
Econ 620

Three Classical Tests; Wald, LM(Score), and LR tests

Suppose that we have the density � (y; θ) of a model with the null hypothesis of the form H0; θ = θ0. Let
L (θ) be the log-likelihood function of the model and θ̂ be the MLE of θ.

Wald test is based on the very intuitive idea that we are willing to accept the null hypothesis when θ̂ is
close to θ0. The distance between θ̂ and θ0 is the basis of constructing the test statistic. On the other hand,
consider the following constrained maximization problem,

max
θ∈Θ

L (θ) s.t. θ = θ0

If the constraint is not binding (the null hypothesi is true), the Lagrangian multiplier associated with
the constraint is zero. We can construct a test measuring how far the Lagrangian multiplier is from zero. -
LM test. Finally, another way to check the validity of null hypothesis is to check the distance between two
values of maximum likelihood function like

L
(
θ̂
)
− L (θ0) = log

�
(
y; θ̂
)

� (y; θ0)

If the null hypothesis is true, the above statistic should not be far away from zero, again.

Asymptotic Distributions of the Three Tests

Assume that the observed variables can be partitioned into the endogenous variables X and exogenous
variables Y. To simplify the presentation, we assume that the observations (Yi, Xi) are i.i.d. and we can
obtain conditional distribution of endogenous variables given the exogenous variables as f (yi | xi; θ) with
θ ∈ Θ ⊆ Rp. The conditional density is known up to unknown parameter vector θ. By i.i.d. assumption, we
can write down the log-likelihood function of n observations of (Yi, Xi) as

L (θ) =
n∑

i=1

log f (yi | xi; θ)

We assume all the regularity conditions for existence, consistency and asymptotic normality of MLE and
denote MLE as θ̂n. The hypotheses of interest are given as

H0; g (θ0) = 0 HA; g (θ0) �= 0

where g (·) ; Rp → Rr and the rank of ∂g
∂θ is r.

Wald test

Proposition 1

ξW
n = ng′

(
θ̂n

)⎛⎝∂g
(
θ̂n

)
∂θ′

I−1
(
θ̂n

) ∂g′
(
θ̂n

)
∂θ

⎞⎠−1

g
(
θ̂n

)
∼ χ2 (r) under H0.

where I = EXEθ

(
−∂2 log f(Y |X;θ)

∂θ∂θ′

)
and I−1

(
θ̂n

)
is the inverse of I evaluated at θ = θ̂n.

⇒ From the asymptotic characteristics of MLE, we know that

√
n
(
θ̂n − θ0

)
d→ N

(
0, I−1 (θ0)

)
(1)
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The first order Taylor series expansion of g
(
θ̂n

)
around the true value of θ0, we have

g
(
θ̂n

)
= g (θ0) +

∂g (θ0)
∂θ′

(
θ̂n − θ0

)
+ op (1)

√
n
(
g
(
θ̂n

)
− g (θ0)

)
=

∂g (θ0)
∂θ′

√
n
(
θ̂n − θ0

)
+ op (1) (2)

Hence, combining (1) and (2) gives

√
n
(
g
(
θ̂n

)
− g (θ0)

)
d→ N

(
0,

∂g (θ0)
∂θ′

I−1 (θ0)
∂g′ (θ0)

∂θ

)
(3)

Under the null hypothesis, we have g (θ0) = 0. Therefore,

√
ng
(
θ̂n

)
d→ N

(
0,

∂g (θ0)
∂θ′

I−1 (θ0)
∂g′ (θ0)

∂θ

)
(4)

By forming the quadratic form of the normal random variables, we can conclude that

ng′
(
θ̂n

)(∂g (θ0)
∂θ′

I−1 (θ0)
∂g′ (θ0)

∂θ

)−1

g
(
θ̂n

)
∼ χ2 (r) under H0. (5)

The statistic in (5) is useless since it depends on the unknown parameter θ0. However, we can consistently
approximate the terms in inverse bracket by evaluating at MLE, θ̂n. Therefore,

ξW
n = ng′

(
θ̂n

)⎛⎝∂g
(
θ̂n

)
∂θ′

I−1
(
θ̂n

) ∂g′
(
θ̂n

)
∂θ

⎞⎠−1

g
(
θ̂n

)
∼ χ2 (r) under H0.

• An asymptotic test which rejects the null hypothesis with probability one when the alternative hy-
pothesis is true is called a consistent test. Namely, a consistent test has asymptotic power of 1.

