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Abstract 

This paper will very briefly review the history of the 
relationship between modern optimal control and ro- 
bust control. The latter is commonly viewed as having 
arisen in reaction to certain perceived inadequacies of 
the former. More recently, the distinction has effec- 
tively disappeared. Once-controversial notions of ro- 
bust control have become thoroughly mainstream, and 
optimal control methods permeate robust control the- 
ory. This has been especially true in H-infinity theory, 
the primary focus of this paper, which will serve as a 
short introduction to the talk. Much of this is taken di- 
rectly from [33], which also has most of the references. 

:L The ~ O ’ S ,  briefly 

We could trace the origins of robust control almost ar- 
bitrarily far back. in time, since robustness has always 
been the point of feedback, but I’ll start this narra- 
tive more recently by quickly recalling the controversy 
about LQG robustness in the mid to late 70’s. One of 
the foundations of modern control theory was optimal 
control, which was tremendously successful in a variety 
of applications. The modern optimal control paradigm 
for feedback design, the LQG problem, however, had 
relatively little impact on practical control design. One 
of the critiques of LQG was that it did not directly ad- 
dress many issues that were already well-understood in 
at least some limited way in classical control, and gain 
and phase margins were often pointed to as an example 
of this. The LQC: proponents could, however, point to 
certain guaranteed properties of LQ regulators as indi- 
cations of inherent robustness. As we now know, these 
guarantees were of no practical value, and indeed the 
whole notion of guaranteed margins is a bit silly. But 
that’s another patper .... 
At about the same time, singular values or the N, 
norm was proposed for robustness analysis of multi- 
variable systems. This point of view added necessity 
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to the small gain methods of the 1960s [30, 29, 231. 
That is, whereas small gain gave sufficient conditions 
for stability for a set of uncertainty, the robust control 
interpretation was that the same condition was neces- 
sary and sufficient for a particular set. This emphasis 
on necessity motivated much study of the potential con- 
servativeness of robustness measures and techniques for 
reducing it. 

One of the motivations for the original introduction of 
31, methods by Zames [31] was to emphasize plant un- 
certainty. The 31, norm was found to be appropriate 
for specifying both the level of plant uncertainty and 
the signal gain from disturbance inputs to error out- 
puts in the controlled system. The 31, norm gives the 
maximum energy gain (the induced .Cz system gain), or 
sinusoidal gain of the system. This is in contrast to the 
312 norm, which gives the variance of the output given 
white noise disturbances. The robust stability conse- 
quence was the main motivation for the development 
of N, methods rather than the worst case signal gain. 
We compromised on performance to get one norm that 
let us do everything. With this compromise, we could 
then talk about robust performance with structured 
uncertainty. 

2 The 80’s and the rise of Z, 

The synthesis of controllers that achieve an ‘Elm norm 
specification gives a well-defined mathematical problem 
whose solution became a major research focus in the 
1980s. Most of the original solution techniques were in 
an input-output setting and involved analytic functions 
(Nevanlinna-Pick interpolation) or operator-theoretic 
methods (Sarason, AAK, Ball-Helton) and such deriva- 
tions involved a fruitful collaboration between operator 
theorists and control engineers. Indeed, 31, theory 
seemed to many to signal the beginning of the end for 
the state-space methods which had dominated control 
for the previous 20 years. Unfortunately, the standard 
frequency-domain approaches to U- started running 
into significant obstacles in dealing with multi-input 
multi-output (MIMB) systems, both mathematically 
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and computationally, much as the %2 (or LQG) theory 
of the 1950’s had. 

Not surprisingly, the first solution to a general ratio- 
nal MIMO %, optimal control problem [2], which 
we will refer to as the 1984 approach, relied heavily 
on state-space methods, although more as a computa- 
tional tool than in any essential way. The procedure 
involved state-space innerlouter and coprime factoriza- 
tions of transfer function matrices which reduced the 
problem to a Nehari/Hankel norm problem solvable by 
the state-space method in Glover [1984]. Both [6, 71 
give expositions of this approach, which in a mathemat- 
ical sense “solved” the general rational problem. Much 
of the subsequent work in %, control theory focused on 
the 2 x 2-block problem that was a central part of this 
solution, either in the model-matching or general dis- 
tance forms. Unfortunately, the associated complexity 
of computation was substantial, involving several Ric- 
cati equations of increasing dimension, and formulae for 
the resulting controllers tended to be very complicated 
and have high state dimension. Encouragement came 
from [14, 151 who showed, for problems transformable 
to  2x l-block problems] that a subsequent minimal real- 
ization of the controller has state dimension no greater 
than that of the plant. This suggested the likely exis- 
tence of similarly low dimension optimal controllers in 
the general 2 x 2 case. Additional progress came from 
Ball and Cohen, Jonckheere and Juang, Foias and Tan- 
nenbaum, Hung, Kwakernaak, and Kimura. 

