PTC3421 – Instrumentação Industrial

Temperatura – Parte I

V2017A

PROF. R. P. MARQUES

TEMPERATURA é a quantidade medida por um termômetro, que pode ser expressa em

°C	Graus Celsius	(0°C	100°C)	(escala relativa)
°F	Graus Fahrenheit	:(32°F	212°F)	(escala relativa)
K	Kelvin	(273,15k	X 373,15K)	(absoluta)

Do ponto de vista termodinâmico, temperatura é uma grandeza relacionada ao movimento térmico/energia cinética dos átomos de um corpo.

Há um limite inferior para temperatura. Em 0K (-273,15°C), o movimento térmico dos átomos atinge o seu mínimo quântico.

Não há limite superior. O próprio conceito de movimento térmico (ou mesmo de átomo) perde o sentido em temperaturas extremas.

A temperatura estimada para o núcleo do Sol é de 15.700.000K.

TERMÔMETRO é um instrumento que mede temperatura.

ENERGIA TÉRMICA de um corpo é a grandeza associada à soma das energias cinéticas dos átomos constituintes.

A energia térmica depende da temperatura, da massa e do tipo de material que constitui o corpo.

CALOR é a transferência de energia térmica entre um corpo e o meio circundante ou outro corpo.

A transferência entre corpos ocorre quando há diferença de temperatura entre eles.

As formas de transferência de calor são:

CONDUÇÃO corpos em contato físico, sem transferência de massa

CONVECÇÃO transferência de calor por intermédio de um corpo

fluído, com deslocamento de massa

RADIAÇÃO corpos sem contato físico, sem transferência de massa

Os sensores de temperatura, de formas variadas, empregam um ou mais desses fenômenos para obter uma leitura.

Proteção

A medição de temperatura, especialmente em faixas mais altas, é intrinsecamente desafiadora.

É necessário expor o elemento primário a altas temperaturas, eventualmente em ambientes onde também há esforços mecânicos ou altas pressões (e.g. tubulações com elevadas vazões de fluídos muito quentes) ou mesmo ambientes corrosivos.

Além disso, a maioria dos elementos primários que medem temperatura são relativamente frágeis.

Proteção

Uma solução é utilizar instrumentos NÃO INTRUSIVOS, porém nem sempre essa solução é adequada.

OBS.: Com antena para transmissão sem fio.

Proteção - tubos

Instrumentos INTRUSIVOS apresentam potencialmente melhor desempenho, porém requerem que se proteja o elemento primário.

Os dispositivos usuais são:

TUBOS: revestimentos metálicos ou cerâmicos usualmente incorporados aos instrumentos.

Proteção - poços

POÇOS: (poços térmicos, termopoços – thermowells) são intrusões estanque fixadas ao processo que permitem a manutenção e troca dos elementos primários sem contato com o processo.

Proteção - poços

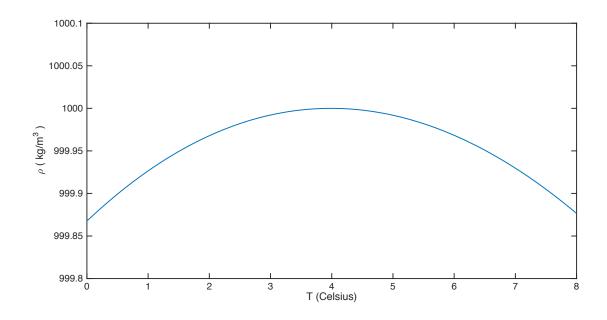
^{*} Poços usualmente grampeados de fácil limpeza.

