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High-throughput, noninvasive field phenotyping has revealed genetic variation in crop morphological, developmental, and
agronomic traits, but rapid measurements of the underlying physiological and biochemical traits are needed to fully understand
genetic variation in plant-environment interactions. This study tested the application of leaf hyperspectral reflectance (l = 500–
2,400 nm) as a high-throughput phenotyping approach for rapid and accurate assessment of leaf photosynthetic and biochemical
traits in maize (Zea mays). Leaf traits were measured with standard wet-laboratory and gas-exchange approaches alongside
measurements of leaf reflectance. Partial least-squares regression was used to develop a measure of leaf chlorophyll content,
nitrogen content, sucrose content, specific leaf area, maximum rate of phosphoenolpyruvate carboxylation, [CO2]-saturated rate
of photosynthesis, and leaf oxygen radical absorbance capacity from leaf reflectance spectra. Partial least-squares regression
models accurately predicted five out of seven traits and were more accurate than previously used simple spectral indices for leaf
chlorophyll, nitrogen content, and specific leaf area. Correlations among leaf traits and statistical inferences about differences
among genotypes and treatments were similar for measured and modeled data. The hyperspectral reflectance approach to
phenotyping was dramatically faster than traditional measurements, enabling over 1,000 rows to be phenotyped during midday
hours over just 2 to 4 d, and offers a nondestructive method to accurately assess physiological and biochemical trait responses to
environmental stress.

Meeting future global food demand is projected to
require a doubling of agricultural output by 2050 (Tilman
et al., 2011). Climate changewill exacerbate this challenge
by intensifying the exposure offield crops to abiotic stress
conditions, including rising temperature, increased
drought, flooding, and air pollution (Christensen et al.,
2007). In order to more rapidly adapt crops to the future

growing environment, diverse germplasm must be
meaningfully assessed in field conditions. However,
our capacity to phenotype thousands of crop genotypes
in a field environment is constrained by available high-
throughput phenotyping platforms (Furbank and
Tester, 2011; Araus and Cairns, 2014), and our ability
to adapt crops to global climate change requires fa-
cilities that accommodate hundreds of genotypes in
a realistic environment (Ainsworth et al., 2008).

This study provides proof of concept for one approach
for high-throughput phenotyping of leaf physiological
responses to global change using hyperspectral reflectance
spectra of diversemaize (Zeamays) inbred andhybrid lines
grown at ambient and elevated ozone concentrations
([O3]) in the field. Hyperspectral sensors capture electro-
magnetic radiation reflected from vegetation in the visible
(400–700 nm), near-infrared (700–1,300 nm), and short-
wavelength infrared (1,400–3,000 nm) regions, which
contain information about leaf physiological status, in-
cluding pigments, structural constituents of biomass, and
water content (Curran, 1989; Martin and Aber, 1997;
Penuelas and Filella, 1998). Vegetation spectra can be
captured in a few seconds, and universal indices have
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been proposed to estimate leaf foliar traits such as chlo-
rophyll content, nitrogen (N) content, and photosynthetic
radiation use efficiency from reflectance data (Gamon
et al., 1997; le Maire et al., 2004; Herrmann et al., 2010).
Predictive models using partial-least squares regression
(PLSR) approaches to scale spectral data also have been
applied to estimate crop yield (Weber et al., 2012) and
to estimate leaf features, including isotopic ratios
(Richardson and Reeves, 2005), the ratio of leaf mass to
leaf area (Asner and Martin, 2008; Asner et al., 2011),
carbohydrate content of plant tissues (Dreccer et al.,
2014; Asner and Martin, 2015), and the maximum
photosynthetic capacity of C3 plants (Serbin et al., 2012;
Ainsworth et al., 2014). Variation in foliar reflectance at
different wavelengths in the spectrum is specific to
variation in different chemical and structural compo-
nents of leaves (Curran, 1989; Serbin et al., 2014).
Therefore, analysis of foliar reflectance spectra has the
potential to very rapidly assess multiple physiological
and biochemical traits from a single measurement.
The use of hyperspectral reflectance as a high-

throughput phenotyping tool in agricultural research
is promising (Weber et al., 2012; Araus and Cairns,
2014), but questions remain regarding limitations of the
technique. Reflectance spectroscopy has been used to
successfully distinguish broad-scale spatial and tem-
poral variation in leaf foliar traits and photosynthetic
metabolism across species in diverse agroecosystems
(Serbin et al., 2015), tropical ecosystems (Asner and
Martin, 2008; Asner et al., 2011), and northern temper-
ate and boreal forests (Serbin et al., 2014). In this study,
we test the utility of leaf hyperspectral reflectance as a
high-throughput method for phenotyping diverse
germplasm subject to abiotic stress in maize. Maize is
one of the world’s most important crops and also rep-
resents a model for species with C4 photosynthesis. The
relationship of hyperspectral reflectance with C4 leaf
traits has the potential to be distinct from that of C3
species due to the significantly different leaf anatomy,
biochemistry, and physiology of the two photosyn-
thetic types.
We grew diverse maize genotypes in the field under

ambient and elevated [O3] using Free Air Concentration
Enrichment (FACE). O3 is an air pollutant that enters
leaves through the stomata, where it rapidly forms
other reactive oxygen species that cause damage to bi-
ochemical constituents and physiological processes,
ultimately leading to reductions in leaf longevity and
yield (Fiscus et al., 2005; Ainsworth et al., 2012). Past
efforts to detect the genetic variation in O3 tolerance
using mapping populations have scored visible leaf
damage or plant biomass (Kim et al., 2004; Frei et al.,
2008; Brosché et al., 2010; Street et al., 2011; Ueda et al.,
2015) but have not quantified the many other physio-
logical changes that ultimately determine the impact of
O3 on crop yield. These include reduced photosynthetic
capacity, reduced leaf chlorophyll and N content, accel-
erated senescence, increased antioxidant capacity, altered
carbohydrate and metabolite content, decreased specific
leaf area (SLA), and increased rates of respiration (Fiscus

et al., 2005; Leitao et al., 2007; Dizengremel et al., 2008;
Betzelberger et al., 2012; Gillespie et al., 2012). The lo-
gistics and cost of employing traditional phenotyping
methods to quantify these physiological and biochemical
markers of stress are prohibitive at the scale needed to
screen large populations, so hyperspectral reflectance
offers a promising nondestructive, rapid, and high-
throughput alternative. However, this alternative ap-
proach has yet to be validated.