• The Wald test we discussed above is a consistent test. A heuristic argument is that if the alternative hy-

pothesis is true instead of the null hypothesis, g
(
θ̂n

)
p→ g (θ0) �= 0. Therefore, g′

(
θ̂n

)(
∂g(θ̂n)

∂θ′ I−1
(
θ̂n

)
∂g′(θ̂n)

∂θ

)−1

g
(
θ̂n

is converging to a constant instead of zero. By multiplying a constant by n, ξW
n → ∞ as n → ∞, which

implies that we always reject the null hypothesis when the alternative is true.

• Another form of the Wald test statistic is given by - caution: this is quite confusing -

ξW
n = g′

(
θ̂n

)⎛⎝∂g
(
θ̂n

)
∂θ′

I−1
n

(
θ̂n

) ∂g′
(
θ̂n

)
∂θ

⎞⎠−1

g
(
θ̂n

)
∼ χ2 (r) under H0.

where In = EXEθ

(
−∂2L(θ)

∂θ∂θ′

)
= EXEθ

(
−∑n

i=1
∂2 log(yi|xi;θ)

∂θ∂θ′

)
and I−1

n

(
θ̂n

)
is the inverse of In eval-

uated at θ = θ̂n. Note that In = nI.

• A quite common form of the null hypothesis is the zero restriction on a subset of parameters, i.e.,

H0; θ1 = 0 HA; θ1 �= 0

where θ1 is a (q × 1) subvector of θ with q < p. Then, the Wald statistic is given by

ξW
n = nθ̂′1

(
I11

(
θ̂n

))−1

θ̂1 ∼ χ2 (q) under H0.

where I11 (θ) is the upper left block of the inverse information matrix,

I (θ) =
[ I11 (θ) I12 (θ)

I21 (θ) I22 (θ)

]
then, I11 (θ) =

(I11 (θ) − I12 (θ) I−1
22 (θ)

)−1
by the formula for partitioned inverse. I11

(
θ̂n

)
is I11 (θ)

evaluated at MLE.
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LM test (Score test)

If we have a priori reason or evidence to believe that the parameter vector satisfies some restrictions in the
form of g (θ) = 0, incorporating the information into the maximization of the likelihood function through
constrained optimization will improve the efficiency of estimator compared to MLE from unconstrained
maximization. We solve the following problem;

max L (θ) s.t.g (θ) = 0

FOC’s are given by

∂L
(
θ̃n

)
∂θ

+
∂g′
(
θ̃n

)
∂θ

λ̃ = 0 (6)

g
(
θ̃n

)
= 0 (7)

where θ̃n is the solution of constrained maximization problem called constrained MLE and λ is the vector of
Lagrange multiplier. The LM test is based on the idea that properly scaled λ̃ has an asymptotically normal
distribution.

Proposition 2

ξS
n =

1
n

∂L
(
θ̃n

)
∂θ′

I−1
(
θ̃n

) ∂L
(
θ̃n

)
∂θ

=
1
n

λ̃′
∂g
(
θ̃n

)
∂θ′

I−1
(
θ̃n

) ∂g′
(
θ̃n

)
∂θ

λ̃ ∼ χ2 (r) under H0.

⇒ First order Taylor expansions of g
(
θ̂n

)
and g

(
θ̃n

)
around θ0 gives, ignoring op (1) terms,

√
ng
(
θ̂n

)
=

√
ng (θ0) +

∂g (θ0)
∂θ′

√
n
(
θ̂n − θ0

)
(8)

√
ng
(
θ̃n

)
=

√
ng (θ0) +

∂g (θ0)
∂θ′

√
n
(
θ̃n − θ0

)
(9)

Note that g
(
θ̃n

)
= 0 from (7) and substracting (9) from (8), we have

√
ng
(
θ̂n

)
=

∂g (θ0)
∂θ′

√
n
(
θ̂n − θ̃n

)
(10)

On the other hand, taking first order Taylor series expansions of
∂L(θ̂n)

∂θ and
∂L(θ̃n)

∂θ around θ0 gives,
ignoring op (1) terms,

∂L
(
θ̂n

)
∂θ

=
∂L (θ0)