Proteção - poços

Observações

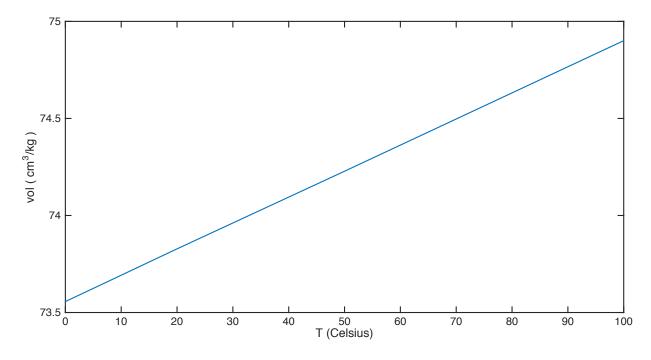
- As intrusões (poços e tubos) causam perturbações ao fluxo em tubulações. Em casos extremos podem gerar ressonância ou cavitação.
- Tubos e especialmente poços causam um aumento no tempo de resposta dos sensores, pois eles devem esquentar ou esfriar junto com a variável de processo para o valor se refletir no elemento primário.

Tipos


São os seguintes os tipos de termômetros mais comumente encontrados na Indústria:

	Termômetro por dilatação de líquido	Indicação apenas local	
0	Termômetro por dilatação de gás		
CONDUÇÃO	Termômetro por pressão de vapor		
	Termômetro por dilatação de sólido	Indicação local, A&C	
	Termômetro por efeito termoelétrico	Transmissão, A&C	
	Termômetro por resistência elétrica	Transmissão, A&C	
RADIAÇÃO	Pirômetros, câmeras termográficas, etc.	Indicação local, transmissão, A&C	

O princípio básico desses termômetros é usar a variação volumétrica de um líquido específico com a temperatura para medí-la.


Tipicamente usa-se líquidos que dilatam quando a temperatura aumenta.

OBS.: Isso exclui água, que se adensa entre 0°C e 4°C.

MERCÚRIO por outro lado é uma substância bastante conveniente.

- É líquido a temperatura ambiente.
- Sua dilatação varia linearmente com a temperatura nessa faixa.

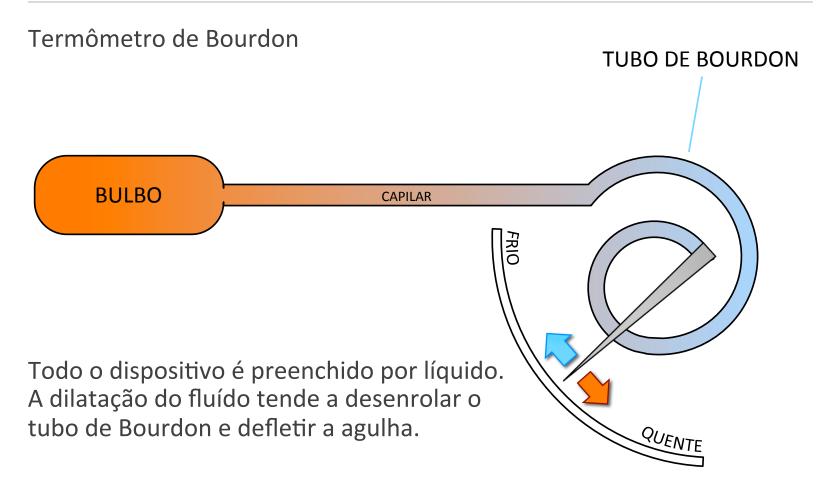
Outros líquidos típicos: Tolueno, Álcool Etílico.

Termômetro de vidro

Capilar (facilita a leitura)

Poço (protege o elemento primário)

Escala de leitura


Bulbo (armazena o líquido)

Observações:

- O espaço restante no capilar deve ser preenchido com gás, preferencialmente de propriedades físicas conhecidas (tipicamente nitrogênio), pois o líquido em expansão comprime o gás, o que interfere na medida.
- A escolha do líquido depende de requisitos diversos:
 - A temperatura mínima de medição depende basicamente do ponto de congelamento do líquido (e.g. mercúrio: -39°C). Termômetros de Etanol ou outras soluções orgânicas são comumente utilizados para medir baixas temperaturas.
 - A temperatura máxima de medição depende basicamente do ponto de evaporação do líquido. Para medir temperaturas mais altas os termômetros podem ser preenchidos com gás pressurizado (a pressão mais alta aumenta o ponto de ebulição, porém diminui a sensibilidade do instrumento).