In order to test the throughput of this approach in the
field, we collected reflectance spectra from diverse inbred
and hybrid maize lines grown in ambient and elevated
[O3] in replicated plots across a 16-ha field over three
consecutive growing seasons as well as greenhouse-
grown maize (inbred B73) given optimal and limiting N
supply. This range of conditions and material was devel-
oped to ensure that awide range of valuesweremeasured.
These same leaves were sampled using gold standard
techniques of gas-exchange and wet-laboratory biochem-
ical approaches to quantify traits relevant to leaf stress
physiology, including chlorophyll content, N content,
SLA, maximum rate of phosphoenolpyruvate carboxyla-
tion (Vp,max), [CO2]-saturated rate of photosynthesis (Vmax),
leaf oxygen radical absorbance capacity (ORAC), and Suc
content. The two data sets were used successfully to build
predictive PLSR models for five of seven traits and to
demonstrate that similar conclusions about genetic and
treatment variation in leaf traits were drawn from both
measured and modeled data.

RESULTS

Predicting Physiological Traits from Reflectance Spectra

PLSRmodels using the leave-one-out cross-validation
approach predicted leaf biochemical and physiological
traits with varying degrees of accuracy. The predictive
ability was strongest for chlorophyll (r2 = 0.81–0.85; Fig.
1,A andB) andN content (r2 = 0.92–0.96; Fig. 1, C andD),
good for SLA (r2 = 0.68–0.78; Fig. 1, E and F), Vmax (r

2 =
0.56–0.65; Fig. 1, G andH), and Suc content (r2 = 0.62; Fig.
2A), and nonsignificant for Vp,max (Fig. 1, I and J) and
ORAC (Fig. 2B). In general, models created with spectra
collected from leaves exposed to multiple growth envi-
ronments (i.e. greenhouse and field, low and highN, and
ambient and elevated [O3]) captured a greater propor-
tion of trait variation than models built from just field-
grown plants. For example, a stronger correlation be-
tween measured and model-predicted chlorophyll
values was observed with the combined field and
greenhouse model (r2 = 0.85; Fig. 1B) compared with the
field-only model (r2 = 0.81; Fig. 1A). Similarly, the cor-
relations for N content and Vmax were stronger using
both greenhouse and field data. In contrast, inclusion of
data from greenhouse-grown maize plants did not im-
prove the SLA model (Fig. 1F). No greenhouse samples
were collected for ORAC and Suc quantification; there-
fore, models consisted only of data from the field (Fig. 2).
PLSR model coefficients for each trait are provided in
Supplemental Table S1.
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As an additional test of PLSR model stability, 20% of
themeasured values used for training the original PLSR
models were randomly selected and removed (as a
holdout data set). A second set of PLSR models was
built using the remaining 80% of the original training
data (80% model). The parameter estimates generated
by the 80% model were very similar to the parameter
estimates from the original, full model (Supplemental
Table S2). In addition, the 80% model accurately esti-
mated the measured values of the holdout data set that
were removed prior to model building (Supplemental
Table S2).

In order to test the similarity in relationships among
traits for measured and PLSR-modeled data, pairwise
correlations among traits were examined (Fig. 3). In
both measured and PLSR-modeled data sets, the cor-
relations were consistent, demonstrating that the rela-
tionships among the underlying measured traits were
accurately reflected by the PLSRmodels. N content and
Vmax were positively correlated, and there were signif-
icant correlations between chlorophyll content and N
content and Vmax (Fig. 3). N content was negatively
correlated to Suc content, and chlorophyll content was
negatively correlated to SLA (Fig. 3).

Figure 1. Measured versus PLSR-modeled values of leaf chlorophyll content (A and B), N content (C andD), SLA (E and F),Vmax (G
and H), and Vp,max (I and J). PLSR models were built using a training population consisting of genotypically diverse field-grown
plants exposed to ambient and elevated [O3] (A, C, E, G, I) or a combination of field-grown plants and greenhouse plants
(genotype B73) grown in ample or limiting N (B, D, F, H, J). In each graph, the cross-validation r2, root mean square error (RMSE),
and bias of the model are shown along with the size of the validation population and the number of model components (comp)
used in each PLSR model. The gray dashed line shows the 1:1 line.
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PLSR models were able to distinguish the same effects
as measured traits. Using genotypes B73, Mo17, and the
B73 3 Mo17 hybrid, ANOVA models estimating the ef-
fects of genotype, O3 treatment, and the interaction had
consistent inferences for three of four successful PLSR
models (chlorophyll, N, and Vmax; Supplemental Table
S3; Supplemental Fig. S1). For SLA, the P value for the O3
effect onmeasured datawas 0.012 and the P value for the
PLSR-modeled data was 0.095 (Supplemental Table S3).
To assess the relative contributions of different

wavelengths across themeasured spectra as drivers of a
given PLSR model, variable importance in projection
(VIP) scores for each trait model were compared. The

chlorophyll model was very sensitive to variation in
reflection of visible wavelengths, with major peaks at
554 and 719 nm andminor contributions from the short-
wavelength infrared region (Fig. 4A). The N content
model was built with wavelengths between 1,500 and
2,400 nm based on the dominant absorption features of
N (Curran, 1989; Serbin et al., 2014) andwas sensitive to
variation in reflectance throughout that region of the
spectrum. The SLA (Fig. 4B) and Suc content (Fig. 4C)
models both had influential peaks in the visible wave-
lengths that overlappedwith the chlorophyll model but
also showed trait-specific contributions throughout
the near- and short-wavelength infrared regions. The
chlorophyll and Vmax models were very similar in the
visible portion of the spectrum, with moderate differ-
ences between 800 and 1,750 nm (Fig. 4D).

