box
and Hunter (1954).

6.5.3 Use and Computation of the Confidence Region on
the Location of the Stationary Point

As one can easily observe from Equation 6.17, the
computation of the confidence region is quite simple.
However, the display of the confidence region carries with
it a clumsiness that is similar to that of the response
surface display, particularly when several design variables
are involved. For two or three design variables a graphical
approach can be very informative. The general size (or
volume) of the confidence region can be visualized and the
analyst can gain some insight regarding how much
flexibility is available in the recommendation of optimum
conditions.

Example 6.4 A Chemical Process with k = 2 A central
composite design was used to develop a response surface
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relating yield () to temperature and reaction time.

experimental results are shown in Table 6.6.

TABLE 6.6 The Central Composite Design

Example 6.4
iy (Temp.) x3 (Time} ¥
-1 -1 855
1 =1 B5.80
1 1 86,29
1 1 80.44
-1.414 0 a5.50
1414 0 85.39
0 —-1.414 86.22
0 1.414 85,70
0 0 90.21
0 0 L85
0 0 91.31
Coded levels =414 =1 0 1 1414
Temperature (C) 11086 115 125 135 139.14
Time (sec) 25758 270 300 330 34242

The fitted second-order model is

The

for

3= 90.790 — 1.095x, — 1.045x; — 2.781x] — 2.524x3 — 0.775x1%

with the stationary point at X = [-0:1716, —0:1806]. As
shown in Fig. 6.17, this is a point of maximum response
with the predicted response at the stationary point ys =
90:978%. The R’-value for this model is approximately

0.84.

Figure 6.17 The second-order model for Example 6.4. (a)
Contour plot. (b) Response surface.
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The major components in the inequality of Equation 6.17
are quite simple to determine. There are p = 6 parameters
in the second-order system, and

di(t) = —1.095 — 5.5624 — 0.7751,
da(t) = —1.045 — 0.7751 — 5.0481,

The wvariances and covariances are obtained from the
matrix (X'X)_1 with

bo by by by b bia

[ 1 0O 0 8§ 8 07
8 0 0 0 0O
; g8 0 0 0
XX =
12 4 0
12 0
| sym. 4
and
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r1 1 |

3 00 —§ 3
10 0 0
1 0 0 0

] —|_ 5

XX)" = 0.1772  0.0521 0
0.1772 0
| sym. 1]

The error mean square from the fitted response surface is
s? =3.1635 (five degrees of freedom). Apart from sz, the
variances and covariances of the coefficients of the fitted
response surface are the elements of (X'X)f1 above.

As a result, elements of Varld(t}] are easily determined. For
example,

v

Varld, (t)] = ;T {Varb, + 4£2Varby, + £2Varb;)}

Note that the covariances involving b1 are zero and
Cov(b11, b12) = Cov(b12, b22) = 0. Thus

Var[da(t)] = Lﬂ {Varh, + rf‘u’ur})u + 4:§Varb:3}
{
.

(-:‘I;";'ii.h{t]. dx(t)] = 2{4“!3':{)1’{1’}“. b)) + i'|!3"h"'i‘|rhlg]
-

As a result, we have
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Varld: (0] = 3.1635 {1 + 42(0.1772) + 13}

Cov[d; (1), da(t)] = 3.1635{4(0.0521)1,12 + 1112}

Equation 6.17 can now be used to plot the confidence
region. The reader should note how the design has a
profound influence on the important elements of (X'X)_l.
The confidence region is displayed in Fig. 6.18. This graph
was obtained from a Maple program written under the
supervision of Dr. Enrique Del Castillo (available at
http://1b350e.ie.psu.edu/software.htm).

Figure 6.18 Confidence regions on location of stationary
point for data of Example 6.4. The solid region is a
90%confidence region while the cross-hatched region
corresponds to a 95%confidence region.
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The display in Fig. 6.18 presents a rather bleak picture
concerning the quality of estimation of the stationary point.
The larger, cross-hatched region is the 95% confidence
region on the location of the stationary point, while the
smaller, solid region is the 90% confidence region. One
must not forget the interpretation, which is that a true
response surface maximum at any location inside the 95%
contour could readily have produced the data that were
observed. The 95% interval does not close inside the
experimental design region.

Confidence regions on the location of optima like those
shown in Fig. 6.18 are not unusual. The quality of the
confidence region depends a great deal on the nature of the
design and the fit of the model to the data. Recall that R> is
approximately 84%. One can note the role of the variances
(and covariances of coefficients (and, of course, the error
mean square) in the analysis. The appearance of the
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confidence region shown in Fig. 6.18 should serve as a
lesson regarding the emphasis that is put on a point
estimate of optimum conditions. As we have indicated
(and will continue to expound), process improvement
should be regarded as a continuing, iterative process, and
any optimum found in any given experiment should
perhaps not be considered as important as what one clearly
gains in process improvement and what one learns about
the process in general.

Consider now a second data set with the same design as
the one in the previous example. One will notice that the
fit is considerably better. The data are in Table 6.7. The
second-order model is given by

TABLE 6.7 Data for Second Example Showing
Confidence Region on Location of Stationary Point

x1 (x2 |y
-1 |-1 |87.6
-1 |1 |857
1 |-1 |865
1 |1 |86.9
—2l0  86.7
VI |0 868
0 |—2[874
0 [v2Z [86.7
0 [0 903
0 [0 [91.0
0 [0 (908

3 = 90.7000 + 0.0302x; — 0.3112x; — 2.0316x7 — 1.8816x + 0.5750x,x
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The value ofR2 1s 0.9891.

The stationary point (maximum) is at (20.004373,
20.08339) with ys = 90:7130. One would certainly expect
the confidence region to be considerably tighter in this
case. Figure 6.19 shows the 95% confidence region around
the estimated stationary point. We show the graph using
the same scale as in the previous example in order to
emphasize the contrast. Clearly, the stationary point in this
example is estimated very well. It should be emphasized
that a large confidence region is not necessarily bad news.
A model that fits quite well yet generates a large
confidence region on the stationary point may produce a
“flat” surface, which implies flexibility in choosing the
optimum. This is clearly of interest to the engineer or
scientist.

Figure 6.19 Confidence region on location of stationary
point for data of Table 6.7.
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The two examples in this section illustrate contrasting
situations. One should not get the feeling that the RSM in
the first example will not produce important and
interesting results about the process. However, in many
RSM situations, estimation of optimum conditions is very

difficult.

6.5.4 Confidence Intervals on Eigenvalues in Canonical
Analysis

In our discussion of the canonical analysis, we noted that if
one or more eigenvalues of the matrix B are close to zero, a
ridge system of some type is present. In judging the size of
an eigenvalue it can be helpful to have a confidence
interval estimate of this parameter. Carter, Chinchilli, and
Campbell (1990) and Bisgaard and Ankenman (1996) have
described procedures for doing this. Because Bisgaard and
Ankenman’s procedure is simpler to implement and is
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equivalent to that of Carter, Chinchilli, and Campbell, we
will concentrate on it.

Bisgaard and Ankenman’s procedure is usually called the
double linear regression (DLR) method, because it
involves fitting an initial second-order model to the data,
finding the matrix B and its eigenvalues and eigenvectors,
and then fitting the canonical model in Equation 6.10:

k k
y=day+ z au; + L A

(618) i=1 i=2

where the variables w1, wu2,..., ur are the canonical

variables obtained by rotation of the variables x1, x21,...,
Xk

6.19u=xP

Because Equation 6.18 is just a standard linear regression
model, we can find the standard errors of the A: directly
and obtain a 100(1 — a)% confidence interval on them
using the methods described in Chapter 2, namely,

“i e 'rrr_"l f ;r=""-r-"{"i|- i)

when the model is assumed to have p parameters.

Example 6.5 The DLR Method In Example 6.1 we
performed a complete canonical analysis of a second-order
model fitted to the chemical process data first introduced
in Section 2.8. We found that the eigenvalues of the matrix
B were A1 =—11.0782 and A2 = —2.6740, indicating that the
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response surface contains a maximum, but it is at least
moderately elongated in one direction. We will find 95%
confidence intervals on the eigenvalues, using the DLR
method.

The first step in the DLR procedure is to find the levels of
the original coded design variables in the new rotated
canonical variables. For Example 6.1 the original design
matrix is

[ —1 =
I ~1
~1 |
1 |

—1.414 0

1.414 )]
o= | i —1.414
§] 1.414

(0 0

0 0

0 0

0 0

and from the estimated fitted model

¥=79.75+10.12x; +4.22x; — 8.505 — 5.25x5 — 7.75 x,3

we obtain the matrix containing the corresponding
eigenvectors

455



~ [0.8327  0.5538
~10.5538 —0.8327

Hence, the new canonical-variable design matrix using
Equation 6.19 gives

[—1.3864 —0.27897
0.2789 —1.3864
—0.2789 1.3864
1.3864  0.2789
-1.1774  0.7830
U=DP = 1.1774 —0.7830
—0.7830 -=1.1774
0.7830 1.1774
0 0
0 0
0 0
L 0 0

The first-order terms of the fitted canonical model are
obtained by calculating

0.8327  0.5538

= -2.12
0.5538 —0.8327 | — (108135, -2.1232)

b'P = {m.lzg_zz)[

and then fitting Equation 6.18 to obtain

$ = 79.75 + 10.8135u; — 2.1232u; — 11.0769u; — 2.673 114
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Notice that AjandA:; are identical to the original
eigenvalues of B (to two decimal places). The standard
errors of these estimates are

—11.0769 — 2.365(0.9852) < A; < —11.0769 + 2.365(0.9852)
—-13.4069 < A} < —8.7469
and
—2.6731 — 2.365(0.9852) < A; < —2.6731 + 2.365(0.9852)
—~5.003 < Ax < —0.3431

Because neither confidence interval includes zero, we
conclude that both A1 and A2 are indeed negative, so the
true response surface is a maximum. However, note that
the upper confidence limit for A2 is very close to zero,
implying that there is potentially more elongation in the
surface in the wp-direction than is visually apparent from
Fig. 6.5, and the true response surface could actually be
fairly close to a stationary ridge system.

6.6 MULTIPLE RESPONSE OPTIMIZATION

Up to this point we have emphasized the use of response
surface analyses for improvement of the quality of
products and processes. We have focused on modeling a
measured response or a function of design variables and
letting the analysis indicate areas in the design region
where the process is likely to give desirable results, the
term “desirable” being a function of the predicted
response. However, in many instances the term “desirable”
is a function of more than one response. In a chemical
process there are almost always several properties of the

457



product output that must be considered in the definition of
“desirable.” In many consumer products (food or
beverages), the scientist must deal with taste as a response
but also must consider other responses such as color and
texture, as well as undesirable by-products. In the
pharmaceutical or biomedical area, the clinician is
primarily concerned with the efficacy of the drug or
remedy but must not ignore the possibility of serious
side-effects. In a tool life problem, cutting speed (x1) and
depth of cut (x2) influence the primary response, the life of
the tool. However, a secondary response, rate of metal
removed, may also be important in the study.

As an illustration, consider the experiment shown in Table
6.8 This is a central composite design in k = 2 variables,
conducted in a chemical process [see Montgomery (2005)
for more details]. The two process variables are time and
temperature, and there are three responses of interest: y1 =
yield, y2 = viscosity, and y3 = number-average molecular
weight.

TABLE 6.8 Central Composite Design with Three
Responses
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Natural

Variahles Coded Vanables Responses

& & " X3 vy (yield) ¥a (viscosity) vs (molecular weight)
B0 170 -1 -1 76.5 62 2040
R0 180 1 | 77.0 60 3470
an 170 | —{ 78.0 i3] 3680
o0 180 1 | 79.5 59 3890
85 175 0 0 79.9 72 3480
85 175 4] 0 80.3 3] 3200
85 175 0 0 80.0 5 3410
B5 175 [i] 0 79.7 70 3290
55 175 i [\] TO.8 71 3500
92.07 175 1414 0 78.4 [ 3360
77.93 175 1.414 0 75.6 71 3020
85 182.07 0 1.414 78.5 58 3630
&5 167.93 0 —-1.414 77.0 57 3150

Simultaneous consideration of mutiple responses involves
first building an appropriate response surface model for
each response and then trying to find a set of operating
conditions that in some sense optimizes all responses or at
least keeps them in desired ranges. We focus initially on
the yield response y1. Table 6.9 presents the output from
Design-Expert for this response. From examining this table
we notice that the software package first computes the
sequential or extra sums of squares for the linear,
quadratic, and cubic terms in the model (there is a warning
message concerning aliasing in the cubic model because
the CCD does not contain enough runs to support a full
cubic model). Based on the small P-value for the quadratic
term, we decided to fit the second-order model to the yield
response. The computer output shows the final model in
terms of both the coded variables and the natural or actual
factor levels.

TABLE 6.9 Computer Output from Design-Expert for
Fitting a Model to the Yield Response in Table 6.8
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Respoase: yickl

“UTWARNING: The Cubic Model is Aliased!™""

Sequential Model Sum of Sguanes
Sum of
Source Squarcs DF Mean Squane F-Value Prob > F
Mean 8006216 1 BOOG2.16
Lanear 10 2 502 260 01166
2R 025 1 0 012 07350
Cruandrmic 1795 2 B 126,858 <iL 0K Suggested
Cubic 2AM2E03 2 102 E-003 e} 0.9897 Alissed
Residual 049 5 0099
Total H0090.90 13 Bl60.84
Lack of Fin Tesss
Sum of
Source Squans DF Mean Square F-Value Prob = F
Linear 1889 L] 308 3814 (0008
2F 1824 3 365 6882 10K
Quuadrasic 028 3 e 178 0.2807 Suggested
Cubic 02E ] 02 531 00826 Aliased
Puise Error 021 4 0083
Model Summary Statistics
Adjuscd Predicted
Soure Sud. Dev, R-Squarcd R-Squarcd R-Squarcd Press
Lincar 137 0,454 02193 ~ 00435 9.9
A 1.43 0.3561 01441 —0.27H 36.59
Chasdramtic 27 09828 09705 09184 235 Sugpested
Cubic 031 09828 19558 03622 1833 Alinsed
Response: Yiekd
ANOVA foe Response Surfice Quadrtic Model Analysis of variance wble |Partial sum of squares]
Sum of
Source Squases DF Mean Square F-Value Frob = F
Madel 2835 5 565 T9.85 <0001
A 792 1 782 1193 < (L00]
& 2 1 202 i (10005
At 13,18 i 13,18 186,22 <0000/
o 6.97 1 6.97 98,56 <0.000]
AR 25 ) L2 as5r a2
Resbidua! 50 ¥ oot
Lack of Fit 28 i oy .78 0.2897
Pire Errer 2l 4 noss
Cor Total b 12
S, D, 0.27 R-Squared
Mean TBAR Adj R-Squand
cv. 34 Pred R-Squarcd
PRESS 235 Adeq Precision
Cocfficiem Stardard 95% €1
Factor Estimate DF Emor High VI
Intencept oo I 012 0.2
A-time 099 | 0054 L 100
Htemp 052 1 009 074 (K1)
Al - 138 1 010 -1 s
o =100 1 010 ~0.76 102
Al 028 | 013 0.5 L0y
Final Equation in Terms of Coded Factors:
viekl =
+T9.94
+0.99 « A
+0.52 = &
=13k = A7
=100 = B°
+0.S A B
Final Equation in Terms of Actual Faciors:
viekl =
— 143032283
+TBO749 « time
+13.27083 = emp
~ (055050 « time’

~ (MOS0 = temp’
+ UOIION0 » time s temp
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Diagnastics Case Statistics

Run Stamdard Actual Predacied Saudent Cook™s Ohatlier
Oder Orider Value Value Residual Levenige Reesiclual Distance t

® 1 T6.50 0.210 0625 1213 0,409 1.264
[ 2 TR0 0zl E 1.275 0452 Lu47
9 3 77400 017 0625 1027 0,293 1,032
n 4 ThA0 (AE] 0625 1.089 0329 1,106
12 5 350 s 0628 LT 341 L1
10 [ TRAD —0,19 0628 198 0306 1240
7 7 TLO0 nx 0.625 1283 D457 1.358
1 8 TR.50 017 0625 Lo 0.289 1.023
5 2 T (.00 0200 0.168 000 0156
3 10 ®0.30 0.36 0.200 1513 0095 1,708
13 " £0.000 0460 0.200 0252 0.003 0,235
2 12 70,70 0.24 0.200 1,009 02 LO0n
4 13 7980 014 02068 ~0.588 [ EY -(L559

e nddilional terms are significam

5. or egsivalenily manimizing the “PRED RSOR.

Figure 6.20 shows the three-dimensional response surface
plot and the contour plot for the yield response in terms of
the process variables time and temperature. It is relatively
easy to see from examining these figures that the optimum
is very near 176°F and 87 min of reaction time and that the
response is at a maximum at this point, From examination
of the contour plot, we note that the process may be sightly
more sensitive to change in reaction time than to changes
in temperature.

Figure 6.20 Contour and response surface plots of the
yield response in Table 6.8.

Lor— o e

We obtain models for the viscosity and molecular weight
responses (2 and y3, respectively) as follows:

F2 = 70.00 — 0.16x; — 0.95x; — 0.69x7 — 6.69x5 — 1.25x,x
V3 = 3386.2 + 205.1x) + 177.4x,
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In terms of the natural levels of time (£1) and temperature
(&2), these models are
Vo = —9028.79 + 13.394&, 4+ 97.685&

—2.75 x 10728 — 0.26750& — 5 x 1072&, &,

and

v3 = —0308.0 + 41.021¢, + 35474,

Figures 6.21 and 6.22 present the contour and response
surface plots for these models.

Figure 6.21 Contour plot and response surface plot of
viscosity in Table 6.8.
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Figure 6.22 Contour and response surface plot of
molecular weight in Table 6.8.
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A relatively straightforward approach to optimizing
several responses that works well when there are only a
few process variables is to overlay the contour plots for
each response. [For an early illustration of this approach.
see Lind, Goldin, and Hickman (1960).] Figure 6.23 shows
an overlay plot for the three responses in Table 6.8, with
contours for which y; (yield) > 78.5, 62 < y2 (viscosity) <
68, and y3 (molecular weight Mn) < 3400. If these
boundaries represent important conditions that must be met
by the process, then as the unshaded portion of Fig. 6.23
shows, there are a number of combinations of time and
temperature that will result in a satisfactory process. The
experimenter can visually examine the contour plot to
determine appropriate operating conditions. For example,
it is likely that the experimenter would be most interested
in the larger of the two feasible operating regions shown in
Fig. 6.23.

Figure 6.23 Region of the optimum found by overlaying

yield, viscosity, and molecular weight response surfaces in
Table 6.8.
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When there are more than three design variables,
overlaying contour plots becomes awkward, because the
contour plot is two-dimensional, and k — 2 of the design
variables must be held constant to construct the graph.
Often a lot of trial and error is required to determine which
factors to hold constant and what levels to select to obtain
the best view of the surface. Therefore, there is practical
interest in more formal optimization methods for multiple
responses.

A popular approach is to formulate and solve the problem
as a constrained optimization problem. To illustrate, we
might formulate the problem as

Max vy

subject to
62 <y, <68

¥ < 3400

There are many numerical techniques that can be used to
solve this problem. Sometimes these techniques are
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referred to as nonlinear programming methods. The
Design-Expert software package solves this version of the
problem using a direct search procedure. The two solutions
found are

time = 83.5 temp=177.1 ¥ =795

and

time = 86.6 temp=17225 ¥ =795

Notice that the first solution is in the upper (smaller)
feasible region of the design space (refer to Fig. 6.23),
whereas the second solution is in the larger region. Both
solutions are very near to the boundary of the constraints.

In addition to direct search solutions, numerical
optimization algorithms can be employed to find the
optimum. Del Castillo and Montgomery (1993) describe
this approach using the generalized reduced gradient
(GRG) method. Carlyle et al. (2000) overview both direct
search and numerical optimization techniques.

There are many ways to use nonlinear programming
techniques to formulate and solve the multiple response
optimization problem. Del Castillo (1996) describes an
interesting approach involving constrained confidence
regions. Optimal solutions are found that simultaneously
satisfy confidence regions for the responses.

Another useful approach to optimization of multiple

responses is to use the simultaneous optimization
technique popularized by Derringer and Suich (1980).

465



Their procedure makes use of desirability functions. The
general approach is to first convert each response y; into an
individual desirability function d; that varies over the range

0<d <1

where if the response y; is at its goal or target, then d; = 1,
and if the response is outside an acceptable region, d; = 0.
Then the design variables are chosen to maximize the
overall desirability

f.] —_— [fl"l{fl oRart, EI‘I”?]I.:r”
where there are m responses.

The individual desirability functions are structured as
shown in Fig. 6.24. If the objective or target 7 for the
response y is a maximum value,

Figure 6.24 Individual desirability functions for
simultaneous optimization y. (a) Objective (target) is to
maximize y. (b) Objective (target) is to minimize y. (¢)
Objective is for y to be as close as possible to the target.
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(a) (b)

0 3
re r>1

(6.20)

when the weight » = 1, the desirability function is linear.
Choosing » > 1 places more emphasis on being close to the
target value, and choosing 0 < r < | makes this less
important. If the target for the response is a minimum
value,

I y<T
U=yY
| = - <U
[ (U—T) T<y<l
(6.21) 0 y=U
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The two-sided desirability shown in Fig. 6.24c assumes
that the target is located between the lower (L) and upper
(U) limits, and is defined as

(0 y<L
(;_i) L<y<T
=1
U—y\"
- A TRl
(U—T) T<y<lU
(6.22) L0 y=U

The Design-Expert software package was used to apply the
desirability function approach to the problem in Table 6.8.
We chose T = 80 as the target for the yield response, chose
L =70, and set the weight for this individual desirability
equal to unity. We set 7' = 65 for the viscosity response
with L = 62 and U = 68 (to be consistent with
specifications), with both weights 1 = 2 = 1. Finally, we
indicated that any molecular weight between 3200 and
3400 was acceptable. Two solutions were found.

Solution 1:
Time = 86.1 Temp= 1703 D=0.929
¥ =T8.6 Vo =65 ¥y =3319

Solution 2:
Time = 80.3 Temp = 179.2 D = 0.8B55
=773 vy =65 ¥y = 3400

Solution 1 has the highest overall desirability. Notice that
it results in on-target viscosity and acceptable molecular
weight. This solution is in the larger of the two operating
regions in Fig. 6.23, whereas the second solution is in the
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smaller region. Figure 6.25 shows a response surface and
contour plot of the overall desirability function D.

Figure 6.25 Desirability function response surface and
contour plot for the problem in Table 6.8. (a) Response
surface. (b) Contour plot.
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Design-Expert uses direct search methods to maximize the
desirability function D. Because the individual desirability
functions are not differentiable, numerical optimization
methods such as the GRG cannot be used directly.
However, Del Castillo, Montgomery, and McCarville
(1996) show how the individual desirability functions can
be replaced with polynomial approximations that are
everywhere differentiable so that the GRG and other
derivative-based optimization algorithms can be employed.

As we indicated earlier, multiple response procedures will
typically involve compromise between important
responses. In addition to the approaches illustrated above,
several creative ideas have been put forth in the literature,
and some enjoy considerable use in industry. We now give
a brief overview of these other methods.
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Dual Response Approach In the case of two responses, a
useful technique termed the dual response approach was
introduced by Myers and Carter (1973). It is assumed that
the two responses can be categorized as primary and
secondary. The goal then involves the determination of
conditions x on the design variables that produces max
Yp(x) [or min y(x)] subject to a constraint on ys(x). Here
Vp(x) 1s the primary response function and ps(x) is the
secondary response function. The methodology, which is
not unlike ridge analysis discussed earlier in this chapter,
produces a locus of coordinates in which various values of
¥s(x) are considered. For example, in a yield-cost scenario
one might let the secondary response be yield and
determine conditions on x that minimize cost for fixed
satisfactory levels of yield. This approach was the
forerunner of more sophisticated nonlinear programming
procedures. Biles (1975) and Del Castillo and
Montgomery (1993) discuss the extension of this concept
to more than two responses. Del Castillo, Fan, and Semple
(1997) discuss computing global optima in dual-response
systems, and Fan (2000) gives a Fortran program. Also see
Lin and Tu (1995).

Khuri—-Conlon Approach Khuri and Conlon (1981)
introduced a procedure that is based on a distance function
that computes the overall closeness of the response
functions to their respective optima at the same set of
conditions. That is, it gives a measure of closeness to the
ideal optimum. One then finds conditions on x that
minimize this distance function over all x in the
experimental region. The distance function they use is
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[¥(0) — 8]'Z [ ¥(x) — 6]

where §(x) is the vector of estimated responses at the point
X, &3 is the covariance matrix for the estimated responses
at this location, and 0 is the vector of target values or ideal
optimal values for the responses. The optimum value of x
would minimize this distance function. A very nice aspect
of this approach is that it considers directly the correlation
structure of the responses and the quality of the response
predictions. However, it does not allow the analyst to
create appropriate priorities for the individual responses.

Squared Error Loss Approaches Several authors have
recommended approaches based on squared error loss
(indeed, the Khuri—-Conlon method is a squared error loss
procedure). For example, see Pignatiello (1993), Ames et
al. (1997), and Vining (1998). In Vining’s approach the
squared error loss function is

L =[y(x)—0)C[y(x)— 0]

where C is a positive definite matrix of weights or costs.
He minimizes the expected loss

E(L) = {E[y(x)] — 8} C{E[y(x)] — 0} + Trace[CZyy)
The estimated expected loss is
fﬂ} — [_'!'f'I[X} = ﬂlJ‘C' J'{K} - 'H] T Tratﬂlﬂzymi

There are several different choices for the matrix C.
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6.7 FURTHER COMMENTS CONCERNING
RESPONSE SURFACE ANALYSIS

There are several important aspects of RSM that only
become apparent after one gains a certain level of
experience. In a textbook presentation of RSM, a great
deal is taken for granted—the model, the experimental
region, the proper choice of response, and, of course, the
goal of the study. All, however, need to be handled with
care, and each one needs to be a topic of discussion
between statistician and scientist or engineer.