16

• Diversos fatores limitam a precisão da medida: dilatação do vidro, pureza das substâncias, condutividade térmica do corpo, etc.

Com marcadores mecânicos de mínimo, máximo e setpoint.

Observações:

- O princípio do tubo de Bourdon também se aplica a dispositivos preenchidos por gás e para medidores de pressão.
- Tendem a ser menos precisos e sofrer de histerese.
- São bastante robustos e confiáveis.
- Adequados para atmosferas explosivas (são intrinsecamente seguros).
- Não se prestam diretamente à transmissão de sinais. Usados mais comumente como mostradores locais.
- O gradiente de temperatura ao longo do capilar pode afetar a leitura, portanto ele não pode ser muito longo.
- O tempo de resposta pode ser um tanto longo (a depender das dimensões do bulbo e do comprimento do capilar).

Dilatação de Gás

Termômetro de Bourdon **TUBO DE BOURDON BULBO** CAPILAR O princípio é o mesmo. Todo o dispositivo é preenchido por gás. A expansão do gás tende a desenrolar o tubo de Bourdon e defletir a agulha.

Dilatação de Gás

Com marcadores mecânicos de mínimo, máximo e setpoint.

Dilatação de Gás

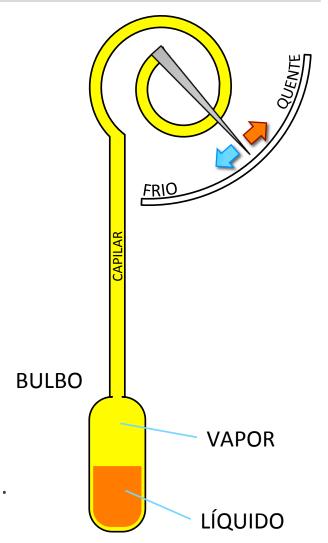
Observações:

- A escolha do gás depende de requisitos diversos:
 - A temperatura mínima de medição depende basicamente do ponto de liquefação do gás na pressão em que o dispositivo é preenchido.
 - A temperatura máxima de medição depende da resistência dos materiais ao calor e da porosidade em temperaturas elevadas.
 - É preferível usar gases inertes (e.g. hélio, nitrogênio, etc.) ou pouco reativos. Isso minimiza o risco de explosão e os efeitos da reatividade do gás, especialmente em altas temperaturas.

22

• Valem a maioria das observações feitas anteriormente sobre os termômetros por dilatação de líquido.

Pressão de Vapor


Termômetro de Bourdon

O bulbo é preenchido parcialmente com um líquido volátil. O reservatório entra em equilíbrio líquido-vapor à pressão de enchimento

O aumento da temperatura faz com que o ponto de equilíbrio se altere, vaporizando parte do líquido e aumentando a pressão de equilíbrio.

A pressão tende a desenrolar o tubo de Bourdon, defletindo a agulha.

A parte líquida fornece um reservatório para produção de vapor que permite ampliar a faixa de medição do instrumento.

Pressão de Vapor

Observações:

• Preenchimentos típicos incluem: butano, éter etílico, tolueno, propano, etc.

Tubos de Bourdon

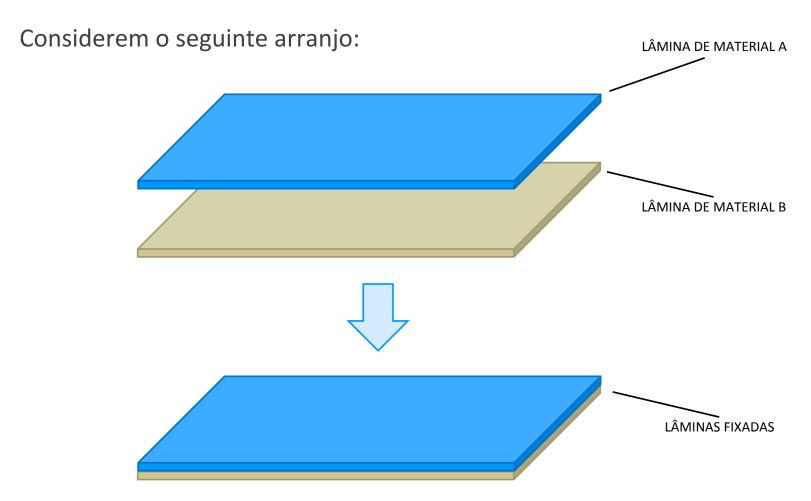
Formatos típicos de tubos de Bourdon incluem tubos espirais e helicoidais.