As an alternative to PLSRmodel building, chlorophyll,
N, and SLA also were estimated using previously pub-
lished simple indices and correlatedwith directmeasures
of traits (Table I). Several indices, including mNDVI,
mSRCHL, SIPI, and SR2,were unable to predict chlorophyll
content accurately in maize leaves (r2 = 0.064, 0.006,
0.067, and 0.172). Estimated chlorophyll values from
other indices were correlated with measured values
(Table I), but even the best of these indices, based on the
coefficient of determination (Datt4; r2 = 0.74), was out-
performed by the PLSR model (r2 = 0.85; Fig. 1B). Trait
values estimated using previously published indices for
N content and SLA showed poor correlations with
measured values and were outperformed by PLSR
analysis of reflectance spectra (Table I; Fig. 1).

High-Throughput Screening of Diverse Inbred and Hybrid
Maize for O3 Response

Once it was determined that PLSR models could
reasonably predict foliar biochemical and physiological
traits, we tested the approach for high-throughput
phenotyping potential by screening diverse inbred
and hybrid maize lines grown in the field at ambi-
ent andelevated [O3] in 2013, 2014, and2015 (Supplemental
Table S4). Using two spectroradiometers, we were able to
collect leaf reflectance spectra from maize plants grown in
1,024 rows spread across a 16-ha field in 2 to 4 d while
limiting the period of measurement to the middle 4 h of
each day (approximately 11 AM to 3 PM). By contrast, de-
structive sampling from each of the rows of the experiment
required 12 people to sample for 4 to 5 h over 2 d, making
sample collection approximately 6 times more efficient
for spectral traits. The time savings of spectral reflec-
tance over wet chemistry were even more dramatic
for postprocessing of samples and data. Analysis of
spectral data took approximately 10 d, while processing
and analysis of samples for wet chemistry and leaf gas
exchange took between 30 and 90 d depending on
the trait.

Diverse inbred and hybrid maize genotypes showed
a 1.3- to 2.2-fold range of values for chlorophyll content,
N content, SLA, Suc content, and Vmax, as estimated
by the PLSR models (Fig. 5). For example, in 2014,

Figure 2. Measured PLSR-modeled values of leaf Suc content (A) and
leaf total ORAC (B). PLSR models were built using a training population
consisting of diverse field-grownmaize inbred and hybrid lines exposed
to ambient and elevated [O3]. In each graph, the cross-validation r2,
RMSE, and bias of the model are shown along with the size of the
validation population and number of model components (comp) used
in each PLSR model. The gray dashed line shows the 1:1 line.
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chlorophyll content ranged from 15.2 to 31.2 mg cm22

(Fig. 5A), N content from 3.2% to 4.3% (Fig. 5B), SLA
from 20.6 to 29.6 mm2 mg21 (Fig. 5C), Suc content from
3.8 to 5.7 mmol cm22 (Fig. 5D), and Vmax from 18.8 to
41.1 mmol m22 s21 (Fig. 5E) in the 52 inbred genotypes
grown at ambient [O3]. In general, the range of trait
values for hybrids grown in ambient [O3] was narrower
than for inbreds grown at ambient [O3] (Fig. 5), as may
be expected because all of the hybrids shared a common
parent in B73 (Supplemental Table S4). Hybrid geno-
types also had greater average chlorophyll, N, andVmax
compared with inbred genotypes and lower average
Suc content (Fig. 5D). Inbred and hybrid genotypes
grown at elevated [O3] showed significant reductions in
chlorophyll content in all years (Fig. 5A; Table II), and

while there was some interannual variation, elevated
[O3] also decreased N content and Vmax (Fig. 5, B and E;
Table II) and increased SLA (Fig. 5C; Table II).

DISCUSSION

This study demonstrates the ability to rapidly and
cost-effectively screen for intraspecific variation in
maize leaf biochemical and physiological traits using
PLSR models applied to leaf reflectance spectra. Leaf
chlorophyll content, N content, SLA, Suc content, and
Vmax could be predicted from reflectance spectra of
maize (Figs. 1 and 2). This capability to rapidly and
simultaneously capture five of the most commonly
assessed and important leaf traits to plant carbon andN

Figure 3. Pairwise correlations of measured (black symbols) and modeled (gray symbols) leaf traits. Modeled traits are partial
least-squares predictions from leaf reflectance spectra collected from diverse maize inbred and hybrid lines. Chl, Chlorophyll.
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relations in a single spectrum represents a significant
advance with a wide range of potential applications in
maize genetics and breeding. Previous attempts to
use remote sensing to investigate O3 damage in maize
measured visual damage to leaves and canopies
(Runeckles and Resh, 1975; Kraft et al., 1996; Rudorff
et al., 1996; for review, see Meroni et al., 2009), most
often in terms of the normalized difference vegetation
index,which is based on differences in surface reflectance
in the near-infrared and visible ranges of the spectrum.
This was also limited to canopy-level remote sensing of a
single maize genotype. This study demonstrated success
in the early detection and evaluation of leaf-level bio-
chemical and physiological responses when visual
symptoms of O3 stress were minimal. The proof of
concept for the use of spectral reflectance to detect
phenotypic variation within a C4 species is a significant
advance over previous uses of similar techniques that
have distinguished larger species-level differences in
natural or agricultural ecosystems (Asner and Martin,
2008; Asner et al., 2011; Serbin et al., 2012, 2014, 2015).