The choice of experimental region needs to be made very
carefully. Choice of range in the natural variable levels
cannot be taken lightly. Ranges that are too small may
result in an important factor becoming insignificant in the
analysis. This is particularly crucial in the phase of the
analysis when variable screening is being done. Often the
natural sequential deployment of RSM allows the user to
make intelligent choices of variable ranges after
preliminary phases of the study have been analyzed. For
example, following variable screening, the user should
have better choices of ranges for a steepest ascent
procedure. After steepest ascent is accomplished, choice of
variable ranges to be used for a second-order analysis
should be easier to make.

Let us consider briefly the issue of the goal of the
experiment. This textbook develops and emphasizes the
need to find optimum conditions. However, one should
keep in mind that the estimated optimum conditions from
one experiment are indeed only estimates. The next
experiment may well find the estimated optimum
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conditions to be at a different set of coordinates. Also,
process technology changes from time to time, and a
computed set of optimum conditions may well be fleeting.
What is often more important is for the analysis to reveal
important information about the process and information
about the roles of the variables. The computation of a
stationary point, a canonical analysis, or a ridge analysis
may well lead to important information about the process.
This in the long run will often be more valuable than a
single set of coordinates representing an estimate of
optimum conditions.

EXERCISES

6.1 In a study to determine the nature of a response system
that relates dry modulus of rupture (psi) in a certain
ceramic material with three important independent
variables, the following quadratic regression equation was
determined [see Hackney and Jones (1969)]:

3% 1072 = 6.88 — 0.1466x> + 0.1875x;x; + 0.2050x, x5 + 0.0325x,
~ 0.0053x3 — 0.1450x3x3 + 0.2588x + 0.1359:3 — 0.1363x;

The independent variables represent ratios of concentration
of various ingredients in the material.

(a) Determine the stationary point.

(b) Put the response surface into canonical form, and
determine the nature of the stationary point.

(¢) Find the appropriate expressions relating the canonical
variables to the independent variables x1, x2, and x3.
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(d) Generate two-dimensional graphs showing contours of
constant estimated modulus of rupture. Use x3 =—1, 0, 1.

6.2 In a chemical engineering experiment dealing with heat
transfer in a shallow fluidized bed, data are collected on
the following four regressor variables: fluidizing gas flow
rate, lb/hr (x1); supernatant gas flow rate, lb/hr (x2);
supernatant gas inlet nozzle opening, mm (x3); supernatant
gas inlet temperature, °F (x4). The responses measured are
heat transfer efficiency (y1) and thermal efficiency (32).
The data are given in Table E6.1.

TABLE E6.1 Data for Exercise 6.2

Observation ] 2 )y X X Xy

| 41.852 38.75 649,649 170.83 45 219.74
2 155.329 51.87 11346 230,06 25 181.22
3 U628 33.79 113.54 228.19 65 17906
4 49 a0 53.84 118.75 117.73 65 281.30
5 72958 49.17 119,72 117.69 a5 282.20
4] 107.702 47.61 168.38 173.46 45 216.14
T 097.239 64,19 1649.85 169.85 45 223.88
5 105,856 52.73 169.85 170,86 45 22280
9 99.438 S51.00 170.89 17392 20 218.84
10 111.807 47.37 171.31 173.34 25 218.12
11 100,008 43,18 171.43 171,43 45 219.20
12 175,380 71.23 171.59 26349 45 168.62
13 117.800 4930 171.63 171.63 45 217.58
14 217.400 50,87 171.93 170,91 10 21992
15 41.725 5444 17392 71.73 45 20660
16 151.139 47.93 221.44 217.39 63 189.14
17 220,630 4291 22274 221.73 25 186,08
18 131.666 66,60 228.90 11440 25 2R5.R0
19 B0.537 6494 23019 113.52 65 28634
20 152.966 4318 236.84 167.77 45 211,72

This is a good example of what often happens in practice.
An attempt was made to use a particular second-order
design. However, errors in controlling the variables
produced a design that is only an approximation of the
standard design.
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(a) Center and scale the design variables. That is, create
the design matrix in coded form.

(b) Fit a second-order model for both responses.

(c) In the case of transfer efficiency (y1), do a canonical
analysis and determine the nature of the stationary point.
Do the same for thermal efficiency (32).

(d) For the case of transfer efficiency, what levels (natural
levels) of the design variables would you recommend if
maximum transfer efficiency is sought?

(e) Do the same for thermal efficiency; that is, find levels
of the design wvariables that you recommend for
maximization of thermal efficiency.

(f) The chemical engineer requires that y2 exceed 60. Find
levels (natural) of x1, x2, and x3 that maximize y1 subject
to the constraint y2 > 60.

6.3 A chemical extraction process was studied using a
central composite design in an effort to find operating
conditions on three variables that maximize yield. The
results are shown in Table E6.2.

TABLE E6.2 Data for Exercise 6.3
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A X3 Ty ¥

—1 =1 —1 56.0
| —1 o | 585
| | 1 4%.9
| I = | 55.2
ol | -1 | fil.8
| | 1 63.3
— 1 I 1 6.5
| | | G64.0
| 0 1] fhl.3
I 0 0 (5.5
0 -] (1] G646
0 I 0 (3.9
0 0 ) | 636

0 i | 65.0
0 ] 0 629
0 ] 0 fHi%

(a) Fit a second-order response surface model to these
data.

(b) Use contour plots to find conditions that maximize
yield.

(¢) Perform the canonical analysis, including finding the
location of the stationary point. Interpret the fitted surface.

6.4 Rayon whiteness is an important factor for scientists
dealing with fabric quality. Whiteness is affected by pulp
quality and other processing variables. Some of the
variables include: acid bath temperature, °C (x1); cascade
acid concentration, % (x2); water temperature, °C (x3);
sulfide concentration, % (x4); amount of chlorine bleach,
Ib/min (x5). Table E6.3 shows an experimental design
involving these five design variables. The response is a
measure of whiteness.
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TABLE E6.3 Data for Exercises 6.4

1 12 X3 Xy s ¥
=1 =1 =1 =] =1 T1.5
1 1 -1 -1 -1 T6.0
1 -1 1 - 1 - 1 T9.9
1 =] =1 I =1 23.5
| -1 | | I 9.5
-1 | 1 -1 =1 242
. | 1 -1 ] —1 #5.7
-1 | -1 =1 | 045
-1 -1 1 | -] o4
- ] - ] 1 -1 I 97.5
=1 -1 -1 | I 103.2
1 | | 1 -1 108.7
1 | 1 =1 I 115.2
1 1 -1 | I 111.5
1 -1 1 | I 1023
-1 | | I I 108, 1
=2 0 0 0 i 802
2 0 0 ] ] 4.1
L -2 1 1] i 7.2
0 2 0 i i 85.1
0 0 -2 0 ] 715
0 ] 2 1] 1] £4.5
0 0 0 =) i 775
0 0 0 2 ] 792
L 0 1 1] -2 T1.0
0 0 1] i} 2 00,2
0 0 1] 1] ] 721
0 0 L] 1] ] 72.0
0 0 0 ] i T24
0 0 0 ] ] TL.7
L 0 0 1] ] T2.8

The coding of the design variables is as follows:
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_ temp — 45 conc — (.5 _ temp — 85

X 10 Xy = 02 S 3 :
conc — 0.25 amt — 0.4
Xy = s = ———
0.05 - 0.1

(a) Fit an appropriate second-order model in the metric of
the coded variables.

(b) Find the stationary point, and describe the nature of the
surface.

(¢) Give a recommendation for operating conditions on the
design variables. It is important to maximize whiteness.

(d) Compute the standard error of prediction at the
following design locations:

i. Design center (0,0,0,0,0)
ii. All factorial points
iii. All axial points

Comment on the relative stability of the standard error of
prediction.

6.5 A client from the Department of Mechanical
Engineering at Virginia Polytechnic Institute and State
University asked for help in analyzing an experiment
dealing with gas turbine generators. The voltage output of
a generator was measured at various combinations of blade
speed and voltage measuring sensor extension. The data
are given in Table E6.4.
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TABLE E6.4 Data for Exercise 6.5

y (volts) | Speed x1 (in./sec) | Extension x2 (in.)
1.23 5300 0.000
3.13 8300 0.000
1.22 5300 0.012
1.92 8300 0.012
2.02 6800 0.000
1.51 6800 0.012
1.32 5300 0.006
2.62 8300 0.006
1.65 6800 0.006
1.62 6800 0.006
1.59 6800 0.006

(a) Write the design matrix in coded form.
(b) What type of design has been used?
(¢) Fit an appropriate model.

(d) Find the stationary point, and interpret the fitted
surface.

(e) It is important to determine what value of speed and
extension results in a response that exceeds 2.8 volts.
Describe where in the design region this voltage can be
achieved. Use a two-dimensional contour plot to answer
the question.

6.6 In Exercise 3.9 we discussed an application dealing
with effects on cracking of a titanium alloy. An additional
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study was made in which the same factors were studied
except the heat treatment method. The ‘“high” or “+”
method was used and held constant. However, in this case,
a second-order design was used so the analyst could fit a
second-order model involving curvature. The three factors
are pouring temperature x1; titanium content x2; and
amount of grain refiner, x3. Table E6.5 gives the design
points and the response data. The response is the crack
length (in millimeters) induced in a sample of the alloy.

TABLE E6.5 Data for Exercise 6.6

¥y Xa L& | ¥y

I i (1.52649
| | 26680

+1 -1 10310

+1 N | -1 2.3380
| I 3.2220

| 1 4. 00000

I i 3.3640

| | 3.2200

0 0 0 20280
] 0 0 1.9670
] 1] 0 1.9300
0 0 i) 200130
—1.732 0 0 16200
1.732 (1] 0 34510

{1 - 1.732 0 20500
] 1.732 0 2 GO0
] 1] 1.732 09314
) i 1.732 1.7480

(a) Fit an appropriate model with the data of the above
central composite design.

(b) From the fitted model in (a), estimate the conditions
that give rise to minimum shrinkage. Be sure that these
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estimated conditions are not remote from the current
experimental design.

(¢) Compute the predicted value and its standard error at
your recommended set of conditions.

(d) Does this experiment give rise to suggestions for future
experimental runs? Explain.

6.7 Consider the reaction yield data shown in Table E6.6.

TABLE E6.6 Data for Exercise 6.7

x1 x2 y

-1 -1 88.55
-1 1 86.29
1 -1 85.80
1 1 80.40
0 0 91.21
0 0 91.85
-1.414(0 85.50
1.414 |0 85.39
0 —1.414(86.22
0 1.414 [85.70
0 0 91.31
0 0 91.94

(a) Fit a second-order model to the data.

(b) Construct contour plots, and comment on the fitted
response surface.
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(c¢) Perform the canonical analysis.

6.8 In the computer industry, it is important to use
experimental design and response surface methods to
analyze performance data from integrated circuit/
packet-switched computer networks. Here, the design
variables are network input variables that affect network
size, traffic load, link capacity, and so on. The response
measures represent the network performance. In this
experiment [Schmidt and Launsby (1990)] the design
variables are:

CS: Circuit switch arrival rate (voice calls/min)
PS: Packet switch arrival rate (packets/sec)
SERV: Voice call service rate (sec)

SLOTS: Number of time slots per link (a capacity indicator)

Two responses were measured. They were:

ALU: Average link utilization
BLK: Fraction of voice calls blocked

The data are given in Table E6.7.

TABLE E6.7 Data for Exercise 6.8
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OBS s PS SERV SLOTS ALU BLK
1 2 150 120 k] 0.282 0,000
2 2 150 120 46 0.194 0000
3 2 150 240 M4 0.372 0.000
-+ 2 150 240 46 0.275 0.000
5 2 450 120 34 0.553 0016
6 2 450 120 46 0.396 0.000
7 2 450 240 4 0.676 0.031
B 2 450 240 46 0.481 0.003
9 4] 150 120 M 0.520 0002
10 (] 150 120 46 0.386 0.000
11 6 450 1200 46 0.594 0016
12 i) 300 180 40 0.231 0.000
13 4 300 180 40 0.325 0.000
14 4 300 180 52 0.427 0.000
15 4 300 180 40 0.561 .01 6
16 4 300 180 40 0.571 0.005
17 4 300 180 40 0.561 0.011
18 4 300 180} 40 0.581 0.020
19 + 300 180 40 0.562 0.017
20 4 300 180 40 0.608 0.036
21 4 300 180 40 0.560 0.007
22 5 400 210 43 0.739 0.070
23 -] 400 210 43 0.746 0.082
24 5 A0 150 a7 0.725 0.067
25 5 400 150 7 0.725 0.084
26 5 A4 150 43 0.615 0.027
27 5 4 210 40 0.785 0.106
28 5 400 210 40 0.782 0.125
29 4 A6 210 37 0.747 0.084
30 4 A0 210 k7) 0.745 0.101
31 + 400 210 40 0.695 0.063
32 4 A4 210 40 0.667 0.057
i3 4 400 180 40 0.648 0.035
34 5 400 180 40 0.722 0.074
35 5 A0 180 40 0.731 0.077
36 5 400 180 w 0.775 0.110
37 5 400 180 k1) 0.779 0.139
38 4 4D 180 37 0.712 0.057
39 4 400 180 7 0.7m 0.065
E 3 400 210 w 0.652 0.017
41 3 4 210 43 0.541 (.003
42 3 A 150 a7 0.570 0.003
43 3 400 150 43 0.476 0.005

(a) Write the design in coded form. Use the coding
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x; = (CS5 —4)/2

xy = (PS — 300)/150
x3 = (SERV — 180)/60
xy = (SLOTS — 40)/6

(b) Fit two second-order models for the two responses.

(c) Consider the response surface for the BLK response.
Can the model be improved by a power transformation?
Discuss.

(d) Use the two models above to determine optimum
conditions for the two responses separately. We need to
maximize ALU and minimize BLK.

(e) Use appropriate software to find conditions that

max AtUlBi:K < 0.005

(f) Use the Derringer—Suich procedure to find optimum
conditions. Use the conditions that ALU cannot be less
than 0.5 and BLK cannot exceed 0.10.

6.9 In Schmidt and Launsby (1990), a simulation program
was given that simulates an auto-bumper plating process
using thickness as the response with time, temperature, and
pH as the design variables. An experiment was conducted
in order that a response surface optimization could be
accomplished. The coding for the design variables is given
by
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time — 8
Aj = —

4
temp — 24
Xz = 3
nickel — 14
X3 = ——
a 4

The design in the natural units is given in Table E6.8 along
with the thickness values.

TABLE E 6.8 Data for Exercise 6.9
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Fun Number Time Temperature Mickel Thickness

I 4 14] 10 113
2 12 16 i} 756
3 4 32 ([1] TH
4 12 32 10 ikl
3 4 16 I8 87
6 12 16 I8 TEE
7 4 32 Is 113
8 12 ¥ 15 A6
9 4 16 10 18
11} 12 1] 10 739
(4] 4 32 10 10
12 12 32 ([1] 712
13 4 16 I8 1549
14 12 16 18 776
15 4 32 18 162
16 12 32 I8 739
17 ] 24 14 351
18 ] 24 14 373
149 3 24 14 353
20 8 24 14 321
21 12 24 14 736.1
22 4 24 14 6.0
23 ] 32 I4 3289
24 b 16 14 035
— ] 24 I8 358.2
26 3 24 [[1] 3477

(a) Write the design in coded form. Name the type of
design.

(b) Fit a complete second-order model in the coded metric.

(c) Edit the model by eliminating obviously insignificant
terms.

(d) Check model assumptions by plotting residuals against
the design variables separately.
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(e) The purpose of this experiment was not to merely find
optimum conditions (conditions that maximize thickness)
but to gain an impression about the role of the three design
variables. Show contour plots, fixing levels of nickel at 10,
14, and 18.

(f) Use the plots to produce a recommended set of
conditions that maximize thickness.

(g) Compute the standard error of prediction at the location
of maximum thickness.

6.10 Refer to Exercise 6.9. The same simulation model
was used to construct another response surface using a
different experimental design. This second design, in
natural units, is given in Table E6.9 along with the
thickness data:

TABLE E 6.9 Data for Exercise 6.10

Run Number  Time Temperature Nickel Thickness
I 4 16 I 122
2 12 16 14 TH0
3 4 32 14 100
4 12 32 14 695
= 4 24 10 S0
6 |2 24 10 120
7 4 24 IH Ik
B 12 24 I8 650
9 b 16 10 330
Ity 3 32 [1] 34
] & 16 I8 302
12 b 32 15 340
13 b 24 14 364
14 b 24 14 342
15 b3 24 14 40l
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(a) Using the same coding as in Exercise 6.9, write out the
design matrix in coded form.

(b) Is this a central composite design?

(c) Fit and edit a second-order response surface model.
That is, fit and eliminate insignificant terms.

(d) Find conditions that maximize thickness, with the
constraint that the condition falls inside the design region.
Use an appropriate software package. In addition, compute
the standard error of prediction at the location of optimum
conditions.

6.11 Reconsider Exercises 6.9 and 6.10. In addition to the
designs in these exercises, a D-optimal design was used to
generate data on thickness from the simulation model. The
notion of D-optimality will be discussed at length in
Chapter 8. The design and data are given in Table E6.10.

TABLE E 6.10 Data for Exercise 6.11
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Run Number Time Temperature Nickel Thickness

i 12 32 in 717
2 4 16 10 136
3 12 16 18 TR7
4 4 32 I8 78
5 4 16 I8 87
4] -4 32 ([1] a0
! 12 16 [4] 160
8 % 24 10 282
] 8 32 14 318
10 4 24 14 0
i1 12 32 (F] G832
12 12 24 14 747
13 12 24 14 T4
14 r: 24 4 742

(a) Using the same coding scheme as in Exercises 6.9 and
6.10, write the design in coded units.

(b) Fit a second-order model, and edit it—that is, eliminate
insignificant terms.

(¢) Find conditions of estimated maximum thickness. Can
this be done with a two-dimensional contour plot? Explain.
Compute the standard error of prediction at the set of
optimum conditions.

6.12 Exercises 6.9, 6.10, and 6.11 illustrate the use of three
different types of designs for modeling the same system.
All three designs are used because of their capability to
efficiently fit a complete second-order model, even if the
edited model contains no interactions. Another type of
design that allows for estimation of linear and pure
quadratic effects is the Taguchi L»7. The Taguchi
approach to quality improvement will be discussed in
detail in Chapter 10. The L»7 was also used to generate
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data on thickness as in the previous exercises. The design
and response data are given in Table E6.11.

TABLE E 6.11 Data for Exercise 6.12

Run Numbecr Time Temperature Mickel Thickness

i 4 in {4] 113
2 4 16 14 152
3 4 16 [} 147
4 4 24 [1] 05
5 4 24 14 53
6 4 24 [} 130
7 4 1 10 83
= 4 32 14 40
0 4 32 [} 04
(11 5 16 ([1] 330
11 ] 16 14 303
12 ] 16 Ik Jnl
13 8 24 10 348
14 2 24 14 342
15 ] 24 I8 420
16 8 32 10 327
17 ] 32 14 255
15 ] 32 Ik 322
149 12 16 ([1] 745
20 12 16 14 TR0
21 12 16 I8 T40
22 12 24 10 772
23 12 24 14 7649
24 12 24 18 755
25 12 32 ([1] 735
26 12 32 14 726
27 12 32 I8 757

(a) Code the design factors as in previous exercises.

(b) Form the complete matrix X for the L27 (using coded
design levels).
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(¢) Comment on whether or not this design is adequate for
a complete second-order model (including interactions).

6.13 In this exercise we will make comparisons among the
central composite, Box—Behnken, and D-optimal designs
used in Exercises 6.9, 6.10, and 6.11. We will not deal
with any particular edited model, but rather with a
complete second-order model. Compute the scaled
standard error of prediction

f Iz
N Var| v
'II'IM — h}fwixlef{x'xl"lxizfl
a-

at the locations given in Table E6.12 in coded design units.
N is the size of the design.

TABLE E 6.12 Design Location for Exercise 6.13
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X1 |x2 |x3
00 |-1
00 |1
0 (0|0

Comment on comparisons among the three designs.

6.14 In their paper Derringer and Suich (1980) illustrate
their multiple-response procedure with an interesting data
set. The central composite design given in Table E6.13
shows data obtained in the development of a tire tread
compound on four responses: PICO Abrasion Index, yi;
200% modulus, y2; elongation at break, y3; hardness, y4.
Each column was taken at the 20 sets of conditions shown,
where x1, x2, x3 are coded levels of the variables x1 =
hydrated silica level, x2 = silane coupling agent level, and
x3 = sulfur. The following inequalities represent desirable
conditions on the responses:

TABLE E6.13 Data for Exercises 6.14, 6.17
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Compound Number X

¥y

V2

1 1
2 1
3 1
4 1
5 -1
4] 1
T -1
8 1
9 ~1.633
10 1.633
11 0
12 0
13 0
14 0
15 L]
16 0
17 0
18 L]
19 0
20 0

102
120
117
198
103
132
132
139
102
154

96
163
116
153
133
133
140
142
145
142

Q00

B60

&00
2204

490
1289
1270
090

770
1690

00
1540
2184
1784
1300
1300
1145
1080
1260
1344

470
410
570
240
640
270
410
380
590
260
520
380
520
290
380
380
430
430
390
390

67.5
65
77.5
74.5
62.5
67
T
70
Tt
0
63
75
65
71
70
68.5
68
68
69
70

v, = 120
vz = 1,000
400 < y; < 600
60 < yy <75

(a) Fit appropriate response surface models for all

responses.

(b) Develop two-dimensional contours (at x3 =-1.6, —1, 0,
1, 1.6) of constant response for all four responses. Can you
determine sets of conditions on x1, x2, and x3 that meet the

above requirements? If so, list them.

(¢) Use the desirability function procedure to determine
other competing conditions.
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6.15 The experiment given in Table E6.14 uses a central
composite design to study three variables in a chemical
process.

TABLE E 6.14 Data for Exercises 6.15, 6.16

x; Time: x3 Temperature x3 Catalyst vy Conversion ¥2 Activity
=1 o =1 74.00 53.20
1 =1 -1 51.00 62.90
1 1 | BE.00 53.40
1 1 -1 TOLIKD 62.60
=] =] | 71.00 57.30
1 =l I 90.00 67.90
=] 1 1 66.00 39.80
1 | | 97.00 67.80
~ 1,682 0 0 76.00 59.10
1.682 0 0 79.00 65.90
L] —1.682 0 £5.00 6. (K}
0 1.682 0 97.00 60,70
0 0 1.682 35.00 57.40
0 0 1.682 51.00 63.20
0 0 0 81.00 59.20
L] 1} L] 75.00 60,40
1] 0 0 T76.00 59,10
0 0 0 83.00 60,60
[1] 0 0 80.00 60.80
L] 0 0 91.00 58.90

(a) Fit a second-order model to the conversion response y1.
(b) Investigate the fitted surface using contour plots.

(¢) Find the stationary point, and perform the canonical
analysis.

6.16 Reconsider the chemical process experiment in
Exercise 6.15. Find appropriate response surface models
for both responses.
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(a) Use contour plots to find conditions where the
conversion y| is maximized and the thermal activity y2 is
between 55 and 60.

(b) Rework part (a) using a constrained optimization
formulation.

(¢) Rework part (a) using the desirability function
approach, but assume that it is necessary to make the

thermal activity as close to 57.5 as possible.

6.17 Reconsider the experiment in Exercise 6.14.
Formulate and solve the optimization problem using:

(a) y1, as the objective function (maximize y1).

(b) »2 as the objective function (maximize )?).

(c) Compare the answers obtained in parts (a) and (b) with
the answer from the desirability function approach in
Exercise 6.14.

6.18 Consider the viscosity response data in Table 6.8.

(a) Perform a canonical analysis on the second-order
model for these data.

(b) Use the double linear regression method to find

confidence intervals on the eigenvalues. The design in
terms of the canonical variables is
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0.8922 1.0972
—1.0972 0.8922
1.0972 -0.8922
-(0.8922 -=1.0972
1.4066 0.1449
—1.4066 —0.1449

U= | -0.1449 1.4066
0.1449 —1.4066
0 0
0 0
0 0
0 0
0 0

L =

(¢) Interpret the fitted surface. Can you suggest a
procedure for making the fitted model more closely
approximate the true response surface?

6.19 The method given in the text is only one possible way
to implement the desirability function procedure. Below
are two variations of the procedure.

1. Fit a separate response surface for each of the m
responses. Create d1, da,..., dm and then 2 = (I17%d)"" at
each design point according to values of the fitted response
(the »i). Then build a response surface with

D=flx;,x2,...,%5)
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and find conditions on x that maximize D. One could then
make use of canonical analysis, possibly ridge analysis,
and so on.

2. Compute di, d2,..., dmw and D at each design point
according to the individual observations—that is, the
values y1, 12,..., ym. Then build a response surface with the
computed response D, and use appropriate methodology
for rinding x that maximizes D.

How do you think these two methods will perform as
multiple-response optimization techniques?

6.20 For the estimated response surface listed below,
answer the following questions:
$=135+1.02x; + 1.76.x2 — 0.59 x5 — 2.66.x1> + 3.02x1035 — 0.62 x2x3

+5.04x] +2.63x7 +5.33x3

(a) Write the model in the canonical form.