∂θ
+

∂2L (θ0)
∂θ∂θ′

(
θ̂n − θ0

)
⇒

1√
n

∂L
(
θ̂n

)
∂θ

=
1√
n

∂L (θ0)
∂θ

+
1
n

∂2L (θ0)
∂θ∂θ′

√
n
(
θ̂n − θ0

)
⇒

1√
n

∂L
(
θ̂n

)
∂θ

=
1√
n

∂L (θ0)
∂θ

− I (θ0)
√

n
(
θ̂n − θ0

)
(11)

note that − 1
n

∂2L(θ0)
∂θ∂θ′ = − 1

n

∑n
i=1

p

∂2 log(yi|xi;θ)
∂θ∂θ′ → I (θ0) by the law of large numbers. Similarly,

1√
n

∂L
(
θ̃n

)
∂θ

=
1√
n

∂L (θ0)
∂θ

− I (θ0)
√

n
(
θ̃n − θ0

)
(12)
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Considering the fact that
∂L(θ̂n)

∂θ = 0 by FOC of the unconstrained maximization problem, we take the
difference between (11) and (12). Then,

1√
n

∂L
(
θ̃n

)
∂θ

= −I (θ0)
√

n
(
θ̃n − θ̂n

)
= I (θ0)

√
n
(
θ̂n − θ̃n

)
(13)

Hence,

√
n
(
θ̂n − θ̃n

)
= I−1 (θ0)

1√
n

∂L
(
θ̃n

)
∂θ

(14)

From (10) and (14), we obtain

√
ng
(
θ̂n

)
=

∂g (θ0)
∂θ′

I−1 (θ0)
1√
n

∂L
(
θ̃n

)
∂θ

Using (6), we deduce

√
ng
(
θ̂n

)
= −∂g (θ0)

∂θ′
I−1 (θ0)

∂g′
(
θ̃n

)
∂θ

λ̃√
n

→ −∂g (θ0)
∂θ′

I−1 (θ0)
∂g′ (θ0)

∂θ

λ̃√
n

(15)

since θ̃n
p→ θ0 hence g

(
θ̃n

)
p→ g (θ0) . Therefore,

λ̃√
n

= −
(

∂g (θ0)
∂θ′

I−1 (θ0)
∂g′ (θ0)

∂θ

)−1 √
ng
(
θ̂n

)
(16)

From (4), under the null hypothesis,
√

ng
(
θ̂n

)
d→ N

(
0, ∂g(θ0)

∂θ′ I−1 (θ0)
∂g′(θ0)

∂θ

)
. Consequently, we have

λ̃√
n

d→ N

(
0,

(
∂g (θ0)

∂θ′
I−1 (θ0)

∂g′ (θ0)
∂θ

)−1
)

(17)

Again, forming the quadratic form of the normal random variables, we obtain

1
n

λ̃′
(

∂g (θ0)
∂θ′

I−1 (θ0)
∂g′ (θ0)

∂θ

)
λ̃ ∼ χ2 (r) under H0. (18)

Alternatively, using (6), another form of the test statistic is given by

1
n

∂L
(
θ̃n

)
∂θ′

I−1 (θ0)
∂L
(
θ̃n

)
∂θ

∼ χ2 (r) under H0 (19)

Note that (18) and (19) are useless since they depend on the unknown parameter value θ0. We can
evaluate the terms involved in θ0 at the constrained MLE, θ̃n to get a usable statistic.

• Again, another form of LM test is ξS
n =

∂L(θ̃n)
∂θ′ I−1

n (θ0)
∂L(θ̃n)

∂θ = λ̃′
(

∂g(θ0)
∂θ′ I−1

n (θ0)
∂g′(θ0)

∂θ

)
λ̃.

• We can approximate I (θ0) with either − 1
n

∑n
i=1

∂2 log(yi|xi;θ̃n)
∂θ∂θ′ or 1

n

∑n
i=1

∂ log(yi|xi;θ̃n)
∂θ

∂ log(yi|xi;θ̃n)
∂θ′ . If
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we choose the second approximation, the LM test statistic becomes

ξS
n =

1
n

∂L
(
θ̃n

)
∂θ′

⎛⎝ 1
n

n∑
i=1

∂ log
(
yi | xi; θ̃n

)
∂θ

∂ log
(
yi | xi; θ̃n

)
∂θ′

⎞⎠−1

∂L
(
θ̃n

)
∂θ

=
1
n

n∑
i=1

∂ log
(
yi | xi; θ̃n

)
∂θ′

⎛⎝ 1
n

n∑
i=1

∂ log
(
yi | xi; θ̃n

)
∂θ

∂ log
(
yi | xi; θ̃n

)
∂θ′

⎞⎠−1
n∑

i=1

∂ log
(
yi | xi; θ̃n

)
∂θ

=
n∑

i=1

∂ log
(
yi | xi; θ̃n

)
∂θ′

⎛⎝ n∑
i=1

∂ log
(
yi | xi; θ̃n

)
∂θ

∂ log
(
yi | xi; θ̃n

)
∂θ′

⎞⎠−1
n∑

i=1

∂ log
(
yi | xi; θ̃n

)
∂θ

this expression seems quite familiar to us - looks like a projection matrix -. The intuition is correct.