High-Throughput Phenotyping with
Hyperspectral Reflectance

High-throughput field phenotyping efforts have
successfully investigated morphological, developmen-
tal, and agronomic traits in large numbers of crop

genotypes. However, rapid measurements of physio-
logical traits are needed to fully understand plant-
environment interactions, including the plant stress
response (Großkinsky et al., 2015). For field phenotyp-
ing to be maximally useful, approaches should be high
throughput, precise, and multidimensional, providing
accurate information about relevant traits (Dhondt
et al., 2013). The hyperspectral reflectance and PLSR
modeling approach taken in this study meets those
goals. The collection of leaf reflectance spectra takes less
than 1 min per leaf and is nondestructive, so it is pos-
sible to monitor a leaf over its lifetime. To estimate Vmax
from gas exchange, it could take at least 20 to 30 min to
assess the response of net assimilation (A) to variation
in intercellular [CO2] (Ci) curve on a single leaf. Even
measurements of maximum light and CO2-saturated
photosynthesis could take 5 to 10 min per leaf in the
field, where the leaf has to acclimate to the cuvette
conditions, which may differ from atmospheric condi-
tions. Generating parameter estimates by fitting a
photosynthesis model to the measured gas-exchange
data would take approximately the same amount of
time as fitting the PLSR model. Therefore, we estimate
that the reflectance approach for estimating Vmax is at
least 10 times faster in terms of data collection and can
be completed during a shorter period of time during the
day to avoid circadian or diurnal effects on leaf traits
that might confoundmeasurements taken over a longer

Figure 4. VIPacross the spectral region for each
PLSR model. VIP scores for the chlorophyll
model are comparedwith models for N content
(%; A), SLA (B), Suc (C), and Vmax (D). A VIP
score greater than 0.8 is considered to influence
the trait estimate (Wold, 1994). The orange
shaded area in A indicates that the model for N
content was built using a truncated spectral
region (1,500–2,400 nm). All other models
utilized the spectrum from 500 to 2,400 nm.
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period of time (Dodd et al., 2005). For other traits, like
Suc content or N content, gold standard measurements
require a destructive leaf sample for biochemical anal-
ysis, which is lower throughput and does not allow
repeated monitoring over time. Estimation of numer-
ous traits from a single spectrum provides multidi-
mensionality, and the speed with which spectra can be
collectedmeans that, at least temporally,measurements
can be taken with high resolution. In this study, we
derived leaf-level biochemical and structural traits from
leaf reflectance spectra collected with a leaf clip that
provided a uniform light environment, thus minimiz-
ing some of the environmental and spatial variation
that canopy-level reflectance measurements inevitably
have. The leaf clip facilitates the investigation of tissue-
level phenomena and the effects of leaf age, but there is
a tradeoff in that further studywould be needed to scale
these leaf-level parameters to a canopy.

Leaf-Level Predictive Models

Leaf-level hyperspectral data have been used previ-
ously to estimate photosynthetic parameters in C3 species
(Doughty et al., 2011; Serbin et al., 2012) but not in C4
species, which have a carbon-concentrating mechanism
and different biochemical limitations to photosynthetic
rate than C3 species. For example, while light-saturated
photosynthetic rate is limited by carboxylation capacity

at low intercellular [CO2] in C3 plants (Farquhar et al.,
1980), it is instead limited by phosphoenolpyruvate car-
boxylase activity at low intercellular [CO2] in C4 plants
(von Caemmerer, 2000). C3 and C4 species also invest
differentially in photosynthetic proteins and pigments
and have leaves with distinct morphological and struc-
tural characteristics. Based on these differences, a number
of studies have used remote sensing approaches to dis-
tinguish C3 and C4 species experimentally or on the
landscape (Irisarri et al., 2009; Liu and Cheng, 2011;
Adjorlolo et al., 2012). Perhaps it is not surprising that a
new PLSR model was needed to estimate parameters
related to C4 photosynthesis in maize, especially given
that predictions of photosynthetic capacity are not direct
expressions of the reflectance spectra but, instead, are due
to a combination of anatomical (e.g. SLA) and chemical
(e.g. N or chlorophyll) factors that are expressed more
directly in reflectance spectra (Jacquemoud and Baret,
1990). In our study, we could not use reflectance spectra
to accurately predict Vp,max in maize (Fig. 1, I and J) but
could accurately predict Vmax (Fig. 1, G and H). It will
be interesting to test if this is also the case for other C4
species.

Similar to previous PLSR models for C3 photosyn-
thetic parameters (Serbin et al., 2012), the C4 PLSR
model for Vmax used wavebands in the visible region of
the spectrum where chlorophyll and other pigments
have strong features but also used wavebands in the

Table I. Estimates of chlorophyll content, N content, and SLA calculated using published spectral indices and compared with measured values

Each index was applied to the same spectra used for the PLSR model training population. For each index, the predictive formula is shown along
with the correlation coefficient, RMSE, and reference.