(b) Describe what kind of stationary point the response
surface has and where it is located.

(¢) If all the coded variables have range [— 1,1] and the
range of the actual variables are as follows:
X7 €[10,30] X3 €[150,200] X; € [I.[}.Z.Ul(i)
Where is the global minimum located in terms of the
original variables?

(ii) Where is the maximum located within the observed

range of the actual variables (stay in the cube design
space)?
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6.21 For a given problem we obtain a second-order model,
which we describe in terms of its canonical
parameterization. We obtain the following pieces for the
model in the form ¥ = 10.5 + xb + xBx

1 2.04 0.1 —0.075 -0.23
b=1[0 B=| —0.1 0.160  0.25 X; = 0.85
1 -0.075  0.25 1.15 —~0.63

with eigenvalues and eigenvectors:

% values:
[1] 2.05420808  1.19864128  0.09715064
$ vectors:
[ 1] [ 2] [, 3]
[1, ] 0.96276672 —0.1127446 —-0.04126621
[2, ] —0.06567526 —0.2222498 —0.97277530
[3,] —0.100850377 —0.9684491 0.22804674
(a) Write the model in standard form (= By + B X + )

with the actual coefficients listed for all main, interaction
and quadratic effects.

(b) Describe the kind of surface we have for the response.
(c) If we are using a standard cuboidal region, is the
stationary point located inside the region of study?

Explain.

If the value of the function at the stationary point is 11.91,
give the equation for the model in the canonical form,

V=14 E AW
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7

EXPERIMENTAL DESIGNS FOR FITTING RESPONSE
SURFACES—I

Many of our examples in Chapter 6 displayed the fitting of
second-order response surfaces with data taken from
real-life applications of response surface methodology
(RSM). In those examples, the experimental design
possesses properties required to fit a second-order response
surface—that is,

1. at least three levels of each design variable
2. at least 1 + 2k + k(k — 1)/2 distinct design points

The above represent minimum conditions for fitting a
second-order model. The reader has also noticed the
reference to the central composite design in Chapter 6.
This second-order design class was represented in almost
all of the illustrations. The composite design is the most
popular second-order design in use by practitioners. As a
result, it will receive considerable attention in sections that
follow. First, however, some general commentary should
be presented regarding the choice of designs for response
surface analysis.

7.1 DESIRABLE PROPERTIES OF RESPONSE
SURFACE DESIGNS

There are many classes of experimental designs in the
literature, and there are many criteria on which

499



experimental designs are based. Indeed, there are many
computer packages that give optimal designs based on
special criteria and input from the user. Special design
criteria and important issues associated  with
computer-generated design of experiments will be
discussed in a later section and in Chapter 8. However, it is
important for the reader to first review a set of properties
that should be taken into account when the choice of a
response surface design is made. Some of the important
characteristics are as follows:

1. Result in a good fit of the model to the data.
2. Give sufficient information to allow a test for lack of fit.

3. Allow models of increasing order to be constructed
sequentially.

4. Provide an estimate of “pure” experimental error.

5. Be insensitive (robust) to the presence of outliers in the
data.

6. Be robust to errors in control of design levels.
7. Be cost-effective.
8. Allow for experiments to be done in blocks.

9. Provide a check on the homogeneous variance
assumption.

10. Provide a good distribution of Var[.‘“"(x)]/a2 .

500



As one can readily see, not all of the above properties are
required in every RSM application. However, most of
them should be given serious consideration on each
occasion in which one designs experiments. Most of the
properties are self-explanatory. We have already made
reference to item 3. Item 5 is important if one expects
outliers to occur. Though we have not discussed blocking
in the context of fitting second-order models, we will
consider the concept in detail later in this chapter. Item 10
is very important. The reader has been exposed to the
notion of prediction variance in Chapters 2 and 6. In later
sections we shall discuss the importance of stability of
prediction variance.

There are several purposes behind the introduction of the
list of 10 characteristics at this point in the text. Of primary
importance is a reminder to the reader that designing an
experiment is not necessarily easy and should involve
balancing multiple objectives, not just focusing on a single
characteristic. Indeed, a few of the 10 items may be
important and yet the researcher may not be aware of the
magnitude of their importance. Some items do conflict
with each other. As a result, there are tradeoffs that almost
always exist when one chooses an appropriate design. An
excellent discourse on the many considerations that one
must consider in choosing a response surface design is
given by Box and Draper (1975).

7.2 OPERABILITY REGION, REGION OF INTEREST,
AND MODEL INADEQUACY

At the end of the previous chapter we discussed the choice
of ranges on the design variables; this naturally leads to an
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introduction of the notion of the region of interest in the
design variables. As we indicated in Chapter 6, we are
assuming that the true function relating y to the design
variables is unknown. In fact,

E(y) = f(x,0)

and we are assuming that in the region of interest, R(x), f'is
well approximated by a low-order polynomial. This, of
course, brings on the notion of the first-order or
second-order response functions. They are approximations
(justified by a Taylor series expansion of f) in the confined
region R.

It is important for the reader to understand that while the
experimental design may be confined to R, the region R
may change from experiment to experiment (say, for
example, in a steepest ascent experiment). However, there
is a secondary region called the region of operability
O(x). This is the region in which the equipment, electronic
system, chemical process, drug, or the like, works, and it is
theoretically possible to do the experiment and observe
response values. In some cases, data points in the design
may be taken outside R(x). Obviously, if one takes data too
far outside R(x), then the adequacy of our response surface
representation (polynomial model) may be in question.
Though the framework of the regions of interest and
operability is important for the reader to understand,
assuming knowledge of R(x) or O(X) in a given situation
may be too idealistic. The region R changes, and at times
O is not truly known until much is known about the
process.
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Figure 7.1 gives the reader a pictorial depiction of O and
R. In this case, with two different experiments we have R
and R’, both being considerably more confined than O. The
region R is the current best guess at where the optimum is.
It is also the region in which we feel that ¥(x) should be a
good predictor or, say, a good estimator of f (x, 0).
However, the user should constantly be aware of potential
model inadequacy in cases where ¥(x) is not a good
approximation of /' (x, 0).

Figure 7.1 Region of operability and region of interest.

7.2.1 Model Inadequacy and Model Bias

Ofx)

In this section, we provide details concerning the impact of
specifying a response surface model incorrectly. This is
particularly important since one is almost always making
use of empirical models. Thus, in many instances, more
than one empirical model may be reasonable and some are
better than others.
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Consider a situation in which we assume a model of the
form y = X1p1 + &. After the data are collected and fit, we
have a vector of fitted values,

(7.1)¥ =Xib,
where

by =(xj|x|}_]x£!r'

Here we implicitly make the assumption that

E(y) = XB,

However, there may be a better approximation of E(y)
given by

(7.2) E(y) = X B; + X8,

where, say, X1 is an N x p| matrix, and X2 is N x p2. The
additional term in Equation 7.2, X2B2 contains additional
linear model terms which provide more flexibility in the
modeling of the response. Examples of this would be
higher order terms or additional interaction terms. Then the
expected value of by is given by
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E(b)) = (XX, "X\ Ely]
= (X\ X)) ' X E[XiB, + X2B, + €]
=X\ XD ' X X,B, + (X| X)) 'X|X2B,
=B, + (X, X)X X2B,
=B, + AB-

Here ¢ is the usual random error, and A = (XX 'X(X; ig
called the alias matrix. The alias matrix transmits bias
errors to the estimate b1. Understanding the effect of bias
on the estimates of the model is applicable for many types
of models. There is considerable direct application to first
order models, such as fractional factorials discussed in
Chapter 4 (see Exercises 7.7, 7.8, and 7.9).

As one might expect, if there is appreciable model
misspecification, bias errors also appear in the fitted
values. For, in the above scenario, the expected value of
the vector of fitted values is given by

E(¥)=X,E(b))

=x1pr| +!’LB:}
= XiB, + X,AB;
and thus
(7.3)
E(§)— E(y) = [XiB) + XiAB;] — [XiB) +XuB,]
= I:X]A —-X:}ﬁl
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When the true model is best approximated by Equation
7.2, bias is transmitted to both model coefficients and
fitted values. Equation 7.3 is important in that it plays a
role in the lack-of-fit test described in Chapter 6. If the
model is misspecified as we have described here, the
residual mean square, s2, in the analysis of variance is also
biased. Instead of estimating o as expected, it has
expectation

E(s:) = o + ﬁ{ﬂ;[xlr\ - Xo] XHA — X518, )

The bias in s° described above is intuitive. It is simply
proportional to the sum of squares of the biases in the
fitted values. This is reasonable since the lower mean
square is itself proportional to the sum of squares of
deviations between y observations and fitted values. If we
call the bias in s>

(7.4) 71 B2RRB, |

where R = X1A — X3, then it becomes clear that the
lack-of-fit test, when significant, is detecting the existence
of a non-zero P2 through the quadratic form B:R'Rp;.

In addition to lack-of-fit the vector of biases in fitted value
given in Equation 7.3 may play an important role in the
choice of an experimental design. One point of view is to
determine the design based on control of two types of
error, variance error and bias error. Thus, we have a loss
function type criterion. For each observation, yj, we want
to make small the loss
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(7.5)

E[3; — foxi, B = E[3; — EGp) + EGp — fx;. B)]°

Il

3

E[$ — EGp +[EG) — f(x;, B)]

Var( v;) + [Bim‘.f _i“;.-J]:

The term Var(¥)) is clear. It has been discussed in Chapter
6 and will receive further attention in this chapter. The
term [Bias(.f'j)]2 is the squared bias in the fitted values if
indeed E(y) # Xi1PB1. The bias term is related to Equation
7.4 as

N
L{BR'RB, | = Z [Bias( )]

=

The statistics literature contains a considerable amount of
information on experimental design for regression or
response surface modeling. However, the majority of this
technical or theoretical information deals with
variance-oriented design criteria—that is, the type of
design criteria that ignores model misspecification. In
other words, these criteria essentially assume that the
model specified by the user is correct. In what follows, we
shall initially focus on variance-type criteria. More
recently, work has been considered where designs are
evaluated not only by assessing the variance error, but also
considering potential bias error. Because the bias term
contains P2, some additional assumptions for the
magnitude of these missing terms is needed to quantify the
size of the bias. See Draper and Sanders (1988), Vining
and Myers (1991), Allen et al. (2003) and Anderson-Cook
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et al. (2008) for a variety of approaches to considering bias
error. However, the errors associated with model
misspecification will be revisited in Chapter 9. In what
follows, we begin with experimental designs for first-order
response models.

7.3 DESIGN OF EXPERIMENTS FOR FIRST-ORDER
MODELS

Consider a situation in which N experimental runs are
conducted on k design variables x1, x2,..., x¢ and a single
response y. A model is postulated of the type

yi=B+Bxut+BhXzt-+Boxxte (i=1,2,..., N}

As a result a fitted model is given by

¥i=bo + bixiy + baxiy + - - - + brxiy

Here, of course, the b; are found by the method of least
squares. Obviously, the most intuitive variance-based
criterion involves the wvariance of the regression
coefficients—that is, Var(b;) (i = 0, 1, 2,...,k). Let us
assume that each design variable is in coded design units
and that the ranges for the design levels are such that x; €
[-1, +1]. A key ingredient in choosing a design that
minimizes the variances is the concept of orthogonality.

7.3.1 The First-Order Orthogonal Design
The terms orthogonal design, orthogonal array, and

orthogonal main effect plan received considerable
attention in the 1950s and 1960s. A first-order orthogonal
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design is one for which X'X is a diagonal matrix. The
above definition implies, of course, that the columns of X
are mutually orthogonal. In other words, if we write

where x; is the jth column of X, then a first-order
orthogonal design is such that x,’x; = 0 for all i # j, and, of
course, 1'x; = 0 forj = 1, 2,..., k. It should be clear that if
two columns are orthogonal, the levels of the two
corresponding variables are linearly independent. The
implication is that the roles of the two variables are being
assessed independent of each other. This underscores the
virtues of orthogonality. In the first-order situations, an
orthogonal design in which the ranges on these variables
are taken to extremes results in minimizing Var(b;) on a
per observation basis. In other words:

For the first-order model and a fixed sample N, if Xj € [-1,
+1] for j = 1, 2,..., k, then Var(bj)lo® for i = 1, 2,..., k is
minimized if the design is orthogonal and all x; levels in
the design are +1 fori=1, 2,..., k.

Thus, the elements on the diagonals of (X'X)f1 are
minimized [recall that Var(b) = o‘z(X'X)fl] by making
off-diagonals of X'X zero and by forcing the diagonals of
X'X to be as large as possible. The notion of linear
independence and variable levels at +1 extremes as a
desirable set of conditions should certainly be intuitive to
the reader.

Example 7.1 Variance-Optimal First-Order Designs I
Two-level factorial plans and fractions of resolution III
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and higher do, in fact, minimize the variances of all
coefficients (variances scaled by 0'2) on a per observation
basis. To illustrate this, consider the following PAR
fractional factorial (resolution IV) with the defining
relation / = ABCD. The matrix X is given by

X X x X
1 -1 -1 -1 =17
1 1 1 -1 -1
1 1 -1 1 -1
1 1 -1 -1 I
1

One can easily determine that X'X = 8I5 and (X'X)ﬁ1 =1
Is. Indeed, one can say that no other design with eight
experimental runs in this region can result in variances
smaller than ¢*/8. 1t should be apparent to the reader that a
full 2* factorial results in all coefficient variances being
¢%/16. In other words, if the size of the design is doubled,
the variances of coefficients are cut in half. However, both
are considered optimal designs on a per observation basis.

Example 7.2 Variance-Optimal First-Order Designs II
Consider a situation in which there are three design
variables and the user wishes to use eight experimental
runs but also to have design replication. A 23! fractional
factorial (resolution III) is used with each design point
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replicated. The matrix X for the design is as follows
(defining relation / = ABC):

| X2 X3

1 I =L —17
I G T |

— =1

Note that the columns are orthogonal and all levels are at
+1 extremes. Thus the design is variance optimal for the
model

I‘I.HII — h" - bi-\.l -} .b:_l.\'j + Ib'_'l-t]

That is, all coefficients in the above model have minimum
variance over all designs with sample size N = 8. In fact,
the variance—covariance matrix is given by

Var(bh) = {rrlg'S'_ih

It is interesting that for this situation a full 23 factorial
results in the same variance—covariance matrix. Though
the two designs are quite different, from a variance point
of view they are equivalent for the first-order model in
three design variables. Obviously, in the case of the 231
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fraction (replicated) there are no degrees of freedom for
lack of fit, whereas the 23 factorial enjoys four lack-of-fit
degrees of freedom that are attributable to x1x2, x1x3, x2x3,
and x1x2x3. On the other hand, the replicated one-half
fraction allows four degrees of freedom for replication
error (pure error), and, of course, the full 23 possesses no
degrees of freedom for replication error. As a result, even
though they are variance-equivalent, the two orthogonal
designs would find use in somewhat different
circumstances.

It should be apparent to the reader that for the use of
two-level factorials or fractions for a first-order model,
orthogonality (and hence variance optimality) is obtained
with resolution at least III. In the case of resolution III, the
x; columns in X will be aliased with the xjxx columns.
However, no x; column will be aliased with any x; column.
In the case of 2% factorials or regular fractions, any two
columns in X that are not aliased are, indeed, orthogonal.

The notion of orthogonality and its relationship to design
resolution clearly suggests that variance-optimal designs
should also be available if the fitted response model
contains first-order terms and one or more interaction
terms. The following subsection addresses this topic.

7.3.2 Orthogonal Designs for Models Containing
Interaction

As we indicated earlier, it is not uncommon for the process
or system to require one or more interaction terms to
accompany the linear main effect terms in a first-order
model. The two-level factorials and fractions are quite
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appropriate. As in the case of the first-order model, the
orthogonal design is variance-optimal—the sense again
being that variances of all coefficients are minimized on a
per observation basis. Based on the discussion earlier in
Section 7.3, it should be apparent that the two-level full
factorial is orthogonal for models containing main effects
and any (or all) interactions involving cross products of
linear terms. If a fraction is to be used, one must have
sufficient resolution to ensure that no model terms are
aliased. For example, if two factor interaction terms appear
in the model, a resolution of at least V is appropriate.

As an illustration, suppose for k£ = 4 the analyst postulates
a model

4 4
yi=PBo+ Z Bixi + E E Bixixj + &
i=1 j<j=2

Then clearly no fractional factorial will be orthogonal,
because a resolution IV fraction will result in aliasing two
factor interactions with each other. In fact, a one-half
fraction in this case would involve only eight design
points, and the above model contains 11 model terms. A
full 2* factorial is an orthogonal design for the above
model.

Consider a second illustration in which five design

variables are varied in a study in which the model can be
written as
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5 5
y=p5+ Z Bixi + E E Bixix; + &
<j=i .

=1

In this case a complete 2° or a resolution V 2°! serves as
an orthogonal design. In this case, linear main effects are
orthogonal to each other and orthogonal to two-factor
interactions, while two-factor interactions are orthogonal
to each other. The following matrix X illustrates the
concept of orthogonality in the case of the one-half
fraction:

X1 X2 X3 X4 X5 XAz X3 XAy XpAs XpX3 XAy XoX5 XXy X5 XgXs

++-=-== = = - - + 4+ + + + +
+ -+ -==- - + 4+ + - - - 4+ + +
+-=-+-=- + - 4+ + - + + - - +
+ - ==+ - + + - + 4+ - + - + =
+ - =-=-=—4+ 4+ 4+ 4+ - + 4+ - 4+ - =
++++=-= + + = = 4+ = - - -
+++-+- + - + - - - - + -

gl e o o e b = = B -
++ -+ + - - + - - - 4+ o+ = -
++ -+ -4+ - + - + - + -+ -
+4+ - -4+ 4+ - - 4+ + + - - = - 4+
+ -+ ++ = = = = 4+ 4+ + = F = =
+ -+ + =4+ = = 4+ = 4+ = 4+ = 4 =
+-=-+++ + - - - - - - 4+ + +
+ -+ -+ + - + - - - + + = = +
L+ + + + + + + +  + + o+

The defining contrast / = ABCDE was used to construct the
one-half fraction. It is clear that the columns of X are
orthogonal to each other and that

X'X=16l,s with (X'X)"' =l
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and thus the variances of the coefficients are given by

y)

V:Ir{.")”}:VEIT{I"J‘,J:VHI'“JU}:% (,j=12,345,i #))

The Saturated Design The reader should note that in the
previous illustration there are 16 design points and 16
model terms. The result is that there are zero residual
degrees of freedom. This type of scenario deserves special
attention. The absence of any lack-of-fit degrees of
freedom implies, of course, that no test can be made for
lack of fit; that is, there is no information to test for model
inadequacy. In fact, this type of design will by definition
fit the data perfectly with R? = 100%. In this situation the
design is said to be saturated. While this type of situation
should be avoided, there certainly are practical situations
in which cost constraints only allow a saturated design.
The saturated design will continue to receive attention in
future chapters. The discussion of the saturated design
invites a question regarding what form the analysis takes.
Can any inferences be made regarding model terms? The
reader should recall the discussion in Chapter 3 regarding
use of normal probability plots for effects. For an
orthogonal design with a first-order model or a
first-order-with-interaction model the model coefficients
are simple functions of the computed effects discussed in
Chapter 3. As a result, the use of normal probability plots
for detection of active effects can be used to detect active
regression coefficients. However, the reader should
understand that when at all possible, saturated designs
should be avoided in favor of designs that contain degrees
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of freedom for pure error and degrees of freedom for lack
of fit.

Effect of Center Runs In Chapters 3 and 4 we discussed
the utility of center runs as an important augmentation of
the two-level factorial and fraction. This was discussed
again and illustrated in Chapter 5. The addition of center
runs to an orthogonal design does not alter the
orthogonality property. However, the design is no longer a
variance-optimal design; that is, the variances of
regression coefficients are no longer minimized on a per
observation basis. Obviously, the requirement that all
levels be at =1 extremes is not met. Indeed, the center runs
(runs at the zero coordinates in design units) add nothing
to information about linear effects and interactions.
However, let us not forget the importance of the detection
of quadratic effects (see Chapter 3), a task that is handled
very effectively and efficiently with the use of center runs.

What Design Should Be Used? The discussion of center
runs and saturated designs in the context of orthogonal
designs underscores a very important point. The design
that is used in a given situation depends a great deal on the
goal of the experiment and the assumptions that one is
willing to make. It should also be clear that an optimal
(i.e., variance-optimal) design is not always appropriate.
Consider an example in which one is interested in fitting
the model

yi=B+hxit+tBxn+hxxm+te (i=1,23,..., 8)

that is, a first-order model in three design variables.
Among the candidate designs are three orthogonal designs
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that we will discuss and compare. All three of these
designs involve eight experimental runs. Consider the
following designs illustrated in Fig. 7.2:

ll)eSIgn The 2° factorial
]2)e51gn Resolution ITI fraction of the 2° augmented with four center runs

Design | Resolution III fraction of the 23 with replicate runs at each design
3. point

Figure 7.2 Three demgns for a first-order model in three
design variables. (a) 23 factorial. (b) 2 3-1 frac‘uonal
factorial with 4 center runs. (¢) Replicated 2371 fractional
factorial.

a) @ ® b p ® [ d
@ ' 1 ® / o) .

® Lo o : oo | :
[ 8 & L oo

Designs 1 and 3 are both variance-optimal des1gns The
variances of regression coefficients will be o 218 for
Designs 1 and 3. For Design 2, the variance of the
intercept term will be o%/8 but the variances of the linear
coefficients will be ¢%/4. Comments concerning all three
designs follow:

It does not allow for estimation of replication error (pure error).
There are four lack-of-fit degrees of freedom, but no error degrees
of freedom are available to test lack of fit. The design is appropriate
if there is strong prior information that there is no model
inadequacy.

Design
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Pure error degrees of freedom (3 df) are available for testing linear
effects. One can also test for curvature (1 df for pure quadratic
terms). The linear terms in the model are not estimated as precisely
as for Designs 1 and 2. It should be used when one accepts the
possibility of quadratic terms but can absolutely rule out interaction
(the presence of pure quadratic terms with no interaction is not
particularly likely).

Design

The design contains four pure error degrees of freedom but no
lack-of-fit degrees of freedom associated with interaction terms or
Design | pure quadratic terms. Tests of significance can be made on model
3. coefficients for the first-order model, but the design should not be
used if either quadratic effects or interaction may be present. There
is no model adequacy check of any kind.

From the above description it would seem that all these
candidates possess disadvantages. However, one must
keep in mind that with a sample size of eight and four
model terms there is not much room for an efficient check
for model inadequacy, because both lack-of-fit and pure
error information is needed. Incidentally, a full 23
augmented with, say, three or more center runs would
provide pure error degrees of freedom that could be used
to test pure quadratic curvature and the presence of
interaction.

7.3.3 Other First-Order Orthogonal Designs—The Simplex
Design

The majority of applications of orthogonal designs for
first-order models should suggest the use of the two-level
designs that we have discussed here and in Chapters 3 and
4. However, it is important for the reader to be aware of a
special class of first-order orthogonal designs that are
saturated. This class is called the class of simplex designs.
Let it be clear that these designs are saturated for a
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first-order model—a fact that implies that no information
is available at all to study interactions.

The main feature of the simplex design is that it requires N
= k + 1 observations to fit a first-order model in &
variables. Geometrically, the design points represent the
vertices of a regular sided figure. That is, the design points,
given by the rows of the design matrix

X1 X2 - Xy

X12 X722 AL X532
D=

Xy Xaw - XN

are points in k£ dimensions such that the angle that any two
points make with the origin is 6, where

|
cosfl = — = -

N -1 k

For k=2, N=3, cos § = —!, and thus 8 = 120°. Thus, for
this case, the points are coordinates of an equilateral
triangle. For k = 3 and N = 4, the design points are the
vertices of a ftetrahedron. For k = 2, the design matrix is
given by

X3

—1//2
—1/4/2
2//2

™ |
[

=

Il

|
-:::-5{:3 =

N
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Figure 7.3 reveals that the design for £ = 2 contains points
on the vertices of an equilateral triangle. The three rows in
the design matrix correspond to points 1, 2, and 3,
respectively.

Figure 7.3 Design points for the simplex in two variables.

2 1

The matrix X is the design matrix augmented by a column
of ones. Thus

Xl X7

1 JIZ —=1//2

X=|1 =373 <12
(7.7) 1 ~0 2//2

As aresult, one can readily observe the orthogonality from
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For k = 3, the design involves the use of N = 4 points and
any two points make an angle § with the origin, where cos
0=-5. The appropriate design is given by

X1 X2 X3

(7.8) | | 1
If we use X = [1ID], it is clear that
X'X =4I,

and hence the design is orthogonal for fitting the first-order
model. Figure 7.4 shows the coordinates displayed in three
dimensions. Note that any two points form the same angle
with the origin (0, 0, 0). Also note that in this special case
the simplex is a one-half fraction of a 23. The one we have
chosen to display is the resolution III fraction with /= ABC
as the defining relation. Indeed, the fraction formed from /
=—ABC also is a simplex.