The (uncentered) R2
u from the regression of 1 on

∂ log(yi|xi;θ̃n)
∂θ is given by

R2
u =

1′X (X ′X)−1
X ′X (X ′X)−1 1
1′1

=
1′X (X ′X)−1

X ′1
1′1

where X
(n×p)

=
[

∂ log(y1|x1;θ̃n)
∂θ′

∂ log(y2|x2;θ̃n)
∂θ′ · · · ∂ log(yn|xn;θ̃n)

∂θ′

]′
and 1

(n×1)
=
[

1 1 · · · 1
]′

.

Then,

R2
u =

∑n
i=1

∂ log(yi|xi;θ̃n)
∂θ′

(∑n
i=1

∂ log(yi|xi;θ̃n)
∂θ

∂ log(yi|xi;θ̃n)
∂θ′

)−1∑n
i=1

∂ log(yi|xi;θ̃n)
∂θ

n

Hence,
ξS
n = nR2

u

This is quite an interesting result since the computation of LM statistic is nothing but an OLS re-
gression. We regress 1 on the scores evaluated at constrained MLE and compute uncentered R2 and
then multiply it with the number of observations to get LM statistic. One thing to be cautious is that
most software will automatically try to print out centered R2, which is impossible in this case since
the denominator of centered R2 is simply zero.

• LM test is also an asymptotically consistent test.

• From (16) and (18),

ξW
n = ng′

(
θ̂n

)⎛⎝∂g
(
θ̂n

)
∂θ′

I−1
(
θ̂n

) ∂g′
(
θ̂n

)
∂θ

⎞⎠−1

g
(
θ̂n

)

→ ng′
(
θ̂n

)(∂g (θ0)
∂θ′

I−1 (θ0)
∂g′ (θ0)

∂θ

)−1

g
(
θ̂n

)
= ξS

n

Likelihood ratio(LR) test

Proposition 3
ξR
n = 2

(
L
(
θ̂n

)
− L

(
θ̃n

))
∼ χ2 (r) under H0.

⇒ We consider the second order Taylor expansions of L
(
θ̂n

)
and L

(
θ̃n

)
around θ0. Under the null
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hypothesis, ignoring stochastically dominated terms,

L
(
θ̂n

)
= L (θ0) +

∂L (θ0)
∂θ′

(
θ̂n − θ0

)
+

1
2

(
θ̂n − θ0

)′ ∂2L (θ0)
∂θ∂θ′

(
θ̂n − θ0

)
= L (θ0) +

1√
n

∂L (θ0)
∂θ′

√
n
(
θ̂n − θ0

)
+

1
2
√

n
(
θ̂n − θ0

)′ 1
n

∂2L (θ0)
∂θ∂θ′

√
n
(
θ̂n − θ0

)
L
(
θ̃n

)
= L (θ0) +

∂L (θ0)
∂θ′

(
θ̃n − θ0

)
+

1
2

(
θ̃n − θ0

)′ ∂2L (θ0)
∂θ∂θ′

(
θ̃n − θ0

)
= L (θ0) +

1√
n

∂L (θ0)
∂θ′

√
n
(
θ̃n − θ0

)
+

1
2
√

n
(
θ̃n − θ0

)′ 1
n

∂2L (θ0)
∂θ∂θ′

√
n
(
θ̃n − θ0

)
Taking differences and multiplying by 2, we obtain

2
(
L
(
θ̂n

)
− L

(
θ̃n

))
=

2√
n

∂L (θ0)
∂θ′

√
n
(
θ̂n − θ̃n

)
+
√

n
(
θ̂n − θ0

)′ 1
n

∂2L (θ0)
∂θ∂θ′

√
n
(
θ̂n − θ0

)
−√

n
(
θ̃n − θ0

)′ 1
n

∂2L (θ0)
∂θ∂θ′

√
n
(
θ̃n − θ0

)
→ 2n

(
θ̂n − θ0

)′
I (θ0)

(
θ̂n − θ̃n

)
− n

(
θ̂n − θ0

)′
I (θ0)