Simple state space 3t, controller formulae were first 
announced in Glover and Doyle [SI (after some sus- 
tained manipulation). However the very simplicity of 
the new formulae and their similarity with the %2 ones 
suggested a more direct approach. Independent en- 
couragement for a simpler approach to the %, problem 
came from papers by Khargonekar, Petersen, Rotea, 
and Zhou [ll, 121. They showed that for the state- 
feedback %, problem one can choose a constant gain 
as a (sub)optimal controller. In addition, a formula 
for the state-feedback gain matrix was given in terms 
of an algebraic Riccati equation. Also, these papers 
established connections between %,-optimal control, 
quadratic stabilization, and linear-quadratic differen- 
tial games. They showed that the state-feedback X, 
problem can be solved by solving an algebraic Riccati 
equation and completing the square. 

Derivations of the controller formulae in Glover and 
Doyle using derivations more akin to the above state 
feedback results were given in Doyle, Glover, Khar- 
gonekar and Francis [3]. In addition to providing con- 
troller formulae that are simple and expressed in terms 
of plant data as in [8], the methods in that paper are 
a fundamental departure from the 1984 approach. In 
particular, the Youla parameterization and the result- 
ing model-matching problem of the 1984 solution are 

avoided entirely; replaced by a more purely state-space 
approach involving observer-based compensators a pair 
of 2 x 1 block problems, and a separation argument. 
The operator theory still plays a central role (as does 
Redheffer’s work on linear fractional transformations), 
but its use is more straightforward. The key to this 
was a return to simple and familiar state-space and op- 
timal control tools, in the style of Willems [28], such 
as completing the squares and Riccati equations. In- 
terestingly, linear matrix inequalities (LMIs) were also 
mentioned in [28], and they have subsequently taken 
on a much bigger role in robust control. 

Relations between %, have now been established with 
many other topics in modern control: e.g. risk sensi- 
tive control of Whittle [1981, 19901; differential games 
(see Bagar and Bernhard [1991], Limebeer et  aZ[1992], 
Green and Limebeer [1995]); J-lossless factorization 
(Green [1992]); maximum entropy methods of Dym and 
Gohberg [1986] (see Mustafa and Glover [1990]). The 
state-space theory of %, has been also been carried 
much further, by generalizing time-invariant to time- 
varying, infinite horizon to finite horizon, and finite 
dimensional to infinite dimensional and even to some 
nonlinear results. Most of these results used fairly con- 
ventional modern optimal control techniques. 

3 Robust LQG at last? 

The operator-theoretic methods of the early 80s had 
not only signaled a departure from the state-space tech- 
niques of modern control, but also broken with a long 
tradition in regard to the modeling of noise. From com- 
munication theory to Kalman filtering, noise has been 
modeled in the context of stochastic theory, which has 
gained wide acceptance since it naturally incorporates 
the broadband spectral structure of most real-world 
disturbances, leading to performance specifications in 
terms of RMS values of the frequency response (%z 
norms). In contrast, %, control had to offer a worst- 
case point of view in which an adversarial noise would 
excite the peak frequency, which would seem misguided 
were it not for the fact that it allowed for a common 
treatment of noise with the often prevalent dynamic 
uncertainty. 

As state-space R, theory matured in the late 80s and 
brought the focus back to modern control techniques, 
the possibility of restoring the ‘H2 treatment of noise, in 
an 3t, uncertainty context, seemed to be again within 
reach. A number of versions of this mixed ;Fla/X, con- 
trol problem appeared (a few are [I, 13, 32, 4, 21, 25]), 
the ultimate objective being the question of robust X2 
performance: rejection of white signals in the worst- 
case over a set of plants. Significant progress on this 
problem is reported in [26, 22, 32, 10, 51, deriving 
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bounds for the worst-case %2 cost based on state-space 
techniques. Still, the %, and p frameworks retained 
some advantage, with the availability of convex fre- 
quency domain tests for robust performance, and the 
theoretical characterization of such conditions as nec- 
essary and sufficient robustness tests [24, 16, 271. Such 
strong results seemed out of reach for the a problem 
which had to  combine stochastic and worst-case tech- 
niques. 

It turns out, however, that the set-based methodology 
can indeed be extended to the modeling of white noise, 
as developed recently in Paganini’s thesis [17]. By em- 
ploying statistical tests in order to identify a typical 
noise set, robust 312 performance can be viewed as a 
constrained problem in a worst-case setting [18]. Ex- 
tending the scope1 of the quadratic constraint method- 
ology, a frequency domain convex condition for robust- 
ness analysis is derived [20, 191, which for the first time 
places it on an equal footing with the %, performance 
measure; with these results, the cycle of research which 
originated in the LQG robustness theory can be consid- 
ered essentially closed. While some synthesis questions 
still remain, it is clear that the main tools are in place 
for addressing such questions. 

4 OK, but what about real robust control? 

This paper has focused on U, theory and its relation- 
ship with optimal control. What about L1, p, real pa- 
rameters, the rise and fall of vertex and edge theorems, 
NP-hardness, robust modeling and identification, etc.? 
These are all equally interesting and important top- 
ics, but have turned out to have less direct connections 
with optimal control than has U ,  theory. 
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