Figure 7.4 Simplex in three design variables.
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1.1.1)

-1.-1, 1)

*a
-1,1,-1) |/

Xy

(1,-1,-1)

Rotation and Construction of the Simplex For a specific
value of & there are numerous simplex designs that can be
constructed. In fact, if one rotates the rows of the design
matrix through an angle, say @, the resulting design is still
a simplex and thus still possesses the property of being
first-order orthogonal. For example, a change in the
orientation of the equilateral triangle of the design in
Equation 7.6 will result in a second simplex. For k = 3, a
design that is an alternative to that shown in Equation 7.8
is given by

X X7 X3

=i f2 0 1
0 -2 -1
(7.9) V2 0

It is easily seen that this design is also first-order
orthogonal, although from a pragmatic point of view the
design in Equation 7.8 is usually preferable.
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The construction of the matrix X for the general
k-dimensional simplex is quite simple. One merely starts
with an orthogonal matrix O of order N x N with the
elements of the first column being equal. The matrix X is
then

X = ﬂ'aa\'rl'.lz

Thus, it is easily seen that X'X = N(O'O) = Nly. For
example, the k& = 2 simplex in Equation 7.7 can be
constructed from the orthogonal matrix

I 1 —1
0= |1 -1 -1
I 0 2

1/v/3 1/¥2 1//6

The wvalues at the bottom of each column are to be
multiplied by each element in the column. We have

1 JI2Z =142
X=0-v3=|1 -/372 =1//2
| 0 2/2

which is the matrix X in Equation 7.7. The matrix X given
in the design of Equation 7.8 can be constructed from the
simple orthogonal matrix
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I 1 -1 -1
1 -1 1 -1
1 -1 -1 I
I l | |

1/2 1/2 1/2 1/2

The reader should keep in mind that the simplex design is
first-order saturated, which implies that there is no
information available for lack of fit. If the analyst expects
system interaction or pure quadratic curvature might be
possible, the simplex is not an appropriate design.

Example 7.3 Use of a Simplex Design A simplex design
is used in a laboratory experiment designed to build a
first-order relationship between the growth (y) of a
particular organism and the percentage of glucose (x1), the
percentage of yeast extract (x2), and the time in hours (x3)
allowed for organism growth. In coded form the design
variables are

glucose — 30%
1.0
yeast — (0.5%
0.10
_ time — 45 hr
e

Xy =

Ay =

Table 7.1 gives the design in terms of the original and
coded variables and indicates the observed response.
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TABLE 7.1 Experimental Data for Organism Growth
Experiment Using Simplex Design

Glucose xy (%) Yeast x; (%) Time, x; (hr)
Run Number  Uncoded Coded  Uncoded Coded Uncoded Coded  Growth (g/liter)
| 3.0 0 0,641 ) 30 =9 £.52
2 1.586 V2 0.500 1] 60 1 9.76
3 0 0 0.359 -2 kil -1 T.38
4 4414 V2 0,500 0 &0 | 12,50

The fitted equation is given by

$ = 9.54 4+ 0.97x; + 0.40x; + 1.59x;

7.3.4 Another Variance Property—Prediction Variance

We earlier indicated that two-level orthogonal first-order
designs with levels at £1 extremes result in variances of
coefficients that are minimized on a per observation basis.
This provided the inspiration for the term ‘“variance
optimal” that we used consistently as we discussed
examples and applied the concept to models that involve
interaction terms. Criteria involving variances of
coefficients are certainly important. In fact, in Chapter 8
we explain the notion of special norms on (X'X)_1 as we
more formally deal with design optimality. However, we
should also be attentive to the criterion of prediction
variance. This concept was discussed in Chapter 2 in
dealing with confidence intervals around ¥(x) in regression
problems, and again in Chapter 6 as a part of the total
RSM analysis. However, the prediction variance concept is
a very important aspect of the study of experimental
design. It is important for the reader to become familiar
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with it in what is the simplest scenario—namely, the
first-order model.

Prediction Variance for the First-Order Model Recall that
the prediction variance, or variance of a predicted value, is
given by

PV(x) = Var[ § (x)] = oox™"(X'X)" 'x™

where x" is a function of the location in the design
variables at which one predicts and also a function of the
model. In fact, the (m) in x™ reflects the model. In the
case of a strictly first-order model, we obtain

For a k£ = 2 model containing x1, x2 and their interaction,
we obtain

."L'”F = [l X1y A2y .T{].\’g]

One can easily see that Var[V (x)] varies from location to
location in the design space. In addition, the presence of
(X'X)_1 attests to the fact that the criterion is very much a
function of the experimental design. The reader should
view the prediction variance as a reflection of how well
one predicts with the model.

In studies that are done to compare designs, it is often

convenient to scale the prediction variance, that is, work
with the scaled prediction variance
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N Var| (x)]

S5PVix) = — le-’-'-'l"{x‘x}---[xurl]

(7.10)

The division by o” makes the quantity scale-free, and the
multiplication by N allows the quantity to reflect variance
on a per observation basis. That is, if two designs are
being compared, the scaling by N automatically “punishes”
the design with the larger sample size. It forces a premium
on efficiency.

The scaled prediction variance in Equation 7.10 is quite
simple for the case of a variance optimal first-order
orthogonal design. In fact, because (X'X)_l = (I/N)Ip, we
have

-1 -
X1
SPV(x)=[l,x;,x2,...,x]| 2 | =1+ Z.r

Xy

(7.11) =1+p

where px is the distance that the point x" = [x1, x2,..., Xk] 18
away from the design origin. As a result, the SPV on N
Var[?(x)]/o‘2 = 1 at the design center and becomes larger as
one moves toward the design perimeter. Anyone who
recalls confidence intervals on E[y(x)] in linear regression
should not be surprised at this result. As an illustration, for
a2’ factorial, the following are values of N Var[?(x)]/o‘2 at
different locations where one may wish to predict:
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Location | N Var[V(x)]/o?

0,0,0 1
SRR IR
1]

2,3, 1 2.50
L 1,1, 3.25

1,1,1, |4

Thus, the scaled prediction variance increases fourfold as
one moves from the design center to the design perimeter.
For, say, a 23 factorial at the perimeter [i.e., (1, £1, £,
+1, #1)], N Var[.f'(x)]/a2 = 6 and hence the variance
increases sixfold.

In the case of a lesser design, (i.e., one that is not
variance-optimal, or even orthogonal), this change in
prediction variance 1s even more pronounced. For
example, consider a one-half fraction (resolution III) of a
23 factorial with four center runs as an alternative to a
23 We know that this design 1s orthogonal but not
variance-optimal. Recall this design as Design 2 in the
comparisons we made in Section 7.3.2. The 23 was Design
1. For Design 2 the model matrix is

1 -1 -17
-1 1 -1
-1 =1 | 8

1 I |

0O 0 0

0o o 0

0 o0 0

0o o0 0

= o

and X'X =

= oo
= o o O

e e e
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with the variance—covariance matrix (apart from 0'2) being

L 000
0 L 00
# _'I_ 4
QX" = 1o 5 10
000 !
Consequently,

0 0 0 1

, ;0 0] x
SPV(x) = 8[1, x;, x5, x3] t

00 0 1]llx
= 14205+ +x)

=1+2p

As a result, it is apparent that SPV(x) for Design 2
increases much faster as one approaches the design
perimeter than does Design 1. In fact, at (%1, =1, £1),
SPV(x) = 4 for Design 1 and SPV(x) = 7 for Design 2.
Incidentally, Design 3, which is a resolution III fraction of
a 2° with replicate runs, has prediction variance properties
identical to that of Design 1; they are both
variance-optimal designs.

The reader should view prediction variance as another
variance-type criterion by which comparisons among
designs can be made. It is different than merely comparing
variances of individual coefficients. Much more attention
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will be given to SPV(x) = Var[.*(x)]/o‘2 later in this chapter
and in future chapters.

7.4 DESIGNS FOR FITTING SECOND-ORDER
MODELS

Before we embark on the huge topic of experimental
designs for second-order models, we should review for the
reader some minimum design requirements and the RSM
philosophy that motivates one or two of the classes of
designs that we will subsequently present in detail.
Variable screening is an essential phase of RSM that was
presented at length in Chapter 1. Here, of course, the
two-level factorial designs and fractions play a major role.
Any sequential movement (region seeking) that is
necessary is also accomplished with a first-order design.
Of course, there may be instances where region-seeking
via steepest ascent (or descent) and/or variable screening
are not required. However, the possibility of either or both
should be included in the total sequential plan. At some
point the researcher will be interested in fitting a
second-order response surface in the design variables xi,
X2,..., xk. This response surface analysis may involve
optimization as discussed in Chapter 6. It may lead to even
more sequential movement through the use of canonical or
ridge analysis. But, regardless of the form of the analysis,
the purpose of the experimental design is one that should
allow the user to fit the second-order model

k k k
y=py+ Z Bixi + Z ﬁn-‘]‘z 5y ZZ B,-J-If.l;. 4+ &
i=l i=l i<j=2

(7.12)
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The model of Equation 7.12 contains 1 + 2k + k(k — 1)/2
parameters. There must be at least this number of distinct
design points and at least three levels of each design
variable. Now, of course, these represent minimum
conditions, and one should keep in mind the 10 desirable
design characteristics listed at the beginning of this
chapter. In what follows in this chapter and in Chapter 8
we discuss important design properties for the
second-order model and specific classes of second-order
designs. The reader will recall from the previous section
that in the «case of first-order designs (or
first-order-with-interaction designs), the dominant property
is orthogonality. In the case of second-order designs,
orthogonality ceases to be such an important issue, and
estimation of individual coefficients, while still important,
becomes secondary to the scaled prediction variance N
Var[?(x)]/o‘z. This stems from the fact that there is often
less concern with what variables belong in the model than
with the quality of ¥(x) as a prediction or, rather, an
estimator for E[y(x)]. We now introduce, formally, the
class of central composite designs.

7.4.1 The Class of Central Composite Designs

The central composite designs (CCDs) were introduced
in an informal way in Chapter 6. Some of the examples
used for illustrative purposes involved the use of the CCD.
The CCD is without a doubt the most popular class of
second-order designs. It was introduced by Box and
Wilson (1951).

Much of the motivation of the CCD evolves from its use in
sequential experimentation. It involves the use of a

531



two-level factorial or fraction (resolution V) combined
with the following 2k axial or star points:

—{x 0 0
or 0 ()
] (¥ 0
[Il e [!

] 0 €
] 0 e

As a result, the design involves, say, F factorial points, 2k
axial points, and n¢ center runs. The sequential nature of
the design becomes very obvious. The factorial points
represent a variance-optimal design for a first-order model
or a first-order + two-factor interaction model. Center runs
clearly provide information about the existence of
curvature in the system. If curvature is found in the
system, the addition of axial points allow for efficient
estimation of the pure quadratic terms.

While the genesis of this design is derived from sequential
experimentation, the CCD is a very efficient design in
situations that call for a nonsequential batch response
surface experiment. In effect, the three components of the
design play important and somewhat different roles.

1. The resolution V fraction contributes substantially to the
estimation of linear terms and two-factor interactions. It is
variance-optimal for these terms. The factorial points are
the only points that contribute to the estimation of the
interaction terms.
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2. The axial points contribute in a large way to estimation
of quadratic terms. Withqut the axial points, only the sum
of the quadratic terms, 2-i-1 Bis can be estimated. The axial
points do not contribute to the estimation of interaction
terms.

3. The center runs provide an internal estimate of error
(pure error) and contribute toward the estimation of
quadratic terms.

The areas of flexibility in the use of the central composite
design reside in the selection of a, the axial distance, and
ne, the number of center runs. The choice of these two
parameters can be very important. The choice of o depends
to a great extent on the region of operability and region of
interest. The choice of n. often has an influence on the
distribution of N Var[_f'(x)]/o‘2 in the region of interest.
More will be said about the choice of a and nc in
subsequent sections. Figures 7.5 and 7.6 show the CCD for
k=2 and k = 3. For the k = 2 case the value of a, the axial
distance is v'2. For k = 3, the value of a is +3. Note that for
k = 3 the axial points come through the six faces at a
distance +/3 from the origin. For k = 2 the design represents
eight points equally spaced on a circle, plus the center
runs. For k£ = 3 the design represents 14 points all on a
common sphere, plus center runs.

Figure 7.5 Central composite design for k=2 and o = v2.
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1,1) = (1, 1)

O e T z* (0.42)

(-1,-1})

The value of the axial distance generally varies from 1.0 to
vk, the former placing all axial points on the face of the
cube or hypercube, the latter resulting in all points being
placed on a common sphere. There are times when two or
more center runs are needed and times when one or two
will suffice. We will allocate considerable space in
Chapter 8 to comparison of the CCD with other types of
designs. We will discuss the choice of a and n. following a
numerical example of the use of a CCD.
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In the example that follows we use a real life numerical
example to gain insight into the structure of the X and X'
matrices for the general case of a CCD.

Example 7.4 The Breadwrapper Experiment An
experiment was conducted to study the response surface
relating the strength of breadwrapper stock in grams per
square inch to sealing temperature (x1), cooling bar
temperature (x2), and percent polyethylene additive (x3).
The definition of the design levels are [see Myers (1976)]:

temp. — 255°F
30
temp. — 55'F
= 9
___ polyethylene — 1.1%

. 0.6

Xl =

Five levels of each factor are involved in this design. The
coded and natural levels are given by the following:

—1l682 —1.000 0L000 1000 1.682
x 2045 225 255 285 305.5
Xa 39.9 46 33 64 701
k] 0.09 0.5 1.1 1.7 .11

The design matrix D and the vector y of responses are
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[ -1 -1 -1 ] [ 6.6

| ~1 -1 6.9

-1 1 -1 7.9

| | =1 6.1

—1 —1 | 9.2

| —1 1 6.8

—1 | 1 10.4

| | | 7.3
—1.682 0 0 9.8
1.682 0 0 5.0

D= s ¥=

0 —1.682 0 6.9

0 1.682 0 6.3

0 0 —1.682 4.0

0 0 1.682 8.6

0 0 0 10.1

0 0 0 9.9

0 0 0 12.2

0 0 0 9.7

0 0 0 9.7

. D 0 0 | | 9.6

Note that the £ = 3 CCD for this example uses a = 1.682
with n = 6 center runs. While this is not the axial distance
that stretches to the faces of the cube it is a value to which
some importance is attached. It allows the design to
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possess the property of rotatability and thus the derivation
of the value o = 1.682 for the £ = 3 breadwrapper design
will be discussed in 7.4.2 and 7.4.3.We shall use the
breadwrapper design to highlight the structure of X and
X'X. For the design matrix D and the second-order model:

(7.13a)

X X2 X3 _rf x5 _1‘_‘: X|x2 XjX3  XaX3

L i L 1 1 I ! |
o : 1 1 1 =1 = |
1 : I I R -
1 I 1 1 I 1 -1 -1
i : TR TR 1 I
. : 1 1 T ] i1
- : 1 I U =1 -1 |
1o | I I | I I |
I D, 288 0 0 0 0 0
o I O | 288 0 0 0 0 0
r | ! 0 2828 0 0 0 0
L | 0 288 0 0 0 0
B L0 0 288 0 0 0
o \ 0 0 2828 0 0 0
L : 0 0 0 0 0 0
Lo : 0 0 0 0 0
L | o 0 0 0 0 0
i : o 0 0 0 0 0
E o - 0 0 0 0 0 0
g l 0o 0 0 0 0 0
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(7.13b)

by by by by by b bz b1z bz bn

20 0 0 0 13.658 13658 13658 0 0 0
13658 0 0 0 0O 0 0 0 0

1368 0 0 0 0 0 0 0

13.658 0 0 0 0 0 0

X'X = 24 8 8 0 0 0
24 8 0o 0 0

24 0O 0 0
g8 0 0

Symmetric 8

Note that in the X matrix the first four columns involving
the column of ones and the linear term columns are
mutually orthogonal as one would expect since they jointly
represent columns of an orthogonal design. The same is
true with the last three columns containing the columns
that reflect presence of interaction terms. In addition, these
two sets of columns are mutually orthogonal to one
another. This is a result of the presence of the factorial
portion of the CCD and the fact that that axial are chosen
such that orthogonality is maintained among the linear
columns. This produces a large number of zeros on the off
diagonal elements of X'X. In fact the only non-zero entries
on the off diagonals, the values of 8, exist because the
“pure” quadratic terms are, of course, not mutually
orthogonal. [The non-zeros in the first row and column
(i.e., 13.658) could be made zero by centering the X values
in the model.] The presence of many zeros on the off
diagonals contribute to making the CCD a very efficient
design. In addition, we will observe in later sections that
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the value of n¢, the number of center runs can be a very
important design parameter.

The X'X matrix in Equation 7.13b is certainly specific to
the conditions of the breadwrapper problem. However, it is
important to understand that the zeros appear in the
corresponding positions for any CCD for the reasons
described above. In sections that follow we will revisit the
general form of X'X as discussed for the CCD here with
regard to how it effects the variance of prediction, that is,
specifically N Var[ﬁ(x)]/o‘z. Indeed certain values of the
diagonals and the off-diagonal elements can dramatically
influence the distribution of this scaled prediction variance
quantity inside the design region of the CCD.

The least squares procedure gives the second-order
response function:

¥ = 10.165 — 1.1036x; + 0.0872x> + 1.020x3 — 0.760x;]
— 1.042x3 — 1.148x% — 0.350x;x; — 0.500x1.x3 + 0.150x2.x3

An analysis of variance is shown in Table 7.2. Note that
there are five degrees of freedom for lack of fit,
representing contribution from third-order terms. The
F-test for lack of fit is not significant.

TABLE 7.2 Analysis of Variance for Breadwrapper
Stock Data

539



Source of Variation Sum of Squares  Degrees of Freedom  Mean Squane F

Regression (lincar and quadratic) T0,3056 ] T.R117 T.87
Lack of fit 6,9044 5 1.3809 1.39
Error 4.9600 5 09920

Tatal 82,1700 19

The stationary point 1s computed based on the
methodology discussed in Chapter 6:

x_\_ —— _%B_]h

—1.011
= | 0.260
0.681

with the predicted response at the stationary point given by
¥(xs5) = 11.08.

The eigenvalues of the matrix B are found to be

Ay = —0.562, Ay =-—=1271, A;=-1.117

Thus the canonical form is given by

§=11.08 —0.562w; — 1.271w3 — 1.117w3

As a result, the stationary point is a point of estimated
maximum mean strength of the breadwrapper. Figure 7.7
displays contour graphs that show the flexibility available
around the estimated optimum. Contours of constant
response are shown for x3 (percent polyethylene) values of
—-0.5, 0.00, 0.25, and 0.5. The purpose is to determine how
much strength is lost by moving percent polyethylene x3
off the optimum value of 0.681 (coded). From the contour
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plots it becomes apparent that even if the polyethylene
content is reduced to a value as low as 0.25 (coded), the
estimated maximum strength is reduced to only slightly
less than 10.9 psi. A reduction to 0.500 in polyethylene
will still produce a maximum that exceeds 11.0 psi.

Figure 7.7 Contours of constant strength at different levels
of the percentage of polyethylene, x3. (a) x3 =—0.5. (b) x3
=0.(c)x3=0.25. (d)x3=0.5.

':‘]1“2[ {b] 1.682
Der.l
7.000
L2 1Nk
8,000
0561 0881 -
a -
0.000 - M0 -
5,800
=0.56] - U -3.561
1121 o
= ~ =1121
9000
J'NO
-1.682 A 1,682 M08

=168 =1.121 -0.5&1 0030 0561 I.L?L L.SBJ

(c) 1ea2
L

.56

L]

~0561

=1.121

0.000 -

=1 682 =1.121 -USG[ n{:m 0.561 I.I.2I. L.6a82

(d) 1882

Iulil

=112

woo

,(( ©)

-1.682 -1.682
-1.682 -1.121 -0.851 0.000 1}5&1 1121 1682 -1.662 -

b

1121 0561 O‘ODCI 0561 1121 1682

The objective of this section is to formally introduce the
user to the CCD and to allow more insight into its
properties. However, the CCD is such an important part of
the heritage and practical use of RSM that it will be
revisited frequently in the text. In the next section we
reintroduce the notion of prediction variance—that is, N
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Var[?(x)]/o‘2 in the case of second-order models.
Simultaneously, we discuss the notion of the property of
rotatability. This will allow the discussion of the choice
of a and n. to be brought to focus.

7.4.2 Design Moments and Property of Rotatability

Many of the properties of experimental designs are
connected to the manner in which the points are distributed
in the region of experimentation. Specifically, this
distribution of points in space has a profound effect on the
distribution of N Var[ﬁ(x)]/o‘z, the scaled prediction
variance. The distribution of design points is nicely
quantified by its design moments. The term moments has
the same conceptual meaning as the term sample moments
that is taught in elementary statistics. We learn early in our
training that the nature of the sample of the data is well
characterized by its moments; for example, sample mean
(first moment), sample variance (second moment). We also
recall that symmetry in a sample is quantified by the third
moment. In the case of RSM, the moments that reflect
important geometry in the design must also be a function
of the model being fit.

Indeed the important moments come from the moment
matrix

Mo
N

For example, a 2F factorial or fractional factorial design for
a first-order model is orthogonal and its moment matrix is
easily seen to be
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1 0 - 0

The off-diagonal moments are zero due to the
orthogonality of the columns of the X matrix, and the
diagonal moments are all equal to 1, since the X matrix is
given by

1 xp x; --- A

1 X2 X3z X2
X =

I xiy xany -+ Xy

where each of the x;; entries are 1. We then define the
moments as first moments; that is, b it Ko the second
mixed moments & Lt XiXie for  # j and the second pure
moments % 2u-1%w The first and second mixed moments
are called odd moments, since they have at least one
variable with an odd power. These are clearly zero for this
design. The k second pure moments are then even
moments and, of course, are equal to 1 in this case. It
should be clear that the second mixed moments are
analogous to a sample covariance for the sample moments
case in basic statistics, where the first moment can be
viewed like a sample mean, and the second pure moments
as sample variances.

The design moments that carry importance in
characterizing variance properties of a design are clearly a
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function of the order of the model. In the case of the 2¥
factorial or fractional factorial design illustrated above, the
moments through order 2 are important since M = X'X/N
contains moments through order 2. However, in the case of
the CCD with the corresponding second order design, M
contains moments through order 4. This is evident when
we observe X and X'X in Equations 7.13a and 7.13b,
respectively. In fact from (7.13b), the relevant moments
are

N

=—3 X first moments
Nrr;]
N
[if] = = e second pure moments
=1
il == E XieaX ju second mixed moments
H—
[l == }: X, third pure moments
liif] = N l 2 X, lijk] = Z_ XiaX jueXb third mixed moments
oW H_
[iii] = = Z Xy fourth pure moments
'I =
r l ¥ 2 : . . 3
[iiif] = — Z X, [iiji] = = 2 XX fourth mixed moments

u=I1

N

.. 1
[”Jr'{] A Z -lm ik [’J"f“’] i E ZI Xt fue X kaaXlua

It is clear that for the CCD all odd moments through order
four; that is, moments that contain at least one odd power,
that is [7], [if], [iif], [iif], [ijk], [iiij], and [iijk] are zero for i
# j # k. Values of zero for odd moments suggest a certain
design symmetry which is certainly apparent when one

observes the design matrix in Figs. 7.5 and 7.6. In fact
from the X'X matrix in Equation 7.13b, the only non-zero
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moments for the k =3 CCD are [ii], [iijj], and [iiii] for all i
;J".'j_

The important variance properties of an experimental
design are determined by the nature of the moment matrix.
This should be evident because the matrix (X'X)f1 and
hence X'X are so important in characterizing variance
properties—that is, variances and covariances of
regression coefficients as well as prediction variance.

The importance of design moments and hence the moment
matrix in characterizing the scaled prediction variance,
SPV, is easily seen by observing the definition of SPV in
Equation 7.10.

SF"&"I{ .‘il} — Nuxln.lp{x.-xj— !K“”J

= tlurl-' (ﬁ) . xunl
' N

— xla.'r:l-'h_l- Ix:rrll

So the SPV is a quadratic form of the moment matrix, M.
Thus the nature of the design moments has a profound
effect on the SPV and its distribution in the design space.

It is important for a second-order design to possess a
reasonably stable distribution of the scaled prediction
variance N Var[."ﬁ'(x)]/a2 throughout the experimental
design region. It must be clearly understood that the
experimenter does not know at the outset where in the
design space he or she may wish to predict, or where in the
design space the optimum may lie. Thus, a reasonably
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stable scaled prediction variance N Var[.f'(x)]/c)'2 provides
insurance that the quality of the ¥(x) as a prediction of
future response values is similar throughout the region of
interest. To this end, Box and Hunter (1957) developed the
notion of design rotatability.

A rotatable design is one for which N Var[.f'(x)]/O'2 has the
same value at any two locations that are the same distance
from the design center. In other words, N Vatr[ﬁ(x)]/o‘2 is
constant on spheres.

The purpose of the idea of design rotatability was, in part,
to impose a type of stability on N Var[.f'(x)]/az. The
rationale of rotatability is that at two locations in the
design space x1 and x2 for which the distances from the
origin are the same [ie., (Xix1)'? = (¥x2)!?], the
predicted values ¥(x1) and ¥(x2) should be equally
good—that is, have equal variance. While rotatability itself
does not ensure stability or even near-stability throughout
the design region, in many cases it provides some useful
guidelines for the choice of design parameters—for
example, the choice of a and n. in the CCD. The
importance of rotatability as a design property depends on
many things, not the least of which is the nature of the
region of interest and region of operability. It is important
to note that rotatability or near-rotatability is often very
easy to achieve without the sacrifice of other important
design properties. In what follows, we present the
foundation that will allow the determination of necessary
and sufficient conditions for design rotatability.