Trait Index Formulation Adjusted r2 RMSE Reference

Chlorophyll Datt4 R672/(R550 3 R708) 0.740 3.23 Datt (1998)
Vogelmann2 (R734 2 R747) 2 (R715 + R726) 0.736 3.26 Vogelmann et al. (1993)
Maccioni (R780 2 R710)/(R780 2 R680) 0.714 3.39 Maccioni et al. (2001)
Double Difference (R749 2 R720) 2 (R701 2 R672) 0.702 3.46 le Maire et al. (2004)
Vogelmann1 R740/R720 0.701 3.47 Vogelmann et al. (1993)
mSR705 (R750 2 R445)/(R705 2 R445) 0.680 3.58 Sims and Gamon (2002)
mNDVI705 (R750 2 R705)/(R750 + R705 2 2R445) 0.653 3.73 Sims and Gamon (2002)
SR3 R750/R550 0.580 4.11 Gitelson and Merzlyak

(1997)
SR4 R700/R670 0.498 4.49 McMurtey et al. (1994)
SR1 R750/R700 0.457 4.67 Gitelson and Merzlyak

(1997)
Gitelson 1/R700 0.387 4.96 Gitelson et al. (1999)
SR2 R752/R690 0.172 5.77 Gitelson and Merzlyak

(1997)
SIPI (R800 2 R445)/(R800 2 R680) 0.067 6.12 Penuelas et al. (1995)
mNDVI (R800 2 R680)/(R800 + R680 2 2R445) 0.064 6.13 Sims and Gamon (2002)
mSRCHL (R800 2 R445)/(R680 2 R445) 0.006 6.36 Sims and Gamon (2002)

N NRI1510 (R1510 2 R660)/(R1510 + R660) 0.450 0.90 Herrmann et al. (2010)
MCARI1510 [(R700 2 R1510) 2 0.2(R700 2 R550)] 3 (R700/R1510) 0.239 1.05 Herrmann et al. (2010)
NDNI [log10(1/R1510) 2 log10(1/R1680)]/[log10(1/R1510) + log10(1/R1680)] 0.198 1.08 Serrano et al. (2002)

SLA mND (R2285 2 R1335)/[R2285 + R1335 2 (2 3 R2400)] 0.177 2.43 le Maire et al. (2008)
NDMI (R1649 2 R1722)/(R1649 + R1722) 0.133 2.49 Cheng et al. (2014)
NDLMA (R1368 2 R1722)/(R1368 + R1722) 0.122 2.51 Cheng et al. (2014)
mSRSLA (R2265 2 R2400)/(R1620 2 R2400) 0.073 2.58 le Maire et al. (2008)
SR R2295/R1500 0.070 2.58 le Maire et al. (2008)
ND (R1710 2 R1340)/(R1710 + R1340) 0.061 2.60 le Maire et al. (2008)
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near-infrared and short-wavelength infrared regions
(Fig. 4), indicating that Vmax is not simply a function of
chlorophyll content. We also observed, along with
previous studies (Hansen and Schjoerring, 2003;
Doughty et al., 2011; Serbin et al., 2012), that both the
measured and PLSR-modeled leaf traits were signifi-
cantly correlated (Fig. 3). Relationships among leaf
structural and biochemical traits also converge across a
very diverse range of species, and photosynthesis is
positively correlated to leaf N content and SLA (Reich
et al., 1997; Wright et al., 2004). Global trait databases
also have reported correlations between leaf N content
and SLA (Reich et al., 1997); however, this correlation
was not significant within diverse maize lines (Fig. 3).
This may be because within-species variation is more
constrained than across-species variation in leaf traits.
Most importantly, the same conclusions about correla-
tion among traits and variation in leaf traits due to
genotype or treatment were drawn from tests of

measured and modeled data (Fig. 3; Supplemental Fig.
S1; Supplemental Table S3).

PLSR models developed for maize also improved
predictions of chlorophyll content, N content, and SLA
compared with previously published simple indices
(Table I). The performance improvement of the PLSR
model compared with simple indices has been reported
previously (Hansen and Schjoerring, 2003; Atzberger
et al., 2010) and has several contributing sources. First,
PLSR takes advantage of the full spectral information,
most of which is excluded by simple indices, yet clearly
contributes to improved trait prediction based on un-
derlying biophysical or biochemical attributes (Hansen
and Schjoerring, 2003). PLSR also is relatively insensitive
to sensor noise (Atzberger et al., 2010). The other ad-
vantage is in building models specifically to the species
under study, in this case maize, while the other simple
indices were built using other species or diverse species
(Vogelmann et al., 1993; Datt, 1998; Maccioni et al., 2001;

Figure 5. Box plots showing the distribution of values estimated from PLSR models for diverse maize genotypes, including foliar
chlorophyll content (A), N content (B), SLA (C), Suc content (D), and Vmax (E). Maize inbred (IN) and hybrid (HY) genotypes were
grown at ambient (Amb; approximately 40 nL L21) and elevated (Elev; 100 nL L21) [O3] in each of the three growing seasons.
Spectra were collected from July 14 to 17, 2013 (2013a), July 29 to 30, 2013 (2013b), July 14 to 18, 2014, and July 15 to 16, 2015.
The number of individual rows sampled successfully during each time point is shown in parentheses. Asterisks indicate significant
effects of elevated [O3] within a given time point: **, P , 0.01; and ***, P , 0.001.
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le Maire et al., 2004, 2008). Of course, this may be a dis-
advantage as well, and further studies need to test
whether the PLSR models developed for maize in this
study also can be accurately used in other C4 species.

High-Throughput Phenotyping of the Stress Response
in Maize

This study used diverse maize lines grown at ele-
vated [O3] as a proof-of-concept test bed for high-
throughput phenotyping of leaf biochemical traits
using leaf reflectance spectra. The maize inbred lines
represent much of the genetic diversity within the
species (McMullen et al., 2009), and elevated [O3], as a
treatment, provides an attractive test for this approach
environment because common phenotypes associated
with O3 damage include reduced photosynthetic ca-
pacity, leaf N content, and chlorophyll content, in-
creased respiration rates and levels of antioxidants, and
altered SLA (Reich and Amundson, 1985; Fiscus et al.,
2005; Betzelberger et al., 2012). Based on the biochem-
ical and physiological traits estimated from hyper-
spectral reflectance, both maize inbreds and hybrids
were sensitive to elevated [O3] and showed reduced
chlorophyll, N content, and photosynthetic capacity
(Fig. 5; Table II). This was accompanied by greater SLA,
indicating reduced leaf mass per unit area, which often

is associated with lower photosynthetic capacity and/
or lower starch content (Poorter et al., 2012). This is
consistent with the accelerated leaf senescence at ele-
vated [O3] observed in other species (Miller et al., 1999;
Ainsworth et al., 2012; Gillespie et al., 2012) and with
reduced carbon gain being at least partly responsible
for the 10% reduction in yield of U.S. maize due to O3
over the last 30 years (McGrath et al., 2015). This study
also showed that, using hyperspectral reflectance, it
was possible to detect genotypic differences in physi-
ological and biochemical leaf traits across maize lines
and variation in their response to elevated [O3] (Fig. 5).
The ability to rapidly detect this variation in the field
across a diverse panel of genotypes is a key first step to
improving abiotic stress tolerance in maize.