Os tubos são usualmente achatados.

ESPIRAL

HELICOIDAL

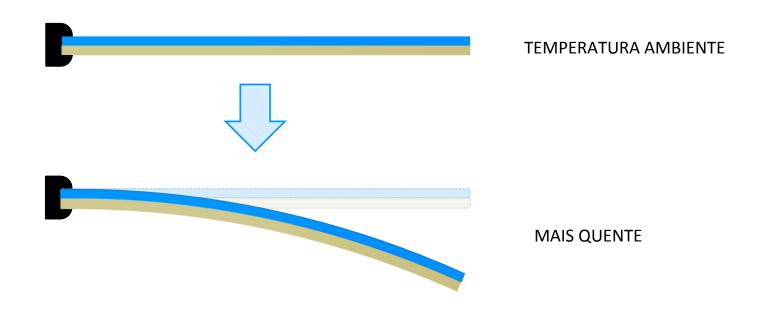
Dilatação de Sólidos


A dilatação de sólidos com o aumento da temperatura também pode ser utilizada para se medí-la.

O deslocamento mecânico causado pela dilatação pode mover um indicador em uma escala associada à temperatura.

O tipo mais comum (e interessante) elemento primário baseado nesse princípio é o PAR BIMETÁLICO, que encontra larga aplicação em instrumentação e controle.

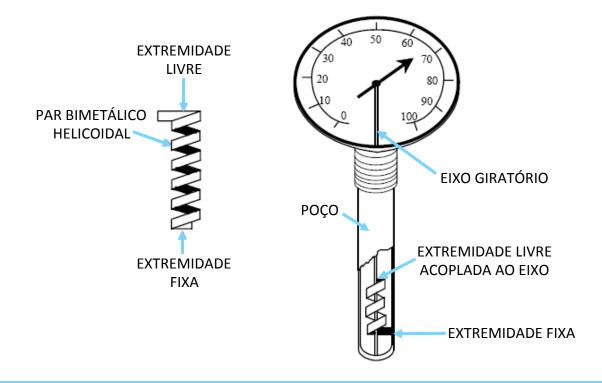
Dilatação de Sólidos


O PAR BIMETÁLICO

Dilatação de Sólidos

Suponham que os materiais tenham coeficientes de dilatação diferentes (por hipótese vamos admitir que o material A tenha o coeficiente maior).

Ao se aumentar a temperatura ocorre o seguinte:



A deflexão, proporcional à temperatura, pode ser utilizada para indicar a temperatura num mostrador.

Par Bimetálico

O tipo de par bimetálico mais utilizado na Indústria é o par Helicoidal:

- A estrutura helicoidal associada a um eixo giratório apresenta uma boa sensibilidade a variações de temperatura;
- A forma alongada da hélice é conveniente para inserção em poços e afastar fisicamente o elemento primário (o bimetal) do mostrador.

Par Bimetálico

Exemplos:

PAR BIMETÁLICO HELICOIDAL -70°C a 600°C (IP68)

PAR BIMETÁLICO EM ESPIRAL

Par Bimetálico

Observações:

- Materiais típicos incluem INVAR-36 (liga com 64%Fe e 36%Ni) que tem baixo coeficiente de dilatação associado a outros metais ou ligas metálicas (latão, etc.) que têm coeficientes de dilatação muito maiores.
- Pares bimetálicos são particularmente sensíveis a histerese. Esse problema é usualmente mitigado com tratamentos térmicos.
- Pares bimetálicos são muito utilizados para implementar termostatos e sensores binários.