Moment Matrix for a Rotatable Design (First and Second
Order) In this section we give the moment matrix for a
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rotatable design for both first- and second-order models.
Additional theoretical development regarding the general
case is given in Appendix 1. For the case of a first-order
model, a design is rotatable if and only if odd moments
through order two are zero and the pure second moments
are all equal. In other words,

[1=0 (i=12....k
(=0 (#jij=12,...k
[ill=4 (i=1,2,...,k)

The quantity A2 is determined by the scaling of the design.
As a result in the first-order case, the moment conditions
for a rotatable design are equivalent to the moment
conditions for a variance-optimal design. Indeed, with
scaling that allows levels at +1 in a two-level design of
resolution III or higher, we have

[1=0, [[1=0, [i]=10 (=12,....ki#))

In other words, A2 is set at 1.0 due to the standard +1
scaling. The equivalence of rotatability to variance
optimality in the first-order case should not be surprising.
The reader should recall the result of Equation 7.11. We
showed that

SPV(x) = 1 + pi

for a first-order variance optimal design. Thus, the scaled
prediction variance N Var[_f'(x)]/()'2 is a function of x only
through px, the distance of x from the design origin. This
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implies that N Var[.f'(x)]/a2 is the same at any two locations
that are the same distance from the origin.

In the case of a second-order model, the moments that
affect rotatability (or any variance property) are moments
through order four. Necessary and sufficient conditions for
rotatability are as follows:

1. All odd moments through order four are zero.

(7.14) 2. The ratio of moments [iiii]/[iijj] = 3 (i # j).

The conditions are not only simple, but relatively easy to
achieve, particularly with a CCD.

7.4.3 Rotatability and the CCD

The conditions given in Equation 7.14 are achieved, at
least approximately, by several classes of designs. In the
case of the CCD, rotatability is achieved by making a
proper choice of a, the axial distance. Condition 1 above
will hold as long as the factorial portion is a full 2% ora
fraction with resolution V or higher. The balance between
+1 and —1 in the factorial columns and the orthogonality
among certain columns in the matrix X for the CCD will
result in all odd moments being zero. For condition 2, one
merely seeks a for which

[ifiii]  F + 2o
Liii] F

=3

which results in
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(7.15) @ = VF

where, of course, F is the number of factorial points (F =
2" if it is a full factorial). It is important to note that
rotatability is achieved by using a as in Equation 7.15
regardless of the number of center runs. Table 7.3 gives
value of a for a rotatable design for various numbers of
design variables.

TABLE 7.3 Values of a for a Rotatable Central
Composite Design

k F N i

2 4 8 +n, 1.414
2 3 14 < n, 1.682
4 16 24+ n, 2.000
5 12 42 4 n 2378
5 I.; rep) I 26 4+ n, 2000
6 64 76 +n, 2828
6 (z rep) E ¥ 44 £ n, 2378
T 128 142 + n, 3304
74 rep) 64 78 + 1, 2.828

Note that for £ = 2 and & = 4 the rotatable CCD contains 8
and 24 points (apart from center runs), respectively, that
are equidistant from the design center. For k£ = 3, the value
o = 1.682 corresponds to the CCD wused in the
breadwrapper example in Section 7.4.1. For k=2, 3, and 4
the rotatable CCD is either exactly or very nearly a
spherical design; that is, all points (apart from center runs)
are exactly (or approximately for k = 3) a distance vk from
the design center.
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Center Runs for the Rotatable CCD The property of
rotatability is an attempt at producing stability, in a certain
sense, of SPV(x). The “sense” is, of course, constant
SPV(x) on spheres. However, the presence of a rotatable
design does not imply stability throughout the design
region. In fact it turns out that a spherical design (all points
on a common radius) used for fitting a second-order model
has an infinite SPV(X), since the design is singular; that is,
X'X is a singular matrix [see Box and Hunter (1957), Box
and Draper (1975), and Myers (1976)]. The use of center
runs does provide reasonable stability of SPV(x) in the
design region; as a result, some center runs for a rotatable
CCD are very beneficial. The use of a rotatable or
near-rotatable CCD with only a small number of center
runs is not a good practice. An illustration of this point is
given through Figs. 7.8 and 7.9. Figure 7.8 shows contours
of SPV(x) for a k =2 CCD (a = v2) and one center run.
(For zero center runs the design is singular.) Figure 7.9
gives the contours with a = +2 and five center runs. Note
that the design in Fig. 7.9 is preferable. Also note that the
criterion involves weighting by N, which means that the
design in Fig. 7.9 has a larger weight. In spite of this, the
ne = 1 design has a scaled prediction variance at the design
center that is 3.5 times as large as that of the n. = 5 design.

Figure 7.8 Scaled prediction variance N Var[_f'(x)]/()'2 for k

=2 CCD, a = v2, nc = 1. (a) Response surface. (b)
Contour plot.
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Figure 7.9 Scaled prediction variance N Var[ﬁ'(x)]/o‘2 for k
=2 CCD, a = 2, n. = 5. (a) Response surface. (b)
Contour plot.

Guidelines regarding the use of center runs with the CCD
will be given in the next section; suffice it to say at this
point that spherical or nearly spherical designs require
three to five center runs in order to avoid a severe
imbalance in SPV(x) through the design region. The
message communicated by Figs. 7.8 and 7.9 extends to
larger values of k. Draper (1982), Giovanitti-Jensen and
Myers (1989), and Myers et al. (1992b) supply information
regarding center runs in the use of the CCD.
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Achieving near rotatability for a design can have the
desired effect of producing good stability of prediction
variance throughout the design region, even if the
conditions for rotatability were not met exactly. Consider
the experiment for finding the optimal conditions for
storing bovine semen given in Example 6.2 with data
shown in Table 6.4. In this example, three factors were
considered, and the design selected was a CCD with four
center runs and o = 2. Figure 7.10 shows three slices of the
spherical design region, based on fixed values of factor X3.
The dashed line on the plot shows the region of the design
space that lies within the sphere of radius 3 from the
center. Note that this changes depending on the value of X3
considered. In this case the axial design points lie outside
of the spherical region, still within the region of
operability, but outside the region of interest.

Figure 7.10 Contour plot of scaled prediction variance for

k=3 CCD, a =2, nc = 4 for Example 6.2. (a) X3 =0, (b)
X3=1,(c) X3=1.5.
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Although the axial distance was not 1.682 as
recommended for a rotatable design, we can see from Fig.
7.10 that the contours for this design are nearly circular,
and hence the design is very close to rotatable. This
illustrates that the changes in the axial distance affect the
stability of the scaled prediction variance as measured by
rotatability relatively slowly.

How Important is Rotatability? The rotatable CCD plays

an important role in RSM, from both a historical and an
operational point of view. However, it is important for the
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analyst to understand that it is not necessary to have exact
rotatability in a second-order design. In fact:

If the desired region of the design is spherical, the CCD
that is most effective from a variance point of view is to
use a = vk and three to five center runs.

This design is not necessarily rotatable, but is
near-rotatable. The recommendation is based on the
stability and size of SPV(X) in the spherical design region.
For example, for k= 3, o = +/3 does not produce a rotatable
design. However, the loss in rotatability is actually trivial,
and the larger value of a (then the rotatable value o =
1.682), results in a design that is slightly preferable.
Numerical evidence regarding this recommendation will
be given later in this chapter and in Chapter 8. The reader
is also referred to Box and Draper (1987), Khuri and
Cornell (1996), Lucas (1976), Giovannitti-Jensen and
Myers (1989), and Myers et al. (1992b) for information
regarding the practical use of the CCD.

7.4.4 More on Prediction Variance—Scaled, Unscaled, and
Estimated

The importance of the prediction variance or the
variance of a predicted value, as defined by

PV(x) = Var[ 3(x)] = > x""(X'X)"'x™

has importance in several phases of the design and analysis
of an experiment. The presence of the unknown quantity,
02, needs special consideration and different treatment
depending on whether data have been collected.
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During the design selection stage, no value of o is
available. In addition, its value is not informative to the
quality of the designs being compared or assessed. Hence,
the scaled prediction variance, SPV(x) = N Var[ﬁ(x)]/o‘z, as
defined in Equation 7.10 is a common choice in this stage.
In their epic paper in 1957, Box and Hunter used it in
graphics to compare competing designs with considerable
work attached to the central composite design and other
spherical designs. In fact the term “scaled” prediction was
not used in their 1957 paper. Rather they used the term
“information” to describe the concept. We now describe
the origin and reasonableness of this term.

Cost and general design efficiency are important, and it is
often helpful to weigh these relative to each other. As we
discussed in Section 7.3.4, the SPV works through the use
of the information matrix, X'X/N, also called the moment
matrix. This quantity considers quality on a per
observation basis. Thus many reasonable comparisons
between designs take cost (choice of N) into account, and
balance cost with efficiency. For the SPV can be written

x'x\ !
SPV = x':l'fllr(_) x':"l]
N

= Nx"(X'X)"'x™

In fact, as will be demonstrated in Chapter 8, an entire
spectrum of optimality criteria, such as D-optimality,
I-optimality, G-optimality, and A-optimality, involve
criteria that are norms on X'X/N, and hence use scaling as
in the case of SPV.
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However, the assumption that the cost of the design is
proportional to its size, NV, may not be appropriate for all
situations. For example, consider the situation where
setting up the general conditions for the experiment are
more expensive than the incremental cost of performing
runs of the experiment. In this case, we are more likely to
want to run an experiment as large as possible given
practical constraints, to maximize the benefit of our set-up.
Here we might choose to compare designs of different
sizes without the penalty term of N in SPV. Here the
quantity, called unscaled prediction variance

I\_"II:}}'!,”.II — Vﬂrl _i‘fx:l]r'fff: = xl'm'l'[xfx} !x””]

may be more appropriate. There is considerable discussion
among statisticians about the relative merits of the
quantities, SPV and UPV. On the theoretical ground
outlined above, SPV is a useful metric for assessing the
quality of prediction in the design region taking account of
the size of the design. If cost as quantified by the size of
the design is not a consideration for selecting between
designs, or if the incremental cost of increasing the design
size is not appropriately approximated by the scaling N,
then UPV is a good alternative. It gives an absolute
measure of the precision of a design. From a practical
perspective, the SPV approach is similar to the Derringer-
Suich (1980) desirability function approach described in
Chapter 6, which seeks to balance good prediction quality
with cost considerations. If it is more beneficial to consider
these aspects of a design separately, then the UPV may be
preferred. See Anderson-Cook et al. (2008) with
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discussion for different perspectives on the merits of
scaling or not.

To summarize, we can use SPV or UPV during the design
selection phase. The division by o means that these
quantities are a function of only the design matrix and do
not require data to have been collected. However, there are
certainly many applications of the use of prediction
variance in which the scaling of N/o? for the SPV or 1/6°
for the UPV should not be used. After the experiment has
been run, and data have been collected, the estimate MSE
for o should be multiplied by the unscaled quantity
xM'X'X)y 'x™ with the result being the estimated
prediction variance,

EPV = MSE x""(X'X)" 'x'™

Here the square root of this quantity is the familiar
standard error of the estimated mean, ¥(x), at a given
location in the design space. Students are taught that at a
location, xo (in the model space), the 100(1 — a)%
confidence interval on a mean response is given by the
familiar expression

f
_“xan} i Jrra‘_.-'l'.[1'1|,:rrnr|1||,"|l MSE x::m {LXFX}_] x:;’”

Of course it would make no sense to scale the quantity
inside the square root by a factor of N. In fact, the
confidence region would not be correct with such scaling.
Plots of this quantity for the variance at xo in the design
region are available in several commercial software
packages including Design-Expert. For example, plots in
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Figs. 2.12a and b for the data of Table 2.7 show
illustrations of these plots.

From the foregoing, it should be surmised that if an
experimental design has been implemented with the data
collected, the EPV should be applied for inferences to be
drawn concerning the use of the fitted model. In fact,
under these conditions, the cost involved and the efficiency
(compared to other designs) is no longer an issue. The
questions that are now being answered center around
“How good is the fitted model that was generated from this
design?” Thus there is no need for scaling and using the
estimated value of o provides information about
prediction that is specific to the experiment.

7.4.5 The Cuboidal Region and the Face-Centered Cube

There are many practical situations in which the scientist
or engineer specifies ranges on the design variables, and
these ranges are strict. That is, the region of interest and
the region of operability are the same, and the obvious
region for the design is a cube.

For example, in an experimental study designed to study
organism growth, the design variables and their ranges are
percent glucose [2%, 4%], percent yeast [0.4%, 0.6%], and
time [30 hr, 60 hr]. Suppose it is of interest to build a
second-order response surface model and the biologist is
interested in predicting growth of the organism inside and
on the perimeter of the cuboidal region produced by the
cube. In addition, for biological reasons, one cannot
experiment outside the cube, though experimentation at the
extremes in the region is permissible and, in fact,
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desirable. This scenario, which occurs frequently in many
scientific areas, suggests a central composite design in
which the eight corners of the cube are centered and scaled
to (=1, 1, 1) and a = 1. The final design is given (in
coded form) by

X1 X2 X3
* b =k =k
-1 I =1
-1 =1 I
I -

L =] I
= I I
D— I I I
-1 0 0
10 0

0 -1 0

0 I 0

0 0 -1

0 0

I | R |

where the (0, 0, 0) at the design center indicates a vector of
ne center runs. Figure 7.11 shows the design, often called
the face-centered cube (or FCD) because the axial points
occur at the centers of the faces, rather than outside the
faces as in the case of a spherical region.

Figure 7.11 Face-centered cube (FCD with
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o =1.0) for k= 3.

X3 xp

x]

In the case of a cuboidal design region, the face-centered
cube is an effective second-order design. When one
encounters what is a natural cuboidal region, it is
important that the points be pushed to the extreme of the
experimental region. This results in the most attractive
distribution of N Var[ﬁ'(x)]/cr2 . It is important for the region
to be covered in a symmetric fashion. The face-centered
cube accomplishes this. Of course, the design is not
rotatable. However, rotatability or near-rotatability is not
an important priority when the region of interest is clearly
cuboidal. It is a useful option that comes from spherical or
near-spherical designs; these designs are certainly
appropriate for spherical regions of interest or regions of
operability, but are less appropriate with cuboidal regions.

The face-centered cube is a useful design for any number
of design variables. Again, a resolution V fraction is used
for the factorial portion. The recommendation for center
runs is quite different from that of the spherical designs. In
the case of spherical designs, center runs are a necessity in
order to achieve a reasonable distribution of N Var[¥
(x)]/crz, with ne = 3 — 5 giving good results. In the cuboidal
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case (i.e., with a = 1.0), one or two center runs are
sufficient to produce reasonable stability of N Var[.*(x)]/o‘2 .
The sensitivity of N Var[.f'(x)]/o'2 to the number of center
runs for the spherical design is seen in Figs. 7.8 and 7.9.
The insensitivity to center runs for the face-centered cube
is illustrated in Figs. 7.12, 7.13, and 7.14. Contours of
values of N Var[.f'(x)]/a2 are given for nc =0, nc =1, and nc
= 2 for the k = 3 face-centered cube when x3 is fixed at 0.
It is clear that many center runs are not needed to stabilize
the prediction variance. In fact, one center run is quite
sufficient for stability, though n. = 2 is slightly preferable.
No further improvement is achieved beyond n. = 2.

Figure 7.12 Scaled prediction variance N Var[¥(x) ]/o‘2 to=
1.0, k = 3, nc = 0 with x2 = 0. (a) Response surface. (b)
Contour plot.
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Figure 7.13 Scaled prediction variance N Var[¥(x) ]/o‘2 fo=
1.0, k = 3, nc = 1 with x3 = 0. (a) Response surface. (b)
Contour plot.
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Figure 7.14 Scaled prediction variance N Var[¥(x) ]/02: o=
1.0, k = 3, nc = 2 with x3 = 0. (a) Response surface. (b)
Contour plot.
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Though much has been said here about the effect of center
runs on the scaled prediction variance N Var[.f'(x)]/a2 for
both spherical and cuboidal designs, it should be noted that
multiple center runs or replication of exterior points may,
in many cases, is desirable in order to have a sufficient
number of degrees of freedom for pure error.

Other Three-Level Designs on Cubes There are other
approaches to obtaining three-level designs on cubes for
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fitting the second-order model. While the complete 3k
requires too many runs, an experimenter can either use a
suitable  fraction of the 3f or construct a
computer-generated design based on some alphabetic
optimality criterion (see Chapter 8). See Hoke (1974) and
Mitchell and Bayne (1978) for examples of these
approaches. Recently, Morris (2000) has proposed a new
class of second-order three level designs called augmented
pairs designs, which are based on minimax and maximin
distance criteria. Li et al. (2003) and Park et al. (2005)
consider various designs on the cuboidal region for
different numbers of factors, with graphical summaries to
compare their prediction quality.

7.4.6 When is the Design Region Spherical?

As we have indicated in the previous section, the cuboidal
CCD is appropriate when a cuboidal region of interest and
cuboidal region of operability are apparent to the
practitioner. Clearly the problem may suggest ranges on
the factors which may define the corners where the
factorial points should reside. Then the question regarding
the design region should hinge on whether axial points
outside the ranges are scientifically permissible and should
be included in the region of interest. For example, consider
Fig. 7.15. The shaded area forms the cube, but after some
deliberation it is determined not only that the nonshaded
area is within the region of operability but also that the
researcher is interested in predicting response in the
unshaded area as well as the shaded area. The region of
interest is a sphere circumscribed around a cube. A
spherical design (CCD with a = +k) is certainly
appropriate.
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Figure 7.15 Spherical region (sphere circumscribed).
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A second situation can occur, very much like that in Fig.
7.16. Ranges are chosen on design variable, but as the
planning of the experiment evolves, it is determined that
several (and perhaps all) of the vertices on the cube
defined by the ranges are not scientifically permissible;
that is, they are outside both regions of operability, and the
region of interest (e.g., in the case of a food product, high
levels of flour, shortening, and baking time) is known to
produce an unacceptable product. As a result, the corners,
shaded in Fig. 7.16, are shaved off, and the design region
is formed from the unshaded region. Here, the sphere is
inscribed inside the cuboidal region formed from the
selection of ranges.

Figure 7.16 Spherical region (sphere inscribed).
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Sometimes the region of operability and the region of
interest are not identical. In the case where it is possible to
operate slightly outside of a cuboidal region, but primary
interest lies in the cube, it is possible to adjust the axial
distance of the CCD to take advantage of this. Li et al.
(2008) show how “practical a values” (first suggested by
Oehlert and Whitcomb 2002) can be selected to
substantially improve prediction performance in the
cuboidal region. These practical a values are larger than 1,
and hence fall outside of the region of interest.

For larger numbers of factors, another class of potential
designs to consider are called minimum-run resolution
(MinRes) V designs. They are equireplicated two-level
irregular fractions of resolution V. An equireplicated
design is one in which each factor has an equal number of
high and low levels. For a complete description of the
construction of these designs, see Oehlert and Whitcomb
(2002).

It is important to understand that in many situations the
region of interest (or perhaps even the region of
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operability) is not clear cut. It is often difficult enough to
get a commitment from a scientist or engineer on what are
the interesting and permissible ranges of the factors.
Mistakes are often made, and adjustments adopted in
future experiments. Confusion regarding type of design
should never be an excuse for not using designed
experiments. Using a spherical region when it is more
naturally cuboidal, for example, will still provide
important information that will, among other things, lead
to more educated selection of regions for future
experiments.

7.4.7 Summary Statements Regarding CCD

The CCD is an efficient design that is ideal for sequential
experimentation and allows a reasonable amount of
information for testing lack of fit while not involving an
unusually large number of design points. The design
accommodates a spherical region with five levels of each
factor and a choice of a = v*. The design can be a
three-level design to accommodate a cuboidal region with
the choice of a = +'1.0. In the spherical case, the design is
either rotatable or very near rotatable, and three to five
center runs should be used. In the cuboidal case, one or
two center runs will suffice. Though the cuboidal and
spherical designs are natural choices depending on the
region of interest, the reader should not get the impression
that the use of the CCD must be confined to those choices
of a. There will be practical situations for which a = 1.0 or
o = vk cannot be used. The CCD should not be ruled out in
these situations.
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The natural competitor for the CCD is, of course the
three-level factorial, that is, the 3% factorial. The 37 design
is, in fact, the face-centered cube and is thus a CCD. But
when k becomes moderately large, the 3% factorial design
involves an excessive number of design points. In the case
of three factors and a natural cuboidal region, the 33
factorial is an efficient design if the researcher can afford
to use the required 27 design points. However for k > 3
the number of design points for the 3k s usually
considered 1mpractlcable for most applications. A
comparison of the 33 with the face-centered cube and other
designs via the consideration of prediction variance is
given in Chapter 8.

7.4.8 The Box—Behnken Design

Box and Behnken (1960) developed a family of efficient
three-level designs for fitting second-order response
surfaces. The methodology for design construction is
interesting and quite creative. The class of designs is based
on the construction of balanced incomplete block
designs. For example, a balanced incomplete block design
with three treatments and three blocks is given by

Treatment

1 2 3
Block 1 X X
Block 2 X X
Block 3 X X

The pairing together of treatments 1 and 2 symbolically
implies, in the response surface setting, that design
variables x1 and x2 are paired together in a 22 factorial
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(scaling £1) while x3 remains fixed at the center (x3 = 0).
The same applies for blocks 2 and 3, with a 22 factorial
being represented by each pair of treatments while the
third factor remains fixed at 0. As a result, the £ = 3
Box—Behnken design is given by

X X3 X3
(-1 -1 07
-1 I 0

1 =1 0

1 I 0
-1 0 -1
-1 0 I
D= 1 0 -1
1 0 I

¢ -1 -l

0 -1 I

0 1 -1

0 I I

0 0 0

The last row in the design matrix implies a vector of center
runs. In the case of & = 4 the same methodology applies.
Each pair of factors are linked in a 22 factorial. The design
matrix is given by
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D= 0 -1 -1 0
0 -1 1 0
0 1 -1 0
0 1 I 0

0 -1 ¢ -
6 =L 0 1}
0 1 0 -1
0 1 0 1
0 0 -1 -1
0 0 -1 |
0 0 1 -1
0o 0 1 1
71 L O 0 0 0]

Note that the Box—Behnken design (BBD) is quite
comparable in number of design points to the CCD for k =
3 and k = 4. (There is no BBD for £ = 2.) For k = 3, the
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CCD contains 14 + n. runs while the BBD contains 12 +
ne runs. For k£ =4 the CCD and BBD both contain 24 + 5.
design points. For £ = 5 we have the following 40 + n¢
experimental runs:

X X2 X3 X Xs

41 +1 0 0 07

+1 0 +£1 0 0

+1 0 0 +1 ]

+1 0 0 0 +1

0 +1 +1 0 0

D=| 0 +1 0 +1 0
0 +1 0 0 +1

0 0 +1 +1 0

0 0 +1 0 +1

0 0 0 41 +1

(7.17) .0 0 0 0 0]

The CCD for k = 5 involves 26 + ne runs when the
fraction is used in the factorial portion. When the full
factorial is used, the CCD makes use of 42 + n¢ runs. Each
row in the BBD symbolizes four design points with (1,
+1) representing a 22 factorial.

For k = 6 the construction of the design is based on
partially balanced incomplete block designs. Thus, each
treatment does not occur with every other treatment the
same number of times. In the Box—Behnken construction,
this means that each factor does not occur in a two-level
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factorial structure the same number of times with every
factor. The design matrix, involving N = 48 + n¢ runs, is
given by

Xy X3 X3 X4 X5 X
"4+1 +1 0 +1 0 07

0 +1 +1 0 +1 ©

0 0 +1 +1 0 +1

D=|+1 0 O +1 +1 0

0 +1 0 0 +1 =+1

+1 0 +1 0 0 +1
(7.18) 0 0 0 0 0 0]

The CCD requires 44 + nc runs when the one-half fraction
is used in the factorial portion.

Unlike the £ = 3, 4, and 5 cases, the factorial structures in
the BBD for k = 6 are 2° factorials involving three factors.
Thus each row of the above matrix involves eight design
points.

For k = 7, the factorial structures again involve

combinations of three design factors. The N = 56 + nc
design runs are given by the following design matrix:
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X X7 X3 X4 Xs X X7
- 0 0 0 +1 +1 1 07
+1 0 0 0 0 +1 +1
g 41 0 0 +1 0 +1
o +1 +1 0 +1 0 0 0
0 0 +1 +1 0 0 +1
+1 0 +1 0 #1 0 0
0 1 #1 0 0 +1 0
L 0 0 0 0 0 0 0._

Characteristics of the Box—Behnken Design In many
scientific studies that require RSM, researchers are
inclined to require three evenly spaced levels. Thus, the
Box—Behnken design is an efficient option and indeed an
important alternative to the central composite design. As
we can observe from the sample sizes, there is sufficient
information available for testing lack of fit. For example,
for k£ = 6 the use of, say, nc = 5 would allow four degrees
of freedom for pure error and 21 degrees of freedom for
lack of fit. The Box—Behnken design does not substantially
deviate from rotatability, and, in fact, for k=4 and k=7
the design is exactly rotatable. Verification of rotatability
in both cases should be quite simple for the reader. From
the design matrix in Equation 7.16, it is easy to see that all
odd moments are zero. This is a result of the prominence
of the sets of 22 factorial arrays. For the second condition
required for rotatability, note from Equation 7.16 that (iiii)
= 3 and (iijj) = %, for i # j. As a result, (iiii)/(iijj) = 3. An
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investigation of Equation 7.19 suggests that the rotatability
conditions hold for the k=7 BBD as well.