CONCLUSION

Rapid measurement of physiological traits is widely
anticipated as a transformative technology for the ex-
perimental research needed to understand the mecha-
nisms of crop stress response and to maximize the
advantage of genetic resources for crop improvement.
Here, we provide evidence that leaf-level physiological
and biochemical traits that are hallmark markers of
stress response can be accurately predicted from PLSR
models built from leaf reflectance spectra in maize,

Table II. Statistical analysis (P values) of the effects of elevated [O3], genotype (Gen), and the interaction of [O3] and genotype on leaf physiological
and biochemical traits estimated from leaf reflectance spectra

Box plots of leaf traits are shown in Figure 5. Spectra were collected from July 14 to 17, 2013 (2013a), July 29 to 30, 2013 (2013b), July 14 to 18,
2014 (2014), and July 15 to 16, 2015 (2015). Inbred and hybrid lines were evaluated in different statistical models.

Parameter Chlorophyll N Vmax SLA Suc

Inbred lines
2013a
[O3] ,0.0001 0.17 0.56 ,0.0001 ,0.0001
Gen ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001
[O3] 3 Gen 0.19 0.60 0.05 0.94 0.12

2013b
[O3] ,0.0001 ,0.0001 0.95 ,0.0001 0.05
Gen ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001
[O3] 3 Gen 0.90 0.35 0.72 0.98 0.99

2014
[O3] ,0.0001 ,0.0001 ,0.0001 ,0.0001 0.004
Gen ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001
[O3] 3 Gen 0.0002 0.05 0.03 ,0.0001 ,0.0001

2015
[O3] ,0.0001 ,0.0001 0.0007 0.01 ,0.0001
Gen ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001
[O3] 3 Gen 0.17 0.32 0.42 0.05 0.25

Hybrid lines
2014
[O3] ,0.0001 ,0.0001 ,0.0001 0.08 ,0.0001
Gen 0.0005 0.12 0.0008 ,0.0001 ,0.0001
[O3] 3 Gen 0.07 0.40 0.22 0.86 0.29

2015
[O3] ,0.0001 0.68 ,0.0001 0.0007 ,0.0001
Gen ,0.0001 ,0.0001 ,0.0001 0.004 0.02
[O3] 3 Gen 0.74 0.90 0.33 0.74 0.75
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thereby providing a high-throughput, nondestructive
method for phenotyping.

MATERIALS AND METHODS

Greenhouse Experiment

Maize (Zea mays) genotype B73 was planted on March 15, 2014, in 17-cm-
diameter pots containing potting mix (Sunshine LC1 mix; Sun Gro Horticul-
ture). Plants were grown in the greenhouse and fertilized with 40% Long
Ashton nutrient solution (Hewitt and Smith, 1975) with either 6 mM NH4NO3
(ampleN) or 0.25mMNH4NO3 (lowN) starting 20 d after planting. The greenhouse
was sunlit, and additional supplemental lighting from metal halide lamps pro-
vided a minimum photosynthetic photon flux density of 200 mmol m22 s21 from
6AM to 8 PM. Foliar tissue andhyperspectralmeasurementswere collected 55 to 60 d
after planting from a developmental range of leaves at V7 to V10.

Field Experiments

Diverse inbred and hybrid maize genotypes (Supplemental Table S4) were
grown in ambient and elevated [O3] at the Free Air Concentration Enrichment
field site in Champaign, Illinois (soyface.illinois.edu) during the growing sea-
sons of 2013, 2014, and 2015. Maize genotypes were planted with a precision
planter in 3.35-m rows at a density of eight plants per meter and row spacing of
0.76 m. In 2013, 203 inbred genotypes were grown at ambient and elevated [O3]
(n = 2) in octagonal rings approximately 20 m in diameter. Each individual
genotype was planted in a single row plot within a ring. Placement of indi-
vidual genotypes was randomized between the two replicates, and the location
of each genotype was fixed within a pair of ambient and elevated [O3] rings
(ring pair) that were located near one another in the field (but still separated by
approximately 100 m). B73 was planted in 12 locations within each ring in 2013.
In 2014, 52 inbred and 26 hybrid genotypes were grown at ambient and ele-
vated [O3] (n= 4). Each inbred genotypewas planted in a single rowwithin each
ring, and the location of genotypes was randomized among the four replicates
but conserved within an ambient and elevated [O3] ring pair. Each hybrid
genotype was planted in two rows within each ring and randomized as de-
scribed above for inbred genotypes. In 2014, B73 was planted in 10 rows within
each inbred ring and B73 3 Mo17 was planted in 14 rows within each hybrid
ring. In 2015, 10 inbred and eight hybrid genotypes were grown at ambient and
elevated [O3] (n = 4). Each genotype was planted in five rows within each oc-
tagonal ring with a spatial design ensuring that each genotype was planted in
one row in the central, north, south, east, and west sides of the ring.