(
θ̂n − θ0

)
+ n

(
θ̃n − θ0

)′
I (θ0)

(
θ̃n − θ0

)
since 1√

n
∂L(θ0)

∂θ′ = I (θ0)
√

n
(
θ̂n − θ0

)
from (11) and − 1

n
∂2L(θ0)
∂θ∂θ′

p→ I (θ0) . Continuing the derivation,

2
(
L
(
θ̂n

)
− L

(
θ̃n

))
= 2n

(
θ̂n − θ0

)′
I (θ0)

(
θ̂n − θ̃n

)
− n

(
θ̂n − θ0

)′
I (θ0)

(
θ̂n − θ0

)
+ n

(
θ̃n − θ̂n + θ̂n − θ0

)′
I (θ0)

(
θ̃n − θ̂n + θ̂n − θ0

)
= 2n

(
θ̂n − θ0

)′
I (θ0)

(
θ̂n − θ̃n

)
− n

(
θ̂n − θ0

)′
I (θ0)

(
θ̂n − θ0

)
+ n

(
θ̃n − θ̂n

)′
I (θ0)

(
θ̃n − θ̂n

)
+ n

(
θ̃n − θ̂n

)′
I (θ0)

(
θ̂n − θ0

)
+ n

(
θ̂n − θ0

)′
I (θ0)

(
θ̃n − θ̂n

)
+ n

(
θ̂n − θ0

)′
I (θ0)

(
θ̂n − θ0

)
= 2n

(
θ̂n − θ0

)′
I (θ0)

(
θ̂n − θ̃n

)
+ n

(
θ̂n − θ̃n

)′
I (θ0)

(
θ̂n − θ̃n

)
− n

(
θ̂n − θ̃n

)′
I (θ0)

(
θ̂n − θ0

)
− n

(
θ̂n − θ0

)′
I (θ0)

(
θ̂n − θ̃n

)
= n

(
θ̂n − θ̃n

)′
I (θ0)

(
θ̂n − θ̃n

)
(20)

note that
(
θ̂n − θ0

)′
I (θ0)

(
θ̂n − θ̃n

)
=
(
θ̂n − θ̃n

)′
I (θ0)

(
θ̂n − θ0

)
.

Now, from (13) and (20), we have

2
(
L
(
θ̂n

)
− L

(
θ̃n

))
=

√
n
(
θ̂n − θ̃n

)′
I (θ0)

√
n
(
θ̂n − θ̃n

)
=

1√
n

∂L
(
θ̃n

)
∂θ′

I−1 (θ0) I (θ0) I−1 (θ0)
∂L
(
θ̃n

)
∂θ

1√
n

=
1
n

∂L
(
θ̃n

)
∂θ′

I−1 (θ0)
∂L
(
θ̃n

)
∂θ

= ξS
n ∼ χ2 (r) under H0.

• Calculating LR test statistic requires two maximizations of likelihood function one with and the other
without constraint.

• LR test is also an asymptotically consistent test.

• As shown above, Wald, LM and LR test are asymptotically equivalent with χ2 (r) .
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Examples of tests in the linear regression model

Suppose the regression model such as

yi = β′xi + εi

εi ∼ i.i.n.
(
0, σ2

)
The hypotheses are given by

H0; R
(r×p)

β
(p×1)

= γ H0; Rβ �= γ

The log-likelihood function is given by

L (β) ≈ −n

2
log σ2 − 1

2σ2
(y − Xβ)′ (y − Xβ)

Then, the unconstrained MLE is given by

β̂n = (X ′X)−1
X ′y

σ̂2
n =

1
n

(
y − Xβ̂n

)′ (
y − Xβ̂n

)
Information matrix is given by

In (θ0) =
[

1
σ2 (X ′X) 0

0 n
2σ4

]
The Wald statistic is, from Proposition 1,

ξW
n = n

(
Rβ̂n − γ

)′ [[
R 0

]′ I−1
(
θ̂n

)[ R
0

]]−1 (
Rβ̂n − γ

)
=
(
Rβ̂n − γ

)′ [[
R 0

]′ I−1
n

(
θ̂n

) [
R
0

]]−1 (
Rβ̂n − γ

)
=
(
Rβ̂n − γ

)′ [
R′σ̂2

n (X ′X)−1
R
]−1 (

Rβ̂n − γ
)

=
1
σ̂2

n

(
Rβ̂n − γ

)′ [
R′ (X ′X)−1

R
]−1 (

Rβ̂n − γ
)
∼ χ2 (r) under H0.