Another important characteristic of the BBD is that it is a
spherical design. Note, for example, in the £ = 3 case that
all of the points are so-called “edge points” (i.e., points
that are on the edges of the cube); in this case, all edge
points are a distance +2 from the design center. There are
no factorial points or face points. Figure 7.17 displays the
BBD for k& = 3. Contrast this design to that depicted in Fig.
7.11 with the face-centered cube. The latter displays face
points and factorial points that are not the same distance
from the design center, though they all reside on the cube
and provide good coverage of the cube. The BBD involves
all edge points, but the entire cube is not covered. In fact,
there are no points on the corner of the cube or even a
distance +/3 from the design center. The analyst should not
view the lack of coverage of the cube as a reason not to use
the BBD. It is not meant to be a cuboidal design. However,
the use of the BBD should be confined to situations in
which one is not interested in predicting response at the
extremes; that is, at the corners of the cube. A quick
inspection of the design matrices in Equations 7.16-7.19
further underscores the fact that the BBD is not a cuboidal
design. For example, for k = 7, the design points are at a
radius of +/3, which is considerably smaller than the radius
v/7 of the corner of the cube. If three levels are required
and coverage of the cube is necessary, one should use a
face-centered cube rather than the BBD.

Figure 7.17 The k= 3 BBD with a center point.
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The spherical nature of the BBD, combined with the fact
that the designs are rotatable or near-rotatable, suggests
that ample center runs should be used. In fact, for k=4 and
7, center runs are necessary to avoid singularity. The use
of three to five center runs is recommended for the BBD.

Example 7.5 A BBD for Optimizing Viscosity One step
in the production of a particular polyamide resin is the
addition of amines. It was felt that the manner of addition
has a profound effect on the molecular weight distribution
of the resin. Three variables are thought to play a major
role: temperature at the time of addition (x1,°C), agitation
(x2, rpm), and rate of addition (x3, min_l). Because it was
difficult to physically set the levels of addition and
agitation, three levels were chosen and a BBD was used.
The viscosity of the resin was recorded as an indirect
measure of molecular weight. The data, including natural
levels, design, and response values, are shown in Table
7.4. Figure 7.18 shows an analysis using the package JMP.
Three contour plots of constant viscosity (shown in Fig.
7.19) are given in order to illustrate what combination of
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the factors produce high- and low-molecular-weight resins.
Agitation was fixed at the low, medium, and high levels. It
is clear that high-molecular-weight resins are produced
with low values of agitation, whereas
low-molecular-weight resins are potentially available when
one uses high values of agitation. In fact, the extremes of
low rates, low temperature, and high agitation produces
low-molecular-weight resins, whereas low agitation, low
temperature, and high rate results in
high-molecular-weight resins.

TABLE 7.4 Data for Resin Viscosity in Example 7.5
Using Box—Behnken Design

Level Temperature Agiiation Rate Xy Az Ty
High 200 10.0 25 + 1 +1 f 1
Center 175 7.5 20 0 (1] 0
Low 150 5.0 15 =1 =1 =]
Standard Order : X Xy ¥
1 -1 | 0 53
2 + 1 l 0 38
3 =] I 0 59
4 1 | 0 56
5 1 0 1 o4
6 +1 ] -1 45
e =1 0 1 35
g + 1 0 + 1 60
Q 1] — o | 59
10 0 £ 1 -1 04
11 0 1 + 1 53
12 0 +1 +1 65
13 1] (0 1] 5]
14 0 0 0 549
15 0 ] 0 62

Figure 7.18 JMP analysis of resin viscosity data of
Example 7.5.
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Figure 7.19 Contour plots of viscosity from Example 7.5.
(a) Addition rate x3 = 1. (b) Addition rate x3 = 0. (¢)
Addition rate x3 = —1.
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7.4.9 Other Spherical RSM Designs; Equiradial Designs

There are some special and interesting two-factor designs
that serve as alternatives to the central composite design.
They are the class of equiradial designs, beginning with a
pentagon (five equally spaced points on a circle); the
pentagon, hexagon, heptagon, and so on, do require center
runs because they are designs on a common sphere and, as
we shall show, are rotatable.

The design matrix for the equiradial design can be written

(7.20)

X1 X2
[ocos (B4 2mu/m), psin(@42m/m),u=01,2,....n =1
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where p is the design radius. Here, n1 is the number of
points on the sphere, say, 5, 6, 7, 8,.... In addition to the n]
points indicated by Equation 7.20, we will assume nc
center runs. The value that one chooses for p merely
determines the nature of the scaling. It turns out that the
choice of 8 has no effect on X'X; that is, it has no effect on
the design as far as the variance structure is concerned. As
a result, all of the equiradial second-order designs (i.e.,
using n1 = 5, 6, 7, 8,....) are such that the matrix X'X is
invariant to design rotation.

A very useful and interesting special case is the
hexagon—that is, six equally spaced points on a circle.
Thus n1 = 6; setting § =0 and p = 1, we have the following
design matrix using n¢ = 3:

X1 X2
B 0 7
0.5 ~0.75

—0.5 0.75

-1 0
—0.5 —+/0.75
D= :
0.5 —v0.75
0 0
0 0
0 0

(7.21) z 4
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Note that x1 is at five levels and x? is at three levels for this
particular rotation. Figure 7.20 shows the design. Note the
six evenly spaced points.

Figure 7.20 Design points for the hexagon.

3 2
A*e
p=1
4 1 -
7.8,9 %
5 &

It is of interest to consider the important design moments
for the hexagon—that is, the moments through order four.
From Equation 7.21 we have, for the hexagon,

[l = [if] = liij] = [iii) = [ifijl =0, i # j= 1,2 (odd moments zero)

[iiii] = %3, liijf] = %{;. i#j=1,2

Because all design moments through order four are zero
and [iiii]/[iijj] = 3, the hexagon is indeed rotatable. The
reader should also note that these conditions are
independent of p and 6.

It turns out that all equiradial designs for n1 > 5 are
rotatable. Appendix 2 shows a development of the moment
conditions. The relevant moments for the equiradial
designs are as follows:
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1. All odd moments through order four are zero.
2. The key even moments are

U o T
= m— = 1,2
[ii] TR I

—
—
=
=p3
L™

—

Frad

Of course, these conditions imply that all equiradial

designs for n1 > 5 are rotatable.

Special Case of The Equiradial Design—The CCD for k
= 2 For n1 = 8, the equiradial design is the octagon. As
one might expect, the use of Equation 7.20 for ni

produces (using p = v'2)

Xl A2
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which, of course, is the k£ = 2 rotatable CCD.

Summary Comments on the Equiradial Designs The
equiradial designs are an interesting family of designs that
enjoy some usage in the case where only two design
variables are involved. One should use the CCD (the
octagon) whenever possible. However, there are situations
when cost constraints do not allow the use of the octagon.
The pentagon (plus center runs) is a saturated design and
thus should not be used unless absolutely necessary. The
hexagon is a nice design that allows one degree of freedom
for lack of fit. The heptagon also has its place in some
applications. The octagon, hexagon, and nonagon (nine
equally spaced points) possess the added property of
orthogonal blocking, which will be discussed in the next
section.

We have already indicated that the equiradial designs
require the use of center runs. Reasonable stability of N
Var[?(x)]/o‘2 is achieved with two to four center runs.

7.4.10 Orthogonal Blocking in Second-Order Designs

In many RSM situations the study is too large to allow all
runs to be made under homogeneous conditions. As a
result, it is important and interesting to consider
second-order designs that facilitate blocking—that is, the
inclusion of block effects. It is important that the
assignment of the design points to blocks be done so as to
minimize the effect on the model coefficients. The
property of the experimental design that we seek is that of
orthogonal blocking. To say that a design admits
orthogonal blocking implies that the block effects in the
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model are orthogonal to model coefficients. A simple
first-order example serves as an illustration. Consider a 2?
factorial to be used for the fitting of a first-order model.
Suppose we use I = 4B as the defining relation to form two
one-half fractions, which are placed in separate blocks. As
a result, we have the model

(7.22) ¥i = Bo + Bixan + Baxip + 8120 + 8222 + &

where 01 and 02 are block effect coefficients. Here z;1 and
zj2 are dummy or indicator variables; that is, zj1 = 1 if y; is
in block 1 and z;1 = 0 otherwise. The variable zip = 1 if y; is
in block 2 and z;2 = 0 otherwise. The X matrix is then

X X2 Fd | 29

} Block 1

(7.23) I . 5=l 0 I }Blsm:ki

Note that block 1 contains the design points {(1), ab},
whereas block 2 contains {a, b}. Now, in Equation 7.23,
the matrix X is singular; the last two columns add to the
first column. This underscores the fact that the parameters
01 and 02 are not estimable. As a result, one of the
indicator variables should not be included. We shall
eliminate the z2 column and center zi. As a result, the
model Equation 7.22 can be rewritten

(7.24) Yi = Bo + Bixin + Baxiz + 81z — 21) + &
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and thus X is written

B B &
1 =1 =1 1/2
I | I 1/2 }Bluck 1
K= | ssressvasscnnnanass
1 -1 1 =172
(7.25) 1 1 =1 =1/3] }B‘D‘-‘k ;

Now, the concept of orthogonal blocking is nicely
illustrated through the use of Equations 7.24 and 7.25. In
this example the block effect is orthogonal to the
regression coefficients if

[::]JI . ...:_,] }-r|,l.- = ﬂ

e

4
Z f-:ul = El }-‘-'EH =0

(726) =l

Thus, as the reader might have expected, the assignment of
design points to blocks in this example provides an array
in which the block factor has no effect on the regression
coefficients. In fact, if one considers the least squares
estimator b = (X'X)71X'y, the regression coefficients B,
1, and p2 are estimated as if the blocks were not in the
experiment. The variances of the estimates of f1 and f2 in
this variance optimal design are not changed in the
presence of blocks.
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The above example serves two purposes. First, it
reinforces the material in Chapter 3 regarding blocking in
two-level designs. In the above illustration, the xix2
interaction is confounded with blocks. If one augments
the matrix X with the xix2 column, this confounding
becomes evident. The linear effects, or linear coefficients,
are independent of block effects, and this is reinforced by
the fact that Equations 7.26 hold. Secondly, the example
allows us a foundation for setting up conditions for
orthogonal blocking for second-order designs.

Though we now move on to the second-order case, there
are several exercises at the end of this chapter that deal
with  blocking  for  first-order = models and
first-order-plus-interaction models.

Conditions for Orthogonal Blocking in Second-Order
Designs Consider a second-order model with k& design
variables and b blocks. The model, then, can be written as

(7.27)

k & k
Yu = .SI] ¥ Z JBI-rru' -+ Z .Ba-‘f;; T ZZ Ba‘f'tf“"trﬂ'
i=l =1

J."_,l.—z

b
+ z: ‘a'm{.:mu —Zm) H= 1.2,....N

=]

Here we have used the indicator variable again, with zp,, =
1 if the uth observation is in the mth block. We have
centered the indicator variables as in our earlier example.
In addition, we have included all of the block effects in the
model even though it results in a singular model. This will
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not affect the conditions for orthogonal blocking. From
Equation 7.27, block effects are orthogonal to regression
coefficients if

(7.28)

N
Z.x‘r.,-f:_um -Zm)=0, i=12,....k,b, m=12,....b
=]

(7.29)
N
Z'r“frﬂj[:ﬂ-’” - E.l".} — U'.. f: ;& _.'.. m = I. 2 ..... !J'

=l

(7.30)
N
Z-}tﬁjf:um_im}:ﬂ. = ].2.---“‘;“ m= 1.2.....1’?

In what follows we will assume that we are dealing with
designs in which [/] =0 and [if] =0 forall i # j, i,j = 1,
2,..., k. That is, the first moments and mixed second
moments are all zero. Recall that these conditions hold for
all central composite designs, Box—Behnken designs, and
two-level factorial designs. Now, if we consider Equations
7.28 and 7.29 for a specific value of m (i.e., for a specific
block), we have

(7.31)
Y. x= D xamg=0, Li=12uk i£]
block i block e

But, of course, Equation 7.30 must hold for all blocks.
Equation 7.31 implies, then, that in each block the first and
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second mixed moments are zero, implying that each block
must itself be a first-order orthogonal design (condition 1).

Now consider Equatlon 7. 30 For say the mth block, this
equation implies that 3t Faitum = Zm Loy ¥ for i = 1, 2,.

k. The quantity I, is the fractlon of the total runs that are
in the mth block. As a result, Equation 7.30 implies that for
each design variable, the sum of squares contribution from
each block is proportional to the block size (condition 2).

An orthogonal block design for a second order model
requires the following conditions:

1. Each block must consist of a first-order orthogonal
design

2. For each design variable, the sum of squares
contribution from each block is proportional to the size of
the block.

Designs that fulfill conditions 1 and 2 above are not
difficult to find. Once again, the central composite design
is prominent in that respect due to flexibility involved in
the choice of a and nc.

Orthogonal Blocking in the CCD It may be instructive to
discuss an example CCD that does block orthogonally.
Consider a k£ = 2 rotatable CCD in two blocks with two
center points per block. Consider the assignment of design
points to blocks as follows:
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Block | Block 2

X Xa x Xa

V2 0
V2 0
| 0 V2
[ 0 V2
0 0 0 0
0 0 0 0

The above design does block orthogonally. Each block is a
first-order orthogonal design; the first moments and mixed
second moments are both zero for the design in each block,
and thus condition 1 holds. Also, the sum of squares for
each design variable is 4.0, and the block sizes are equal.
Hence condition 2 regarding the proportionality
relationship also holds. In this example, notice that any
even number of center runs with half assigned to block 1
and the other half to block 2 results in orthogonal blocking.
In the example, the factorial design points are assigned to
one block and the axial points to the other block. In this
case, condition 1 will hold automatically. The values for o
and n. are chosen to achieve condition 2.

As a second example let us consider, again, a CCD but

assume k£ = 3 and suppose that three blocks are required.
The design is as follows:
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Block 1 Block 2 Block 3

X3 X3 Xj X3 X1

- ¥ 0
¥ 0
0 - (¥
0 Iy

] ] 0 ] ] i 0 (} £

] ] 0 ] ] |} 0 (} €

0 (} ]

0 (1 ]

0 } ]

Here we have divided the 2° = 8 factorial points into two
blocks with / = ABC as the defining relation. The reader
can again verify that condition 1 for orthogonal blocking
holds. We can solve for a that allows condition 2 to hold:

which result in & = +/3 As a result, we have a spherical
CCD with a = +3 (the recommended choice for a in
Section 7.4.3), which blocks orthogonally in three blocks.

As the reader studies these two examples and the use of
conditions 1 and 2, two principles obviously emerge:
When one requires two blocks, there should be a factorial
block and an axial block. In the case of three blocks, the
factorial portion is divided into two blocks and the axial
portion remains a single block. The partitioning into blocks
of the factorial portion must result in a guaranteed
orthogonality between blocks and the two factor
interaction terms and, of course, orthogonality between
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blocks and linear coefficients. The numbers of blocks with
the CCD are 2, 3, 5,9, 17,.... There is never a subdivision
of the axial block. The axial points are always a single
block. Table 7.5 provides more details of the blocking
options for the CCD with different numbers of factors. The
flexibility in the choice of center runs and the value of a
allows us to achieve orthogonal blocking or
near-orthogonal blocking in many situations. At this point,
we will deal briefly in the special case of two blocks to
give the reader further insight into the choice of a and the
assignment of center runs to blocks.

TABLE 7.5 Design Details for Some Useful Central
Composite Designs that Block Orthogonally

k 2 3 1 5 S¢mp) 6 6(rmp T 7 (3 rep)

Total # of blocks 2 3y 5 5 2 9 3 17 9

Total # of points in design 14 20 30 54 33 90 54 164 a0

Factorial tock{s)

F; # of points in factorial 4 8 16 32 16 64 3z 128 64
portion

# of blocks in factorial portion | 2 2 4 | ¥ 2 16 ]

# points in each block from 4 4 8 8 16 8 16 ] §
factoral

Fy: Number of added center 3 2 2 2 6 | 4 l I
points per block

Total # of points per block 7 6 10 10 22 9 20 9 9

Axial block

2 k: # of axial poinis 4 6 g 10 10 12 12 14 14

ay: # of added center points 3 2 2 4 | t 2 11 4

Total # of points in block 7 i 10 14 11 18 14 25 18

Source: G. E. P. Box and ). S, Hunter (1957).

Orthogonal Blocking in Two Blocks with the CCD
Suppose we denote by F the number of center runs in the
factorial block, and by ao the number of center runs in the
axial block. Condition 1 holds when we assign the factorial
and axial points as the two blocks. Condition 2 holds if
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)
X
u.\.zhl. Y 2Zk+ay Fiq. i
F‘_'_ FI“ S e I

']
iy

I}

(7.32) fac.bi.

where, of course, F = 2k or F = 2F1 (resolution V
fraction). The value for a that results in orthogonal
blocking is developed from Equation 7.32. From Equation
7.32 we have

)
2 2k 4+ ay

F F+F

and the solution for « is given by

[F(2k + ay)

O = ————

General Recommendations for Blocking with the CCD
There are many instances in which the practitioner using
RSM can achieve orthogonal blocking and still have
designs that contain design parameters near those
recommended in Section 7.4.3 when the region is
spherical. We have already seen this to be the case with the
k=2 and k=3 CCD. A value of a = +/2 for the case of two
blocks produces orthogonal blocking as long as center runs
are evenly divided between the two blocks.

The case of the cuboidal region disserves special attention.
In order to achieve orthogonal blocking for (say) a
face-centered cube, one must resort to badly
disproportionate block sizes, which may often be a
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problem. For example, the following face-centered cube
blocks orthogonally for k= 2:

X A7

-1 —1-

Block 1

ccccccccc

s Block 2

For three variables, if one requires say three blocks, the
two factorial blocks require eight center runs apiece if one
requires that o = 1.0 in a cuboidal region. As a result, when
ranges for the experiment seem to suggest the need for a
cuboidal design region and orthogonal blocking is
required, one might need to consider a spherical design in
order that blocking be better accommodated.

In the case of spherical designs, many practical designs
exist. Table 7.5 shows a working table of useful
second-order designs that block orthogonally. For designs
in which *} rep” is indicated, the factorial portion is a
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one-half fraction of the 2. In all cases with multiple
blocks from the factorial portion, defining contrasts are
chosen so that three-factor interactions or higher are
confounded with blocks.

Blocking with the Box—Behnken Design The flexibility of
the CCD makes it an attractive choice when blocking is
required in an RSM analysis. However, there are other
second-order designs that do block orthogonally. Included
among these is the class of BBDs for £k = 4 and k£ = 5.
Consider first the design matrix in Equation 7.16 for the k&
= 4 BBD. Using +1 notation to indicate the 22 factorial
structure among pairs of variables, we have

X; X X3 X4
~+1 41 0 0-
0 0 +1 +1 s Block |
0 0 0 0
+1 0 0 +1
D= 0 +1 +1 0 Block 2
0 0 0 0
+1 0 +1 0
0 +1 0 +1 » Block 3
L 0 0 0 0.

The requirement on the vectors of center runs is that each
block contain the same number of center runs. This, of
course, results in equal block sizes, a requirement that
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results from the equal sum of squares for each factor in
each block.

The & = 5 BBD blocks orthogonally in two blocks.
Consider the design of Equation 7.17. This design can be
partitioned into two parts so that conditions for orthogonal
blocking hold. Again, the center runs should be even in
number, and half of them should be assigned to each
block. The reader can easily verify that conditions 1 and 2
for orthogonal blocking both hold (see Exercise 7.28).

Orthogonal Blocking with Equiradial Designs It has
already been established that the CCD for k =2 and a = v/2
involves eight points equally spaced on a circle—that is,
an octagon. Much has already been said about orthogonal
blocking with this design. The use of an even value for n,
and n¢/2 in the factorial block and n./2 assigned to the
axial block results in a very efficient design for k£ = 2 that
blocks orthogonality. But other equiradial designs block
orthogonally too. For example, consider the hexagon.
Figure 7.20 shows the hexagonal design. The hexagon is a
combination of two equilateral triangles. For example, in
the figure, points 1, 3, and 5 form one equilateral triangle
and points 2, 4, and 6 form another. The reader should
recall that an equilateral triangle is a simplex design that is
first-order orthogonal; thus if one assigns points 1, 3, and 5
to one block and points 2, 4, and 6 to a second block,
condition 1 for orthogonal blocking will hold. For
condition 2 recall the design matrix of the simplex from
Equation 7.21. The order of the points are in the matrix are
1 through 6. Note
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E . E 2 S .
Xui = Ayi = IS = ]“"

Block | block 2

and thus the assignment of points 1, 3, and 5 to block 1 and
2, 4, and 6 to block 2 with n. even and n./2 assigned to
each block will result in a design that blocks orthogonally
in two blocks.

The nonagon (nine equally spaced points on a circle)
blocks orthogonally in three blocks. The nonagon
combines three equilateral triangles, and thus ne > 3, nc is
divisible by three, and n./3 assigned to each block gives a
design that blocks orthogonally. Actually, there are other
equiradial designs that block orthogonally, but the plans
described here are the more practical ones.

Form of Analysis with a Blocked Experiment The first
and foremost topic of discussion in this area should be the
model. It is important to understand that we are assuming
that blocks enter the model as additive effects. This was
outlined in the model form in Equation 7.27. It is assumed
that there is no interaction between blocks and other model
terms. This concept should be thoroughly discussed among
the practitioners involved. If it is clear that blocks interact
with the factors, then it means that the analysis should
involve the fitting of a separate response surface for each
block. This often results in difficulty regarding
interpretation of results. Another important issue centers
around what is truly meant by orthogonal blocking. As we
indicated earlier, orthogonal means that block effects are
orthogonal to model coefficients. However, the final fitted
model will obviously include estimates of block effects.
The fitted model is not at all unlike an analysis of
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covariance (ANCOVA) model where blocks play the role
of treatments and one is assuming that for each block the
model coefficients are the same (quite like assuming equal
slopes in ANCOVA). But, of course, the presence of block
effects implies that we have multiple intercepts, one for
each block. Thus, for, say, three blocks we have

Volock 1 = Boy +(x)
Vblock2 = #:5:1.1 -+ f(x)

.{'hluxk . ﬁ[jj +.ﬂ.r3ﬂ

where f(x) is a second-order function containing linear
quadratic, and interaction terms, all of which are the same
for each block. Now, the coefficients (apart from the
intercepts) can be computed as if there were no blocking.
As a result, the stationary point, canonical analysis, and
ridge analysis path are computed by ignoring blocking,
because none of these computations involves the
intercepts. Then for the purpose of computing the
predicted response, separate intercepts are merely found
from the overall intercept and block effects. One must
understand that the essence of the RSM analysis is
intended to be a description of the system in spite of
blocking; and blocks are assumed to have no effect on the
nature and shape of the response surface. The following
example should be beneficial.

Example 7.6 The Analysis of a Blocked CCD In a
chemical process it is important to fit a response surface
and find conditions on time (x1) and temperature (x2) that
give a high yield. It is important that a yield of at least
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80% be achieved. A list of natural and coded variables
appears in Table 7.6. The design requires 14 experimental
runs. However, two batches of raw materials must be used,
so seven experimental runs were made for each batch. The
experiment was run in two blocks, and the order of the
runs was randomized in each block. The factorial runs plus
three center runs were made in one block (batch), and the
axial runs plus three center runs were made in the second
block (batch). The resulting design does block
orthogonally.

TABLE 7.6 Natural and Design Levels for Chemical
Reaction Experiment

Natural Vanables Design Umits
Time Temperature T X Block Yield Response
80 170 -1 -] | 80.5
RO 180 1 I | 81.5
90 170 1 ol I 82.0
o0 180 | [ | 835
BS 175 0 0 | 839
85 175 1] ] | 34.3
B5 175 0 0 | 240
B5 175 0 0 2 9.7
85 175 0 0 2 79.8
B5 175 0 0 2 79.5
92.070 175 1.414 0 2 78.4
T7.930 175 —1.414 ] 2 75.6
B5 182.07 0 1414 2 78.5
B5 167.93 0 - 1.414 2 77.0

A second-order analysis was performed. Table 7.7 shows
the analysis produced by Design-Expert, and Fig. 7.21 is a
contour plot in the coded units. The stationary point is a
maximum. The fitted model is

$ = 81.87 + 0.93x; +0.58%, — 1.31x,° — 0.93x,° + 0.13x,x2
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TABLE 7.7 Design-Expert Analysis of the Blocked
CCD in Example 7.6 Using Design-Expert
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Figure 7.21 Contour plot of yield for Example 7.6.
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Note that the P-values indicate that one model term (x1x2)
is insignificant. The data were analyzed as if no blocking
had been done. This renders coefficients (and canonical
analysis, if one is performed) correct, but standard errors
are inflated because of variability due to blocks. The
appropriate location of the maximum response is given by

X1 = 0372
X2, = 0.335

in our design units. The predicted value at the stationary
point is 82.136.

Further examination of the Design-Expert output can

determine the block effects. Note that while the overall
intercept is 81.87, the estimates of block effects are 2.23
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and —2.23 for block 1 and block 2, respectively. As a
result, the two separate intercepts are 81.867 +2.23 =
84.097 and 79.637, respectively.

EXERCISES

7.1 Consider the design of an experiment to fit the
first-order response model

y= B+ ﬁt.ﬁ + ,83.1'3 -+ ﬁ}.l’j + Bixs + ﬁ_q.l'_q +&

The design used is a 2°72 fractional factorial with defining
relations

I= f'lB{T = X X243

f — C,DE = X345

The factors are quantitative, and thus we use the notation
X1, X2, x3,... rather than 4, B, C, ....

(a) Construct the matrix X for the first-order model using
the design described above.

(b) Is the design orthogonal? Explain why or why not.

(c) Is the design a variance-optimal design—that is, one
that results in minimum values of N Var(bi)]/O'2 . Note that
the weight N is used in order to take sample size into
account.

7.2 Consider the situation of Exercise 7.1. Suppose we use

four center runs to augment the 252 design constructed.
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(a) What is the advantage of using the center runs?

(b) Will the resulting 12-run design be orthogonal?
Explain.