O3was increased to a target set point of 100 nLL21 fromapproximately 10 AM to
6 PM throughout the growing seasons using free-air O3 enrichment technology, as
described by Morgan et al. (2004) with the following modifications. O3 was pro-
duced by passing high voltage through oxygen in O3 generators (CFS-3 2G; Ozo-
nia) and then added to compressed air for fumigation.O3-enriched airwas released
on the upwind sides of the octagon from horizontal pipes surrounding the rings.
Within each ring, there was a 1-m buffer area that was not used for experiments.
Fumigation was stopped when leaves were wet (during rain) and when wind
speed was too low (less than 0.5 m s21) to maintain consistent treatment. The av-
erage daily [O3] and cumulative [O3] exposures during the 2013, 2014, and
2015 growing seasons are summarized in Supplemental Table S5.

Training Data Set

Training data sets were collected to pair leaf reflectance spectra with gold
standard biochemical and physiological measurements of chlorophyll content,
N content, SLA, Vmax, Vp,max, Suc content, and ORAC. Measurements for the
training data set were collected from diverse maize lines grown at ambient and
elevated [O3] in the field in 2014 and 2015 and from inbred line B73 grown in the
greenhouse at high and lowN availability. The training data sets for each of the
successful PLSR traits are provided in Supplemental Data Set S1.

Gold Standard Methods for Measuring Leaf Physiology
and Biochemistry

To determineVp,max andVmax for the training data set, the response ofA toCi
was measured across a range of [CO2] from 25 to 1,500 mmol mol21 using a
portable photosynthesis system (LI-6400; LICOR Biosciences) set at constant

photosynthetic photon flux density (2,000 mmol m22 s21). The approximately
six initial points of the A/Ci curve (Ci , 60 mmol mol21) were fit to a model for
phosphoenolpyruvate carboxylase-limited photosynthesis (von Caemmerer,
2000) and used to estimated Vp,max. Vmax was estimated as the horizontal as-
ymptote of a four-parameter nonrectangular hyperbolic function (Markelz
et al., 2011). Before starting each A/Ci curve, leaf temperature was measured
with an infrared thermometer (62MAX; Fluke) and used to set the leaf chamber
cuvette at ambient conditions. This also ensured that gas-exchange measure-
ments were done at the same temperature as leaf reflectance spectra. For the
greenhouse experiment, two intact leaves were measured per plant: the first
and third youngest leaf with a visible collar. For field samples, the third
youngest leaf with a visible collar was excised and immediately recut under
water prior to dawn.

Immediately after eachA/Ci curvewas completed, tissuewas removed from
the leaf using a cork borer and flash frozen in liquid N. One leaf disc (ap-
proximately 1.4 cm2) was incubated in 96% (v/v) ethanol for 3 d at 4°C in order
to determine chlorophyll content using the equations of Lichtenthaler and
Wellburn (1983). Another leaf disc was used to determine the ORAC content
following the procedures described by Gillespie et al. (2007). A third leaf disc
was used to determine Suc content according to the methods of Jones et al.
(1977). SLA was determined by weighing a known area of leaf tissue after
drying for 5 d at 60°C. The dried leaf tissue was then ground to a fine powder
and combusted with oxygen in an elemental analyzer (Costech 4010; Costech
Analytical Technologies). N content was determined by comparing experi-
mental samples with an acetanalide standard curve.

Maize Leaf Reflectance Spectroscopy

Before destructively sampling leaf tissue, reflectance spectra were captured
from the adaxial surface of the same leaves that were used for gold standard
measures of leaf physiology and biochemistry using a full-range spectroradi-
ometer (ASD FieldSpec 4 Standard Res; Analytical Spectral Devices) equipped
with an illuminated leaf clip contact probe. The scanning time for the instrument
is approximately 100 ms, and each spectrum collected was the average of
10 scans. A reflective white reference (Spectralon; Labsphere) was used to
standardize the relative reflectance of the samples. The spectroradiometer was
turned on for at least 30 to 60 min before reflectance measurements began to
allow for the three arrays towarmup. Reflectancemeasurementswere obtained
from the same location on the leaf as the A/Ci curve measurements and were
restricted to the central section of the leaf, avoiding the midrib. A preliminary
test calculated bootstrapped (100-fold) mean and variance values from a pop-
ulation of 25 measurements collected from a single leaf, from which we de-
termined that six measurements per leaf reduced sample variance by over 50%
(Supplemental Fig. S2). Subsequently, all leaf reflectance measurements used
the average of six spectra from each leaf taken at different locations within an
approximately 7-cm band in the central section of the leaf. Before averaging the
six spectra collected from a single leaf, a splice correction was applied to the
spectral observations to ensure continuous data across detectors. Data were
interpolated to provide 1-nm bandwidths, and quality control was applied
using the FieldSpectra package in R (Serbin et al., 2014).

PLSR Models

PLSR was used to develop predictive models with the open-source PLS
package (Mevik andWehrens, 2007) in R following the methods of Serbin et al.
(2014). This approach identifies latent factors, or components, that account for
most of the variation in a trait variable and generates a linear model consisting
of waveband scaling coefficients to transform full-spectrum data. To maximize
the predictive ability of the model while minimizing the possibility of over-
fitting, the predicted residual sum of squares (PRESS) statistic was used to
determine the optimal number of model components (Chen et al., 2004). The
number of components that minimized the RMSE of the PRESS statistic was
chosen (Wold et al., 2001). We calculated the PRESS statistic through a leave-
one-out cross-validation approach, which trains the model on all but one ob-
servation and then makes a prediction for the left-out observation. The average
error is then computed and used to evaluate the model (Siegmann and Jarmer,
2015). VIP scores (Wold, 1994) also were determined to compare the relative sig-
nificance of each wavelength in its contribution to the final model. The spectrum
range for all modelswas 500 to 2,400 nm, exceptN content, whichwas restricted to
1,500 to 2,400 nm because of well-known attributes of N absorption (Curran, 1989;
Serbin et al., 2014). Performanceparameterswere generated to assess the predictive
ability of eachmodel, including the coefficient of determination (r2) from the leave-
one-out cross-validation method, RMSE, and model bias.