Denote the constrained MLE as β̃n and σ̃2
n, respectively. Then,

σ̃2
n − σ̂2

n =
1
n

(
y − Xβ̃n

)′ (
y − Xβ̃n

)
− 1

n

(
y − Xβ̂n

)′ (
y − Xβ̂n

)
=

1
n

(
Xβ̃n − Xβ̂n

)′ (
Xβ̃n − Xβ̂n

)
=

1
n

(
β̃n − β̂n

)′
X ′X

(
β̃n − β̂n

)
=

1
n

(
Rβ̂n − γ

)′ [
R′ (X ′X)−1

R
]−1 (

Rβ̂n − γ
)

since β̃n = β̂n + (X ′X)−1 R′
[
R′ (X ′X)−1 R

]−1 (
Rβ̂n − γ

)
. Therefore,

ξW
n =

n
[
σ̃2

n − σ̂2
n

]
σ̂2

n

=

(
Rβ̂n − γ

)′ [
R′ (X ′X)−1

R
]−1 (

Rβ̂n − γ
)

1
n

(
y − Xβ̂n

)′ (
y − Xβ̂n

)

=

[(
Rβ̂n − γ

)′ [
R′ (X ′X)−1

R
]−1 (

Rβ̂n − γ
)]

/r[(
y − Xβ̂n

)′ (
y − Xβ̂n

)]
/ (n − K)

× nr

n − K
=

nr

n − K
F
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On the other hand, the Lagrange multiplier of the constrained maximization problem is

λ̃n = − 2
σ̃2

n

(
R (X ′X)−1

R′
)−1 (

γ − Rβ̂n

)
Under H0, the distribution of the Lagrange multiplier is

λ̃n ∼ N

(
0,

4
σ̃2

n

(
R (X ′X)−1

R′
)−1

)
since

(
γ − Rβ̂n

)
∼ N

(
0, σ̃2

nR (X ′X)−1
R′
)

. Then, the LM test statistic is

ξS
n =

σ̃2
n

4
λ̃′

n

(
R (X ′X)−1

R′
)

λ̃n

=
1
σ̃2

n

(
Rβ̂n − γ

)′ (
R (X ′X)−1

R′
)−1 (

Rβ̂n − γ
)

= n
σ̃2

n − σ̂2
n

σ̃2
n

=
n

1 − 1 + σ̃2
n

σ̃2
n−σ̂2

n

=
n

1 + σ̂2
n

σ̃2
n−σ̂2

n

=
n

1 + (n+K)
rF

To obtain LR test statistic, note that

L
(
θ̂n

)
= −n

2
log 2π − n

2
log σ̂2

n − 1
2σ̂2

n

(
y − Xβ̂n

)′ (
y − Xβ̂n

)
= −n

2
log 2π − n

2
log σ̂2

n − n

2σ̂2
n

× 1
n

(
y − Xβ̂n

)′ (
y − Xβ̂n

)
= −n

2
log 2π − n

2
log σ̂2

n − n

2σ̂2
n

× σ̂2
n

= −n

2
log 2π − n

2
log σ̂2

n − n

2

On the other hand,

L
(
θ̃n

)
= −n

2
log 2π − n

2
log σ̃2

n − 1
2σ̃2

n

(
y − Xβ̃n

)′ (
y − Xβ̃n

)
= −n

2
log 2π − n

2
log σ̃2

n − n

2σ̃2
n

× 1
n

(
y − Xβ̃n

)′ (
y − Xβ̃n

)
= −n

2
log 2π − n

2
log σ̃2

n − n

2σ̃2
n

× σ̃2
n

= −n

2
log 2π − n

2
log σ̃2

n − n

2

Hence,

ξR
n = 2

(
L
(
θ̂n

)
− L

(
θ̃n

))
= 2

(
−n

2
log σ̂2

n +
n

2
log σ̃2

n

)
= n log

σ̃2
n

σ̂2
n

= n log
(

1 − 1 +
σ̃2

n

σ̂2
n

)
= n log

(
1 +

σ̃2
n − σ̂2

n

σ̂2
n

)
= n log

(
1 +

rF

n − K

)
An interesting result can be obtained using the following inequalities,

x

1 + x
≤ log (1 + x) ≤ x ∀x > −1

Let x = rF
n−K and applying the above inequalities,we obtain

ξS
n ≤ ξR

n ≤ ξW
n
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