(c) Will the resulting design be variance-optimal?

(d) If your answer to (c) is no, give a 12-run first-order
design with values of Var(bi)/O'2 smaller than the 12-run
design with center runs.

(e) Give the variances of regression coefficients for both
designs—that is, the 2ii* with four center runs and your
design in (d).

7.3 Consider again the design constructed in Exercise 7.1.
Suppose the fitted model is first-order and the analysis
reveals significant lack of fit and a large effect for the
interaction x1x4 = x2x5. As a result, a second phase would
suggest an augmentation of the design. Suppose the second
phase is a fold-over of the design in Exercise 7.1. Is the
resulting design orthogonal and thus variance-optimal for
the model

5 5
Yu = -BI] X5 Z IBI-tlu' T Z Z B.l‘j-rm'xuj T Eys
=l i<j=2
=12 3. 16

Explain why or why not.
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7.4 Consider the L7 design (in coded form) discussed in
Exercise 6.12. Suppose we consider this design for fitting
the first-order model

3
J'In'l' = B[] + Z ]Bj-tm' + E.’r- “I —_ I. 2. R 2?
1=l

(a) Is the design first-order orthogonal? Explain.
(b) Is the design variance-optimal? Explain.

(¢) Compare the N Var(bi)/a2 using the L27 with a 23,
Compare with a Plackett- Burman 12-run design.
Compare with a Plackett—-Burman 28-run design.

(d) Your answer to (c) above should be that the
Plackett-Burman 12-run design and 23 design for a
first-order model are variance-equivalent on a per
observation basis. What are extra advantages enjoyed by
the 23 over the Plackett-Burman 12-run design?

7.5 Consider a situation involving seven design variables
when, in fact, a first-order model is required but only eight
runs can be used. Design a saturated eight-run design that
is variance-optimal.

7.6 Consider a situation in which five factors are to be
studied and a first-order model is postulated though it is
not quite clear that this is the correct model. Sixteen design
runs are to be used. The designs to be considered are as
follows:
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(a) 2in” replicated
(b) 2

(c) A Plackett—Burman 12-run design augmented with four
center runs.

Discuss the advantages and disadvantages of the three
designs. Use the terras variance-optimal and model
misspecification in your discussion.

7.7 Consider the “model inadequacy” material in Section
7.2. The material can be used to nicely illustrate the
aliasing ideas discussed in Chapter 4. Aliasing plays an
important role when one deals with fractional factorials for
fitting first-order and first-order-plus-interaction response
surface models. Suppose one fits a first-order model using
a 2in ' with defining relation

I= X1 X2

However, suppose the true model is

E(y) = By + Byx1 + Baxz + Bsxs + Bpaxixz + Baxixs + Brsxoxs

Using Equation 7.2, we obtain
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XjX2 XpX3 XaXz

F1 -t 1 15 =k =1 &7
| 1 =1 ] -1 1 =1
T O T | R R

(1 -1 -1 1 B o1

e
Bia
B
l?'l: BEZ -BI.‘r
B
B3
[ 55

Use the expression
E(by) = B, + (X|X) "X Xoy
=B, +Ay
to verify the following expected values:

E(-’?ﬂ} = Bu

E(by) = B — By
E(b) = B, — Bys
E(by) = B; — Bys

7.8 In Exercise 7.7, if the true model is given by

E(y) = By + Bix1 + Baxa + Baxs + Braxixa + Baxixs + Baaxaxs + BaaXixax;
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show that the expected values are given by

E(bo) = By — Bins
E(by), E(b,), E(b3)as in Exercise 7.7

Exercises 7.7 and 7.8 illustrate the effect of aliasing in the
sense of a regression model. Thus, in the case of these two
exercises, the aliasing of x1 with xx3 implies that the
coefficient b1 is not an unbiased estimator of 1 but is
biased by /23, the coefficient of xpx3. Indeed, the
coefficient of the interaction described by the defining
contrast, namely 123, biases the estimated intercept fo.

7.9 Consider the same situation as in Exercise 7.7.
However, the other fraction given by I = x1x2x3 is used. If
the fitted first-order model is incorrect and the true model
is as stated in Exercise 7.8, show that the biases in the
coefficients are indicated by

E(by) = By + Bizs
Eb))y= B, + Bxn

E(b:) = B, + By3
E(b:) = By + Bys

7.10 Consider a 2> fractional factorial with defining
relations

= X1A2Xy

{i= X3X4X5
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Suppose a first-order model is fitted to the data and the
true model includes, additionally, all two-factor
interactions. Use the expression

E(b)) =B, + AB,

to develop, E(b1), E(b2), E(b3), E(b4), and E(bs5) where the
fitted first-order model is

1: = IJ‘[J -+ .Ir?l.'l;] e b:_l.'l.': - b_‘-l,,r_'-l, B .’?_;.1.'4 -+ b_-?,,l'_-',

7.11 Consider Example 4.2 in Chapter 4. The strong
effects are those for the factors A, B, C, and AB, and the
fitted regression is given by

¥ = 60.65625 + 11.60625x; + 34.03125x; + 10.45625x3 + 6.58125x.x2

(a) Verify the above coefficients by considering this
five-parameter model in the form

y=XB+e¢
and by using
b=(XX)"'Xy

(b) Is the design in Table 4.5 orthogonal for the model that
was fitted? If so, verify it. Is the design variance-optimal?

(¢) Is the design orthogonal for a model containing x1, x2,

X3, X4, X5, X1x2, X1X3, X1X4, X1X5, X2X3, X2X4, X2X5, X3X4,
x3x5, and x4x5?

606



7.12 Consider the design listed in Table 4.9 with the
injection molding data. Answer the following questions.

(a) For the model that is fitted, namely

¥ = by + b1x) + baxz + byaxp

give the variance of each coefficient, assuming common
error variance o°.

(b) Using the error mean square from Table 4.10, give the
estimated standard errors of all four coefficients.

(c) In light of the plot in Figure 4.14, why are the results in
(b) somewhat precarious?

(d) Is this design orthogonal for a model containing all
linear terms and the two-factor interactions xix2, x1x3,
X1x4, x1x5, and x1xe? If so, justify it; if not, explain why
not.

7.13 In Section 4.5 of Chapter 4 the 2" design is
discussed. Here we may be interested in building a
regression model for studying seven factors. The design is
given in Table 4.13. Suppose one fits a first-order model
but, in fact, all two factor interactions are in the true
model. Write out E(b1), E(b2), E(b3), E(b4), E(b5), E(bs),
and E(b7). Explain all your terms.

7.14 Consider Exercise 4.7 in Chapter 4.

(a) Is the design first-order orthogonal?
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(b) From your answer in Exercise 4.7b, write a response
surface model.

(c) Give estimated standard errors of all coefficients.

(d) From your model in Exercise 7.14b estimate the
standard error of prediction at all design locations.

(e) Compute the estimated standard error of prediction at
the design center.

7.15 Consider Exercise 4.8 in which four center runs were
added to the design in Exercise 4.7. Answer the questions
asked in Exercise 7.14d and 7.14e again. Use the
replication error variability (3 df) in computing your mean
square error.

7.16 (a) Consider Exercise 4.11 in Chapter 4. For the data
in Exercise 4.11a develop a first-order regression model.
Estimate the standard error of prediction at each design
point.

(b) Do all the work in (a) again after the second fraction in
Exercise 4.11b is added. Comment on what was gained
with the addition of the second fraction.

7.17 Suppose we are interested in fitting a response surface
model in five design variables. The analyst is quite sure
that the form of the model should be

¥i = By + Bixian + Boxiz + Byxiz + Byxia + Bsxis
+ .B]j-i'n-"-'fj + B, WX Xz + &
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The analyst can use 12 experimental runs in the design.
Discuss and compare the following candidate designs. Use
the variances of individual coefficients in your discussion.
However, do not let your discussion be confined to this
criterion. The candidate designs are as follows:

D1: 2in * with four center runs
D»: Plackett—Burman with 12 runs

7.18 Equation 7.11 is a very important expression. It gives
the scaled prediction variance for a first-order orthogonal
design in which all design points are at the =1 extremes. It
also implies that this class of designs give equal prediction
variance at any two locations that are on the same sphere.
This implies that this class of designs is rotatable. Does the
same property hold for orthogonal designs used to
accommodate a model containing interaction? Illustrate
with a 22 factorial and the model

¥Vi= .B[] * JBr-’-'ri + ﬁ:-‘l}': + B 12Xi1 X

Compute N Var[ﬁ(x)]/o‘2 at the following locations on the
same sphere:

1,1
(i) -1, 1
(iii) 1,-1

(iv) 1,1
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V) v2,0

(vi) /2,0

(vii) 0, —2

(viii) 0, v2

Comment on your results.

7.19 A first-order orthogonal design with all points at 1
extremes remains rotatable for a first-order model if all
points are replicated the same number of times. True or
false? Justify your answer.

7.20 A second-order rotatable design with o =+F remains
rotatable for the second-order model if all factorial and
axial runs are replicated the same number of times. True or
false? Justify your answer.

7.21 Consider the model in Exercise 7.17 along with
designs D1 and D2. Which design is superior using the
scaled prediction variance criterion? Use as illustrations
the following locations:

6l 1,1, 1, 1)
-1,-1,-1,-1,-1)
(1. 1L~=1,—1,—1}
(Ly=1=1,1.1)
(1,—-1,-=1,-1,-1)
-1,11,1,1)
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7.22 Consider a central composite design with a = +F. Use
the result in Equation 7.14 to show that the number of
center runs has no effect on the rotatability property.

7.23 Consider a situation in which there are two design
variables and one is interested in fitting a second-order
model. A curious and interesting comparison surfaces
when one considers the central composite design (octagon)
and a design with points placed at the vertices of a
hexagon. Both are equiradial designs. The beauty of the
hexagon (plus center runs)—or even the pentagon (plus
center runs)—Ilies in its high relative efficiency in spite of
its small design size. One should always choose the
octagon unless it is too costly. However, it is interesting to
compare the two on a per observation basis. Consider a
comparison between a hexagon and a rotatable CCD. To
make a valid comparison, one should scale the designs so
they are comparable, that is, reside on the same radius
(keep in mind that scaling is really arbitrary). The factorial
points on the CCD are at radius +2. As scaled in Equation
7.21, the hexagon lies on a circle of radius 1. As a result,
for proper comparison the hexagon should be multiplied
by +2. Thus we have
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X

[ V2
v2/2
—2/2
-2
—V2/2
V2/2

0

0

0

and, of course,

V372
V3/2

0

—/372
—/372

0
0
0

(hexagon)
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X

(CCD)

=
Il
::'*t:c:::%ﬂl——l—L
S SN
|
| | s
::r:[@&ﬂ:-:-————.ﬁ

Use D1 and D2 to construct scaled prediction variances.
Both designs are rotatable, so a rather complete
comparison can be made by filling in the following table:

p | NVar[§(x)l/s” for D1|N Var[§(x)/c” for D2
0

0.5
1.0
1.5

V3

Comment on your study.
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7.24 1t is stated in Section 7.4.10 that for second-order
models, orthogonal blocking is much more easily
accommodated with the use of the spherical CCD than
with use of the face-centered cube (cuboidal CCD).
However, orthogonal blocking is accommodated with the
face-centered cube when axial points are replicated. Show
that the following design blocks orthogonally in two
blocks:
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F_1 —1-
-1 l
1 -1
| I
0 0 Block 1
0 0
0 0
0 0
D)= |cceeerees
-1 0
—1 0
| 0
| 0
 Block 2
0 -1
0 -1
0 I
| @ 1

7.25 Consider Table 7.5. The designs suggested in the
table are those that block orthogonally and are rotatable or
near-rotatable. For example, consider the design under the
column headed k£ = 5(3 rep). Construct the design
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completely, and verify that it meets both conditions for
orthogonal blocking.

7.26 Answer the same question as in Exercise 7.24, but use
the £ = 5 line with four blocks from the factorial portion
and one block from the axial portion.

7.27 The designs given in Table 7.5 are not the only ones
that block orthogonally and are practical. The values for a
and n. can be altered in a very flexible manner. Suppose,
for example, that for £ = 4 the run size does not allow a
design that is shown in the table. Rather, we must use
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This design can be made to block orthogonally. What
value of a results in orthogonal blocking?

7.28 Construct a Box—Behnken design in five variables
that blocks orthogonally for a second-order model. Show
the assignment of design points to blocks.

7.29 Compare a 2973 fractional factorial design (I = ABD =
ACE = BCF) with four center runs (total of 12 runs), or a
Plackett-Burman design with 12 runs for estimating the
model

v=By+ BiA+ BB+ BiC + ByD + BsE + BsF + B:AB
Which is better for

(a) estimating effects independently?

(b) smallest variance for coefficient estimates?

(c) testing lack of fit?

(d) testing curvature?

(e) estimating pure error?

Based on (a)—(e), which design do you prefer? Explain.
7.30 We are interested in studying the main effects (4, B,
C, D, E) and some two-way interactions (4B, AC) for five
factors by running a half fraction of a fractional factorial.

We also have the restriction that we can only have eight
observations per block.
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(a) Suggest a suitable design that will allow all effects to
be estimated independently of each other. Give the
defining equation, as well as what effect would be aliased
with the block.

(b) List the combinations of 4, B, C, D, E would be run in
each of the blocks.

(¢) If we assume a model with terms for 4, B, C, D, E, AB,
AC, and Block, what would the ANOVA table for this
design look like? (Source, d.f.)

(d) Give the equation (using combinations of 4, B, C, D,
E) for how you would calculate the effect for the AB
interaction.

(e) If the true model had terms 4, B, C, D, E, AB, AC, and
Block as well as BC and CD, would your model be
adequate to estimate all of the effects? Explain.

7.31 For a full 23 factorial with two center runs, we
assume a first-order model with all two-way interactions is
the correct model. If the correct model is actually, the
first-order model with two-way interactions and a
quadratic effect for factor 4, find which estimates are
unbiased?

7.32 For the following designs and specified models, give
the appropriate design matrix, and show whether or not
they are rotatable (work with design moments where
convenient).
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(a) Plackett-Burman design (12 runs) for a first-order
model for effects 4, B, C, D, E

(b) Factorial design for a first-order model with
interactions for effects 4, B, C

(c) CCD design with half-fraction for the factorial portion,
o =2 and ne = 3 for a second-order model for effects 4, B,
C,D,E

(d) BBD design with ne = 3 for a second-order model for
effects 4, B, C, D, E

(e) An equiradial design with seven points for a
second-order model for effects 4 and B.

7.33 Assume a second-order model with three factors (4,
B, C) is the model of interest. For the following designs,
calculate the scaled predicted variance, SPV =
(NVar[y”(x)]/az) along the lines (a, 0, 0), (a, a, 0), (a, —a,
0), (a, a, a), and (a, —a, a) for different values of a. Select
an appropriate range to consider and plot the results on a
graph of distance from center versus SPV. Comment on
your results, referring to rotability and desirability of the
design.

(a) CCD witha =1, ne =2
(b) CCD witha =1, nc =4
(¢) BBD with e =2

(d) BBD with n. = 4
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7.34 For a 2+ fractional factorial design with defining
equation / = ABCD and assumed first order model with
interactions AB, AC, and BC:

(a) What is the “alias matrix” if a better model for the
relationship between factors and response has all of the
above terms as well as the interactions AD and ABC? What
coefficient estimates will not be unbiased?

(b) Now assume that the run order of the experiment was
as follows:

ab, cd. ad, ac, (1), abed, be, bd.

If (unknown to the experimenter) conditions changed after
the first four runs (treat this as two “self-imposed” blocks),
what will the “alias matrix” look like (assume the initial
model is otherwise correct)? What coefficient estimates
will be unbiased?

7.35 An experimenter wants to run a screening experiment
with six factors of interest and 16 runs. She thinks a
first-order model is adequate for any effects that are
present. Consider the following four designs:

Di: A 27 fractional factorial.

D2: A 2l fractional factorial two reps at each location.

D3: A Plackett—-Burman design with » = 12 and four center
runs.
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D4: A Plackett-Burman design with » = 12 and four reps
chosen at random locations.

Which is better for

(a) estimating effects independently?

(b) smallest variance for coefficient estimates?

(c) testing lack of fit?

(d) testing curvature?

(e) estimating pure error?

Based on (a)—(e), which design do you prefer? Explain.

7.36 For an experiment with four factors (4, B, C, D) in a
spherical region, a CCD with a = 2 and n. = 3 is selected.
It is assumed that a second-order model is adequate. Find
the “alias matrix” if a better model for the relationshiy
between factors and response includes the cubic terms A~
B , c , D>. Which terms in the second-order model will be
unbiased?

7.37 For an experiment with four factors (4, B, C, D) in a
spherical region, a CCD with a =2 and n. = 3 is selected.
It is assumed that a second-order model is adequate. Find
the “alias matrix” if a better model for the relationship
between factors and response includes the third-order
terms ABC, ABD, ACD, BCD. Which terms in the
second-order model will be unbiased?
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7.38 An experiment involving three factors in a spherical
region can be run in blocks as large as eight runs. Three
competing designs with orthogonal blocking are being
considered:

Di: A three block design given in Table 7.5 with two
factorial blocks of size 6 and the axial block of size .

D2: A three block design with two factorial blocks and an
axial block, all of size 8.

D3: A two block design with one factorial block (of size 8)
and an axial block of size 8.

(a) For design D2, find the axial distance that makes the
blocks orthogonal.

(b) For design D3, find the axial distance that makes the
blocks orthogonal.

(c) Based on a comparison of estimation of pure error,
location of the axial runs, and overall size of the designs,
rank the different designs.

(d) Which design would you recommend for the
experiment?

7.39 An experiment involving four factors in a spherical
region can be run in blocks as large as 12 runs. Three
competing designs with orthogonal blocking are being
considered:
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Di: A three block design given in Table 7.5 with two
factorial blocks of size 10 and the axial block of size 10.

D2: A three block design with two factorial blocks and an
axial block, all of size 12.

D3: A three block design with two factorial blocks of size
12 and an axial block of size 10.

(a) For design D2, find the axial distance that makes the
blocks orthogonal.

(b) For design D3, find the axial distance that makes the
blocks orthogonal.

(c) Based on a comparison of estimation of pure error,
location of the axial runs, and overall size of the designs,

rank the different designs.

(d) Which design would you recommend for the
experiment?
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8

EXPERIMENTAL DESIGNS FOR FITTING RESPONSE
SURFACES—II

In Chapter 7 we dealt with standard second-order response
surface designs. The central composite designs (CCDs)
and Box-Behnken designs (BBDs) are extremely popular
with practitioners, and some of the equiradial designs
enjoy usage for the special case of two design variables.
The popularity of these standard designs is linked to the
list of 10 important properties of response surface designs
presented in Section 7.1. The CCD and BBD rate quite
well for the 10 properties listed, particularly when they are
augmented with center runs as recommended. One of the
most important features associated with these two designs
deals with run size. The run size is large enough to provide
a comfortable margin for lack of fit, but not so large as to
involve wasted degrees of freedom or unnecessary
experimental expense.

Despite the importance of the CCD and the BBD, there are
instances in which the researcher cannot afford the
required number of runs. As a result, there is certainly a
need for design classes that are either saturated or
near-saturated, in other words, second-order designs that
contain close to (but not less than) p design points where

kk—1)
— 1 +2k+
s’ 2
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Note that p is the number of terms in the second-order
model with 1 intercept, k first-order, k& pure quadratic, and
k(k — 1)/2 interaction terms. There are several design
classes that allow saturated or near-saturated second-order
designs. These are designs that should not be used unless
cost prohibits the use of one of the standard designs. In a
later section we will make some comparisons that will
shed light on this point. In the section that follows we will
introduce a few of these design classes and make reference
to others.

8.1 DESIGNS THAT REQUIRE A RELATIVELY
SMALL RUN SIZE

8.1.1 The Hoke Designs

The Hoke designs are a class of economical designs based
on subsets of all combinations of three levels (-1, 0, and 1)
for a /given number of factors, and are irregular fractions of
the 3" factorial. They consist of factorial, axial and edge
points that create efficient second-order arrays for k = 3, 4,
5, and 6. Among very small designs, several in this class
perform remarkably well and should be considered if there
are restrictions on the design size which require the
experimenter to consider saturated or nearsaturated
designs. Developed by Hoke (1974), the designs are
suitable for a cuboidal region of interest.

For each number of factors, several versions of the Hoke
designs exist and have been labeled as D1, D2, ..., D7. A
good characteristic of all of the versions is symmetry of
the designs across all factors. Two popular choices are D2
and De, since they perform well with small variances for
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model parameters and prediction of new observations
among the Hoke design choices. For k£ =3, we have

X1 X2 X3

S . | 1 1
| | -1
[—1 —1 =17

1 -1 |

I 1 -1
-1 1 1

1 -1 1
1 -1 -1

=1 1 1
I : , —1 1 -1
D, = and Dy=|-1 -1 ]

-1 1 ~l
—1 0 0

-1 =1 1
0 -1 0

-1 0 0
0 0 -1

0 -1 0
| 1 0

L 0 0 -1

I 0 1
| 0 l il

The D2 design is saturated with 10 observations to
estimate the 10 model parameters, while the D¢ design is
near-saturated with a total of 13 observations. We can gain
some understanding about the estimation capability of the
designs by observing the X'X for the two designs. For the
D2 design, all of the terms have non-zero correlations,
which have a strong effect on the variance of the
regression coefficients. By comparison, many more of the
terms of the D¢ design are mutually orthogonal, leading to
improved estimation for the terms of the model.
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X X2
rig -2 -2
8 -1
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ris 0 0
10 0
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i

X3

0
0

XXz XX
-1 =17
-1 -1
-1 -1
-1 -1
-1 -1
-1 -l
-1 -l
-1 -1
7 -1
v
A
07
-1
0
0
-1
0
0
—1
~1
8

Hoke Designs for k > 3 The Hoke designs exist for any
number of factors, with the D1 to D3 designs being
saturated, and the D4 to D7 designs near-saturated. We can
construct the designs using symmetry for a given patterns
of levels. For example, for k = 4 the saturated D2 design is
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constructed by taking all combinations of the following
combinations of the three levels: (-1,-1,—1,-1), (1,1,1,-1),
(1,1,-1,-1) and (-1,0,0,0). This gives 1, 4, 6, and 4 rows
for the design matrix, respectively. The D¢ design is the
same as the D2 design but with the four combinations of
(1,1,1,0) added.

X

0
0

0
0

'
0

-

The Hoke designs are an important class of designs, which
offer a good option if a saturated or near-saturated design
is required. In general, the use of saturated designs can be
potentially risky as no degrees of freedom are available to
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estimate pure error or lack-of-fit. However, it is inevitable
that these designs will be used where cost constraints are a
major obstacle. In these cases, the Hoke designs are a good
choice, and can typically be easily implemented since only
three levels for each factor are required.

8.1.2 Koshal Design

Another class of design requiring a small run size is the
family of Koshal designs. Koshal (1933) introduced this
type of design for use in an effort to solve a set of
likelihood equations. The designs are saturated for
modeling of any response surface of order d (d =1, 2,...).
We will not supply general details but will list Koshal
designs for d =1 and 2.

Koshal Design for First-Order Model For the first-order
model the Koshal design is simply the one-factor-at-a-time
design. For k design variables we simply have

Xy X3 e Xg
0 0 - 0
1 0 --- 0

P (001 e @

0 0 v 1

Thus, for the special case in which three variables are of
interest we have
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X1 A2 A3

0 0 0
1 0 0
D =
010
0 0 1

As a result, four coefficients can be estimated in the model
Yi = Bo + Binii + Baxai + Baxzi + &

It is important to note that the Koshal design for the
first-order model does not allow estimation of any
interaction terms.

First-Order Plus Interaction The Koshal family can be
nicely extended to accommodate the first-order model with
interaction. One simply augments the first-order Koshal
design with interaction rows. For example, the
appropriate design for £ = 3 is given by

X)Xz X3
(0 0 0]
1 0 0
0O 1 0
D=|0 0 1

1 1 0
1 0 1
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Second-Order Koshal Design The Koshal design for
fitting a second-order model must, of course, include at
least three levels. The one-factor-at-a-time idea remains
the basis for the design. For k£ = 3, the design is given by

x| X2
00

1 0

0 1

0 0

D — 2 0
0o 2

0 0

I ]

1 0

0 1

07

0
0

X3

The design contains three levels and 10 design points.
Another form of the second order Koshal design is given

by
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X1 X2 X3

0 0 07
1 0 0
0 I 0
0 0 I
-1 0 0
D=
0 -1 0

0 0 -1
1 I 0
1 0 I
L 0 I !

It should be quite clear to the reader how to extend the
Koshal designs to more than three variables.

8.1.3 Hybrid Designs

Roquemore (1976) developed a set of saturated or
near-saturated second-order designs called hybrid
designs. These hybrid designs are very efficient. They
were created via an imaginative idea that involves the use
of a central composite design for £ — 1 variables, and the
levels of the kth variable are determined in such a way as
to create certain symmetries in the design. The result is a
class of designs that are economical and either rotatable or
near-rotatable for k=3, 4, 6, and 7. For example, for k =3
and N = 10 we have the hybrid 310 with design matrix
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X X2 X3

0 0 1.2906 17

0 0 —0.1360

i =] 0.6386

I —1 0.6386

Dsyo — =1 1 0.6386
I I 0.6386

1.736 0 —-0.9273

—1.736 0 -0.9273

0 1.736  -0.9273

| 0 -1.736 —0.9273 ]

It is important to note that the efficiency of the hybrid is
based to a large extent on the fact that eight of the ten
design points and two center runs on x] and x2 are a central
composite in these two variables. Then four levels are
chosen on the remaining variable, x3, with these levels
chosen to make odd moments zero, all second pure
moments equal, and a near-rotatable design. The design
name, 310, comes from k= 3 and 10 distinct design points.