Plant Physiol. Vol. 173, 2017 623

High-Throughput Phenotyping of Maize Leaf Traits

http://www.plantphysiol.org/cgi/content/full/pp.16.01447/DC1
http://soyface.illinois.edu
http://www.plantphysiol.org/cgi/content/full/pp.16.01447/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.01447/DC1
http://www.plantphysiol.org/cgi/content/full/pp.16.01447/DC1


A second evaluation of the PLSR model was performed with a holdout data
set. In this case, 80% of the data were used as a training data set for the esti-
mation of leaf traits, and 20% of the data were used as a testing data set.

For chlorophyll, N content, SLA, Vmax, and Vp,max, training data sets were
collected from both field-grown and greenhouse-grownmaize plants. For these
traits, two PLSR models were built, one with field-grown data only and a sec-
ondwith the entire trainingdata set from thefield and the greenhouse (Fig. 1). The
better of the two PLSRmodels based on larger r2 and smaller RMSE (typically the
one with data from both the field and greenhouse) was then applied to the O3
screening data set collected in the field in 2013, 2014, and 2015. The PLSR model
coefficients for each trait are provided in Supplemental Table S1.

High-Throughput Screening for O3 Response

As a test of the potential to use leaf reflectance spectra for high-throughput
screening, diverse maize germplasm were measured in the FACE experiment
described above in 2013, 2014, and 2015 (Supplemental Data Set S2). Leaf re-
flectance spectra were taken on the third youngest leaf with a collar from all
experimental rows (1,024 in 2013, 768 in 2014, and 912 in 2015). In 2013 and
2014, two plants per genotype (row) were sampled within each ambient and
elevated [O3] ring, and in 2015, a single plant per row was sampled because
each genotype was planted in five rows within each ring. Leaf reflectance was
measured twice in 2013, from July 14 to 17 and July 29 to 30, and from July 14 to
18, 2014, and July 15 to 16, 2015.

Statistical Analysis of Measured and Predicted
Trait Values

In addition to PLSR models, published indices for estimating chlorophyll
content, N content, and SLAwere tested using the training population (Table I).
Correlations between published indices and measured values were tested.
Pairwise correlations among the gold standard measured traits and the
spectral-derived traits were tested using the training data set. The ability to
distinguish statistical differences in measured and PLSR-modeled traits also
was tested with a subset of the training data set. Measured and PLSR-modeled
estimates of chlorophyll content, N content,Vmax, and SLA from genotypes B73,
Mo17, and B73 3 Mo17 were used to test for the effects of genotype, O3, and
their interaction using a general linear model.

The field designs in 2013, 2014, and 2015 differed in the number of gen-
otypes examined and the layout of the FACE and control rings among years.
Models were fit for each year separately. For the 2013 data, the linear model
Yijkl = m + tj + rij + gk + tgij + «ijkl was fit, where j is the jth treatment (ambient,
elevated [O3]), i is the random effect of the ith ring pair (i = 1,..4), and k is the kth
genotype. The variance of the ring pairs was assumed to be common for all
ambient rings and all elevated [O3] rings but not assumed to be the same be-
tween them, and an additional covariance parameter for the southwest corner
of the ringswas included. In 2014,Yijkl =m+ tj + rij + gk + tgij + «ijkl was fit, where j
is the jth treatment, i is the random effect of the ith ring pair (i = 1,..4), and k is the
kth genotype. The increased number of replicates in 2014 allowed us to fit the
residuals for the difference in variance structure as « ; Ν(0,S), where S is the
variance covariancematrix with diagonal elements sj and all off-diagonal terms
are zero except for a single covariance p to account for spatial variation among
observations in the southwest quadrant of the elevated [O3] rings. In 2015,
the ring was divided into five sectors, i.e. northeast, northwest, southeast,
southwest and central, and in each sector all of the genotypes were planted. The
model Yijkl = m + tj + rij + gs(pij) + bl + gk + tgij + «ijkl was fit, where Yijkl is the trait
value for the ith ring pair (i = 1,..4), the sth sector (s = 1,.5) nested inside the
ring pair for the jth treatment, the lth sector (1 for the sector in the southwest,
0 otherwise), and the kth genotype. Ring pair and sector are treated as random
with all other effects fixed.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Mean measured and PLSR-modeled leaf traits 6
1 SD for maize genotypes B73, B73 3 Mo17, and Mo17.

Supplemental Figure S2. Bootstrap estimate of mean chlorophyll content
and SD from one to 24 spectra taken on an individual leaf.

Supplemental Table S1. PLSR model coefficients for predicting foliar traits
using leaf reflectance spectra from maize.

Supplemental Table S2. Performance comparison between predictive
models built with either the entire training population (full model) or
80% of the training population (80% model).

Supplemental Table S3. ANOVA degrees of freedom, F value, and signif-
icance level for measured and PLSR-modeled leaf traits.

Supplemental Table S4. List of inbred and hybrid maize genotypes grown
at ambient (approximately 40 nL L21) and elevated (approximately
100 nL L21) [O3] in the 2013, 2014, and 2015 growing seasons.

Supplemental Table S5. Seasonal average daily [O3] exposure at the
SoyFACE facility in 2013, 2014, and 2015.

Supplemental Data Set S1. Raw spectral data for wavelengths used to
build PLSR models, along with measured trait values and PLSR-predicted
trait values.

Supplemental Data Set S2. Raw spectral data for the screening data set
collected on diverse maize inbred and hybrid lines grown in the field in
ambient and elevated [O3] in 2013, 2014, and 2015.
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