Roquemore developed two additional k£ = 3 hybrid designs.
The design matrices are given by
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Dijs =

D3 =

-0.7507
2.1063
0.7507

—2.1063
0.7507
2.1063

=0.7507

—2.1063

L0

0
0
2.1063
0.7507
-2.1063
—-0.7507
2.1063
—0.7507
—2.1063
0.7507
0
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Both the 311A and 311B are near-rotatable. Eleven design
points include a center run to avoid near-singularity.

There are three hybrid designs for £ = 4. They are given by
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D.um =

Dy =

0

0

1.6853
—1.6553

0

0

0
+1.5177
0
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I
I
0
0
0
0

1.6853
—1.6853

X3

0

0
+1

0

0
+1.5177

X3

A4
1.78447
—1.4945
0.6444
(0.6444
0.6444
0.6444
0.6444
0.6444
0.6444
0.6444
—(0.9075
—0.9075
—0.9075
—(0.9075
—(0.9075
—0.9075 _

X4
1.7317
—0.2692
0.6045
~1.0498
—1.0498
~1.0498 |

Xy

1 T8¢ ]



We have condensed the notation for 416B and 416C. The
notation +1 indicates a 2° factorial in x1, x2, and x3 with x4
fixed. The design points following the 23 factorial are axial
points in x1, x2, and x3 with x4 fixed. A center run is used
in 416C to avoid near-simularity. The notation £1.4697 or
+1.5177 implies two axial points. When possible, one or
two more center runs should be added to the hybrid design.

There are two hybrid designs for six design variables. Both
include 28 runs, and thus both are saturated. The 628A
design is as follows:

X1 A2 A3 X4 X5 X

0 0 0 0 0 4/V3
+1 +1 +1 1/v/3
0 0 -2/V3
+2 0 0 0 -2/V3
0 0 -2/V3
0 +2 0 -2/V3
0 0 0 0 +2 -2/V3
.00 0 0 o0 0

Dgsa =

The notation 1 indicates a resolution V 2>lin X1, X2, X3,
x4, and x5, while x¢ is held at 1/v3 The +2 implies two
axial points A second six-variable design, the 628B, is
constructed in a manner similar to that of 628A, The
components of the design are as follows:

1. Resolution V 2> ! in x1 — x5 with x¢ = 0.6096
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2. Axial points in x1 — x5 with @ = 2.1749 and x6 =—1.0310

3. Two additional center points with x¢ = 2.397 and
-1.8110

General Comments Concerning the Hybrid Designs As
we indicated earlier, the hybrid designs represent a very
efficient class of saturated or near-saturated second-order
designs. The hybrid designs are quite competitive with
central composite designs when the criteria for
comparison takes design size into account—for example,
when one makes comparisons using N Varl #x)l/¢*_ Further
discussion of design comparisons is in Sections 8.2 and
8.3.

It has been our experience that hybrid designs are not used
as much in industrial applications as they should be. As
previously discussed, the use of saturated or near-saturated
response surface designs should be avoided. However,
where cost constraints are major obstacles, the hybrid
design is a good choice. It is likely that potential users are
reluctant to use the hybrid designs because of the “messy
levels” required of the extra design variable—that is, the
variable not involved in the central composite structure.
One must remember that the levels reported in the design
matrices in this text are those solved for by Roquemore in
order to achieve certain ideal design conditions. An
efficient design will still result if one merely approximates
these levels. Minor errors in control do not alter the
efficiencies of these designs. One should assign the extra
design variable to a factor that is easiest to alter and thus
accommodates these levels. Of course, many practitioners
are attracted to designs that involve three evenly spaced
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levels or levels that provide little difficulty when the
experiment is conducted.

8.1.4 The Small Composite Design

The small composite design is commonly available in
some software packages, and is present here because of its
popularity. However, we would like to discourage the use
of this design because of its poor estimation and prediction
performance. More details about its performance are given
in Section 8.2. The small composite design gets its name
from the ideas of the central composite, but the factorial
portion is neither a complete 2¥ nor a resolution V fraction,
but, rather, a special resolution III fraction in which no
fourletter word is among the defining relations. This type
of fraction is often called resolution III*. As a result, the
total run size is reduced from that of the CCD—hence the
term small composite design. For £ = 3, we have
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D= o 0 0
0 —a 0
0 a 0
0 0 -«
0 0 e
(8.2) L 0 0 0]

The factorial portion is the fraction generated using [ =
—ABC. Obviously, the alternative fraction would be equally
satisfactory in the construction of the small composite
design. In this case, p, the number of second-order
parameters, i1s 10, and thus the design is one degree of
freedom above saturation. Multiple center runs allow
degrees of freedom for pure error but if the fitted model is
second order, there will be one degree of freedom for lack
of fit.

If we focus on the example design in Equation 8.2, it
becomes obvious that in the factorial portion linear main
effect terms are aliased with two-factor interaction terms.
Hartley (1959) observed that in spite of this, all
coefficients in the second-order model are estimable
because the linear coefficients benefit from the axial
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points, though axial points provide no information on the
estimation of interaction coefficients. One may gain some
additional insight into this by observing the matrix X'X for
the £ = 3 small composite design (SCD) contrasted with
that for the £ = 3 full central composite (assume a single
center run for both designs):

(8.3)

X'Xscp =

(8.4)

X'Xcep =

X
r11
44202 0

3 2
x5 x5

1
442a% 442a% 44207

0 0 0
0 0 0
0 0 0
4+20° 4 4
4+20* 4

442a*

8+2a® 8+2aa” 8+42a°

X1X2

0

Y ES]

Xp X3 X2X3
0 07
0 -4

—4 0
0 0
0 0
0 0
0 0
0 0
4 0

4]

X1X3 XX

0 07
0 0
0 0
0 0
0 0
0o 0
0 0
0 0
8 0

8

The distinction between the two designs stems from the
fact that in the CCD all linear main effects and two-factor
interactions are mutually orthogonal, whereas in the SCD
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the —4 values reflect the nonorthogonality of xiwith x2x3,
x2 with x1x3, and x3 with x1x2. The correlation among
these model terms has a strong effect on the variance of the
regression coefficients of x1, x2, x3, x1x2, x1x3, and x2x3. In
fact, a comparison can be made by creating scaled
variances for the two designs, that is, N Var(b;)/e” fori =1,
2, 3 and N Var(bj)/e” for i, j =1, 2, 3; i #j. Table 8.1
shows these values taken from appropriate diagonals of the
matrix N(x‘}:)fl. In our illustration, a was taken to be v3
and ne = 3 for each design. Notice that the designs are
nearly identical for estimation of pure quadratic
coefficients. However, the small composite design suffers
considerably in efficiency for estimation of linear and
interaction coefficients.

TABLE 8.1 Scaled Variances of Model Coefficients for
CCD and SCD

by i by by
CCDRDIN=1T) 56666 1.2143 ].3942 2125
SCD {(AC = 13) 4.3333 2. 1666 1. 1074 54166

The efficiencies of model coefficients certainly suggest
that the small composite design should not be used, as
several of the other designs, such as the Hoke and hybrid
designs have similar size and perform much better.
Coefficient by coefficient comparisons of variances is
certainly not the only, nor necessarily even the best,
method for comparing designs. Graphical methods for
comparing designs in terms of scaled prediction variance
(ie., N Varlix)l/o® can be used. These methods are
presented later in this chapter, and the comparison between
the CCD and SCD will be displayed prominently.
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Small Composite Design for k = 2 For k = 2 there is a
small composite design in which the factorial portion is the
one-half fraction of a 2%. The design is given by

Xi X2
E 4 3

I I

—a 0

D= o 0
0 —wo

0 o
0 0

The defining relation for the factorial portion is given by /
= AB. With six parameters to estimate, this design affords
one degree of freedom for lack of fit. For £k = 2 the
hexagon is a more efficient design. This SCD design may
find some use if the design region is cuboidal, in which
case a must be 1.0.

Small Composite Designs for k > 3 The general SCD is a
resolution III* fraction of a 2¥ augmented with axial points
and runs in the center of the design. This structure applies
for all k> 2. For example, for £ = 4 a SCD is given by
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[—1 -1 -1 +I

1 -1 -1 -1

| 1 -1 -1

-1 -1 I I

1 1 -1 1

1 =1 1 =1

-1 I 1 -1

1 1 1 1

D= |—-a 0 0 0
a 0 0 0

0 —a 0 0

(0 ¥ 0 0

0 0 —-a 0

0 0 i 0

0 0 0 —a

0 0 0 —a

(8.5) L0 0 0 0]

The factorial portion of the design in Equation 8.5 is a
one-half fraction of a 2* with 7 = ABD as the defining
relation. The design points yield 17 degrees of freedom for
parameter estimation. Thus, the design is not saturated but
results in only two degrees of freedom for lack of fit. In
comparison, the CCD for £ = 4 allows 10 degrees of
freedom for lack of fit. Comparisons between scaled
variances of coefficients of the linear and interaction
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coefficients of the SCD with that of the CCD essentially
tell the same story as in the k = 3 case. The superiority of
the CCD is quite apparent, and indeed other small designs
also outperform the SCD substantially.

An additional important point should be made regarding
the £k = 4 case. One is tempted to use a resolution IV
fraction rather than resolution III* for £ = 4 and possibly
for larger values of k& where higher fractions might be
exploited. For example, for £k = 6 a resolution IV 262
fraction is available. This allows 16 factorial points plus 12
axial points plus center runs, and the result is one degree of
freedom over saturation. However, the design cannot
involve a resolution IV fraction: the result would be
complete aliasing among two-factor interactions. One must
be mindful of the fact that unlike linear or pure quadratic
coefficients, all information on interaction coefficients is
derived from the factorial portion. Thus, aliasing among
two-factor interaction terms in the factorial portion results
in aliasing of two-factor interactions for the entire design.

Further Comments on the Small Composite Design
Despite its availability in software packages, the small
composite design is typically not the best choice when cost
constraints restrict the design size to substantially smaller
than that required by the central composite or
Box—Behnken designs. If the primary goal of the
experiment is to understand the second-order model, other
alternatives such as the Hoke or hybrid designs provide
better estimation and prediction with a similar small
sample size.
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One potential virtue of the SCD may arise in sequential
experimentation. Most of the discussion regarding
sequential experimentation has centered on the transition
from the first-order fitted model to the second-order
model. One should regard response surface methodology
(RSM) as nearly always involving iterative
experimentation and iterative decision-making. A
first-stage experiment with an SCD may suggest that the
current region is, indeed, the proper one. That is, there are
no ridge conditions and no need to move to an alternative
region. Then a second-stage augmentation of the factorial
portion is conducted; the result is now either a full factorial
or resolution V fraction that accompanies the axial points.
As a result, the second stage is more efficient than what
was used in the first stage. Further information about the
SCD and comparisons with other designs will be given
later in the chapter.

8.1.5 Some Saturated or Near-Saturated Cuboidal Designs

During the 1970s and early 1980s, considerable attention
was given to the development of efficient second-order
designs on a cube. This movement settled down
considerably in the 1980s, and attention shifted to
developments that led to general computer-generated
experimental designs. Computer-generated design will be
discussed in general in Section 8.3. However, there remain
several interesting design classes for a cube that have
potential use. Designs developed by Notz (1982), and Box
and Draper (1974) are particularly noteworthy. As an
example, the Notz three-variable design involves seven
design points from a 23 factorial plus three
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one-factor-at-a-time axial points. Specifically, this design
is given by

X ) X3

L 0 0 ]
A design consisting of one additional point, namely (+1,
+1, +1) to complete the 23 factorial, resulting in 11 design
points, is a nice augmentation of the three-factor Notz
design. The four-variable Notz design is constructed in a
similar manner, with 11 points from the 2* factorial plus
four axial ponits.

8.2 GENERAL CRITERIA FOR CONSTRUCTING,
EVALUATING, AND COMPARING EXPERIMENTAL
DESIGNS

As we indicated in the previous section, the 1980s began
the era of using the computer for design construction. This
period brought many new users into the experimental
design arena, simply because it became easier to find an
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appropriate design. While the virtues of
computer-generated designs are considerable in number,
there are also negative aspects. Often users treat the
computer package like a black box without really
understanding what criteria are being used for constructing
the design. There certainly are practical situations in which
the computer is a vital tool for design construction in spite
of the fact that many of the standard RSM designs
discussed in this chapter and Chapter 7 are extremely
useful designs.

Much of what is available in evaluation and comparison of
RSM designs as well as computer- generated design were
results of the work of Kiefer (1959, 1961) and Kiefer and
Wolfowitz (1959) in optimal design theory. Their work is
couched in a measure theoretic approach in which an
experimental design is viewed in terms of design measure.
Design optimality moved into the practical arena in the
1970s and 1980s as designs were put forth as being
efficient in terms of criteria inspired by Kiefer and his
coworkers. Computer algorithms were developed that
allowed “best” designs to be generated by a computer
package based on the practitioner’s choice of sample size,
model, ranges on variables, and other constraints. The
notion of reducing the “goodness” of a design to a single
number is perhaps too ambitious, and so optimality should
most often be considered as one of many aspects to be
balanced.

There are three situations where some type of
computer-generated design may be appropriate.
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1. An irregular experimental region. If the region of
interest for the experiment is not a cube or a sphere,
standard designs may not be the best choice. Irregular
regions of interest occur fairly often. For example, an
experimenter is investigating the properties of a particular
adhesive. The adhesive is applied to two parts and then
cured at an elevated temperature. The two factors of
interest are the amount of adhesive applied and the cure
temperature. Over the ranges of these two factors, taken as
-1 to +1 on the usual coded variable scale, the
experimenter knows that if too little adhesive is applied
and the cure temperature is too low, the parts will not bond
satisfactorily. In terms of the coded variables, this leads to
a constraint on the design variables, say

—1.5 < X1 + X1

where x1 represents the application amount of adhesive
and x2 represents the temperature. Furthermore, if the
temperature is too high and too much adhesive is applied,
either the parts will be damaged by heat stress or an
inadequate bond will result. Thus, there is another
constraint on the factor levels:

Xi4+x <1

Figure 8.1 shows the experimental region that results from
applying these constraints. Notice that the constraints
effectively remove two corners of the square, producing an
irregular experimental region. There is no standard
response surface design that will fit exactly into this
region.
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Figure 8.1A constrained design region in two variables.

1.0

o5

| 1 1 1 |
-1.0 -0.5 0 0.5 1.0

x5

2. A nonstandard model. Usually an experimenter elects a
first- or second-order response surface model, realizing
that this empirical model is an approximation to the true
underlying mechanism. However, sometimes the
experimenter may have some special knowledge or insight
about the process being studied that may suggest a
nonstandard model. For example, the model

v = By + Bixi + Baxa + Baxixa + Bxt + B

: 2. = .
+ BipXi¥2 + Bunxix + &

may be of interest. The experimenter would be interested
in obtaining an efficient design for fitting this reduced
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quartic model. As another illustration, sometimes we
encounter response surface problems where some of the,
design factors are categorical variables. There are no
standard response surface designs for this situation. We
will discuss this further in Section 8.3.2.

3. Unusual sample size or block size requirements.
Occasionally an experimenter may need to reduce the
number of runs required by a standard response surface
design. For example, suppose we intend to fit a
second-order model in four variables. The central
composite design for this situation requires between 28
and 30 runs, depending on the number of center points
selected. However, the model has only 15 terms. If the
runs are extremely expensive or time-consuming, the
experimenter may want a design with fewer trials.
Although computer-generated designs can be used for this
purpose, there may be better approaches. For example, the
Hoke D6 design uses only 19 runs, has very good
properties, and a hybrid design with as few as 16 runs is
also available. These can be superior choices to using a
computer-generated design to reduce the number of trials.
Unusual requirements concerning either the number of
blocks or the block size can also lean to the use of a
computer-generated design.

8.2.1 Practical Design Optimality
Design optimality criteria are characterized by letters of
the alphabet and as a result, are often called alphabetic

optimality criteria. Some criteria focus on good
estimation of model parameters, while others focus on
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good prediction in the design region. The best-known and
most often used criterion is D-optimality.

D-Optimality and D-Efficiency D-optimality, which
focuses on good model parameter estimation, is based on
the notion that the experimental design should be chosen
so as to achieve certain properties in the moment matrix
M= A
(8.6) N

The reader recalls the importance of the elements of the
moment matrix in the determination of rotatability. Also,
the inverse of M, namely

@7HyM ' =NX'X)"'

(the scaled dispersion matrix), contains variances and
covariances of the regression coefficients, scaled by N/er*
As a result, control of the moment matrix by design
implies control of the variances and covariances.

It turns out that an important norm on the moment matrix
is the determinant, that is,

X'X
M| = X'X]
(8.8) NP

where p is the number of parameters in the model. Under
the assumption of independent normal model errors with
constant variance, the determinant of X'X is inversely
proportional to the square of the volume of the confidence
region on the regression coefficients. The volume of the
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confidence region is relevant because it reflects how well
the set of coefficients are estimated. A small |X'X| and
hence large [(X'X)"'| = 1/1X'X| implies poor estimation of p
in the model. For the response surface model which is a
special case of the general linear model

y=XpB+=

the 100(1 — @)% confidence ellipsoid on P under the
assumption £ ~ N0, &’1) is given by solutions to p in

ama f 'l asn
L B} {x 20 B} = Fn,,f:-.u -p

>
25

or
(b—B)XX)b-p)<C

where C = psta,p,n_p. As a result, the volume of the
confidence region is the volume of the ellipsoid

(b—B)(XX)b—-B)=C

Suppose we consider the orthogonal matrix Q such that
Al 0
A3

QI{-XHX-}Q - X
0 X,

where the A/ are the eigenvalues of X'X. We can write

654



A 0

i

As a result, we can write
P ol
(b—BYX'X)b—B)=> (b —B)A =C
i=1

The volume of this ellipsoid is proportional to
T2 (/A0 The quantity [T1E (/A01'2 = /XX As
a result, the volume of the ellipsoid is inversely
proportional to the square root of the determinant of X'X.

A D-optimal design is one in which IMI=|X'XI/N" jg
maxmizedT; that is,

Max |M(
595 IM(Q)]
where Max implies that the maximum is taken over all

designs { As a result, it is natural to define the D-efficiency
of a design * as

]."ll:
D = (M@ Max M)
(8.10) :

TEquivalently, one may minimize VX%

Here, the 1/p power takes account of the p parameter
estimates being assessed when one computes the
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determinant of the variance—covariance matrix. The
definition of D-efficiency in Equation (8.10) allows for
comparing designs that have different sample sizes by
comparing D-efficiencies. Since it is helpful to balance the
multiple objectives of a good design outlined in Section
7.1, D-efficiency can be a useful tool for quantifying the
quality of our estimation of model parameters.

There have been many studies that have been conducted to
compare standard experimental designs through the use of
D-efficiency. Readers are referred to Lucas (1976) for
comparisons among some of the designs that we have
discussed in this chapter and in Chapter 7. St. John and
Draper (1975) give an excellent review of D-optimality
and provide much insight into pragmatic use of design
optimality. One should also read Box and Draper (1971),
Myers et al. (1989), and the text by Pukelsheim (1995).

Recall that in Chapter 7 we discussed the notion of
variance-optimal  designs in the firstorder and
first-order-plus-interaction case. While our main objective
in this chapter is to continue dealing with second-order
designs, it is natural to consider D-optimality and
D-efficiency in the case of simpler models. Consider the
variance-optimal design, namely the orthogonal design
with all levels at the +1 extremes of the experimental
region. The moment matrix is given by

X'X
— — [

M p
N
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It is not difficult to show that for the first-order and
first-order-plus-interaction cases, optimality extends to the
determinant, that is,

Max [M({)| = 1,

and thus for these simpler models, the so-called
variance-optimal design is also optimal in the determinant
sense—that is, D-optimal.

Before we embark on some comparisons among standard
designs and discussion of how D-optimality affects
practical tools in the use of computer-generated design, we
offer a few other important optimality criteria and methods
of comparison.

A-Optimality The concept of A-optimality, which also
aims to estimate model parameters well, deals with the
individual variances of the regression coefficients. Unlike
D-optimality, it does not consider the covariances among
coefficients; recall that the variances of regression
coefficients appear on the diagonals of (x’.\:)_l
A-optimality is defined as

Min tr[M(Z)] !
(8.11) ¢ (M

where tr represents trace, that is, the sum of the variances
of the coefficients (weighted by N). Some
computer-generated design packages make use of
A-optimality.
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Criteria Associated with Prediction Variance (G-, V-, and
I-Optimality) Throughout Chapter 7, we consistently made
reference to the use of the scaled prediction variance N
Var[ #(x)]/o* =p(x) as an important measure of performance.
The primary goal of many designed experiments is to
allow for good prediction throughout the design space.
Hence, focusing on o(x) makes direct assessment possible.
Our feeling is that practical designers of experiments don’t
make use of this measure as they should. One clear
disadvantage, of course, is that, unlike tr(Mfl) or M|, v(x)
is not a single number but rather depends on the location x
at which one is predicting. In fact, recall that

N Var[ v(x)]

o~

v(x) = = Nx""(X'X)"'x"

where x" reflects location in the design space as well as
the nature of the model. In previous discussions in Chapter
7, we focused on attempts to stabilize v(x) by proper
design (choice of center runs).

One interesting design optimality criterion that focuses on
v(x) is G-optimality. G-optimality and the corresponding
G-efficiency emphasize the use of designs for which the
maximum v(X) in the region of the design is not too large.
It seeks to protect against the worst case prediction
variance, since when we use the results of our analysis we
may wish to predict new response values anywhere in the
design region. A G-optimal design { is one in which we
have
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Min [Max U{!ﬁ}]
L X=R

Note that this is equivalent to

Min |:"'v1_:11 {JC“"”II\"I[{T}]_ ! x[J'n] }]
I's x=R
because N Varl ix)l/e’ is a quadratic form in [M(C)]_1 of
course, the natural choices of regions for R are the cube
and sphere. The resulting G-efficiency is conceptually
quite simple to grasp. It turns out that under the standard
independence and homogeneous variance on the model
errors, there is a natural lower bound for the maximum
prediction variance of

(8.12) Max[v(x)] = p

To understand this bound, consider the expression for hat
diagonals discussed in Chapter 2. Given the linear model

yi=Xh {i=12: )

the ith hat diagonal is given by
A =x"XX ™ (=1,2,....n)

and, indeed,

L] L]
Z-’iff - Zx',-””'{}f?ij “'x{" = p (number of parameters)
i=1

=1
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See Myers (1990) or Montgomery, Peck, and Vining
(2006). Consider an experimental design and the
corresponding scaled prediction variance

v(x) = Nx""(X'X)"'x™

Suppose we consider the maximum value of v(x) in some
region R. The average value of v(x) at the data points is p.
Obviously then

Max v(x) = p
XER

In addition, if a design is G-optimal, all hat diagonals are
equal, thus implying that o(x) = p at all hat diagonals and

vix) <p

at all other locations in R. The result in Equation 8.12 is
very important and usually very surprising to practitioners.
One must keep in mind that o(x) = N Var[ /x)]/e? is a
scale-free quantity. The G-efficiency is very easily
determined for a design, say {, as

P

(8.13) Max v(x)

It is always instructive to investigate efficiencies of our
two-level designs of Chapters 4 and 6 with regard to
first-order and  first-order-plus-interaction — models.
Consider, for example, a 22 factorial in the case of the
first-order model
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y=By+Bixi +px2+ ¢

with the region R being described by -1 <x1 <1 and -1 <
x2 < 1. We know that

M=XX/N=1I
and
|
vix) = [1,x;. 000 | x;
X2
=1+ .rf .1‘%

As a result, the maximum of v(x) occurs at the extremes of
the cube, namely at x; = £1, x2 = 1. In addition, it is
obvious that for the 22 factorial,

Max[v(x)] =3 =p

XER

Thus, the G-efficiency of the 2? design is 1.0. As a result,
the design is G-optimal. In fact, it is simple to show that
for the first-order model in k& design variables for the

cuboidal region, a two-level design of resolution > III with
levels at £1 results in

T:’Iélﬁ [v(x)]=p

Thus all these designs are G-optimal for the first-order
model.
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Another prediction-oriented optimality is V-optimality.
The V-criterion considers the prediction variance at a
specific set of points of interest in the design region, say
X1, X2,..., Xm. The set of points could be the candidate set
from which the design was selected, or it could be some
other collection of points that have specific meaning to the
experimenter. A design that minimizes the average
prediction variance over this set of m points is a V-optimal
design.

An important design-optimality criterion that addresses
prediction variance is [I-optimality, or [V (integrated
variance) optimality. The attempt here is to generate a
single measure of prediction performance through an
averaging process; that is, o(x) is averaged over some
region of interest R. The averaging is accomplished via the
integration over R. The corresponding division by the
volume of R produces an average. Thus, the /-criterion is
clearly related to the V-criterion. The /-optimal design is
given by

I
Min— [ v(x)dx = Max I({)
8.14) ¢ Klg ¢

where & = [¢4% Notice, then, that we can write the
criterion for a design { as

I ;
?"{j“{',— [ l[un'l[ﬁ"l{.{}ll"]XI”':'IJK} = f\-']l_inff,_:‘j
(8.15) ¢ \KlJg ¢

In this way the /I-optimal, or /V-optimal, design is that in
which the average scaled prediction variance 1is
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minimized. Strictly speaking, the /-criterion given in
Equation 8.15 is a special case of a more general criterion
in which the scaled prediction variance is multiplied by a
weight function w(x). The utility of the weight fun