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Steady-state errors-1

Tracking behavior: Assume

Tracking error
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Steady-state errors-2

Steady-state tracking error

If F(s)=1 (no prefilter) then
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Type k system

A feedback system is of type k  if

Then
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Steady-state errors-3
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Integral control-1

Integral control:
Design the closed-loop system such that

Type k control:

Results in good steady-state behavior

Also:

( )
( ) oL s

L s
s

=

( )
( ) o

k
L s

L s
s

=

1( ) ( ) for 0
1 ( ) ( )

k
k

k
o

sS s s s
L s s L s

= = = →
+ +

O



Dutch Institute of Systems and Control

Integral control-2

then the steady-state error is zero if n < k   (rejection)

Hence if
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k = 1: Integral control: Rejection of constant disturbances
k = 2: Type-2 control: Rejection of ramp disturbances
Etc.

Type k control:
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Integral control-3

Integral control:

“Natural” integrating action is present if the plant transfer
function has one or several poles at 0

If no natural integrating action exists then the compen-
sator needs to provide it

The loop has integrating action of order k
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Integral control-4

“Pure” integral control: 1( )
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PI control:

PID control:

Ziegler-Nichols tuning rules
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Internal model principle

Asymptotic tracking if model of disturbance is included in
the compensator

Francis, D.A. and Wonham, W.M., (1975) The internal model principle for
linear multivariable regulators, Applied Mathematics and Optimization, vol 2,
pp. 170-194
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Frequency response plots

Bode plots Nichols plots

Nyquist

plots



Dutch Institute of Systems and Control

Bode plots-1
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Bode plot:
doubly logarithmic
plot of |L(jω)| versus
ω
semi logarithmic plot
of arg L(jω) versus ω
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Bode plots-2

Helpful technique:

By construction of the asymptotic Bode plots of
elementary first- and second-order factors of the form
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Nyquist plots

Nyquist plot: Locus of
L(jω) in the complex plane
with ω as parameter
Contains less information
than the Bode plot if ω is
not marked along the
locus
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M- and N-circles-1

M-circle: Locus of points z in the complex plane where

Closed-loop transfer function:

N-circle: Locus of points z in the complex plane where
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M- and N-circles-2
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Nichols plots

Nichols plot: Locus of
L(jω) with ω as para-
meter in the

log magnitude
versus

argument
plane

Nichols chart: Nichols plot
with M- and N-loci
included
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Tim
e
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do

mainBandwidth,
resonance peak,
roll-on and roll-off of
the closed-loop
frequency response
and sensitivity
functions; stability
margins

Rise time, delay time,
overshoot, settling time,
steady-state error of the
response to step
reference and
disturbance inputs;
error constants

Classical design specifications
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Classical design techniques

Lead, lag, and lag-lead compensation (loopshaping)
(Root locus approach)
(Guillemin-Truxal design procedure)
Quantitative feedback theory QFT (robust loopshaping)
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Classical design techniques

Change open-loop L(s) to achieve certain closed-loop specs
first modify phase
then correct gain

Rules for loopshaping
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Lead compensation

Lead compensation:
Add extra phase in the
cross-over region to
improve the stability
margins
Typical compensator:
“Phase-advance
network”
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Lead/lag compensator
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Lag compensation

Lag compensation:
Increase the low frequency gain without affecting the
phase in the cross-over region

Example: PI-control:

1( ) j TC j k
j T
ω

ω
ω

+
=



Dutch Institute of Systems and Control

Lead-lag compensation

Lead-lag compensation: Joint use of
lag compensation at low frequencies
phase lead compensation at crossover

Lead, lag, and lead-lag compensation are always used
in combination with gain adjustment
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Notch compensation

(inverse) Notch filters:

suppression of parasitic dynamics
additional gain at specific frequencies

Special form of general second order filter
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Notch compensation
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Notch compensation
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Root locus method-1

Important stage of many designs: Fine tuning of

gain
compensator pole and zero locations

Helpful approach: the root locus method (use rltool!)
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Root locus method-2

Closed-loop characteristic polynomial

Root locus method: Determine the loci of the roots of χ as
the gain k varies
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Root locus method-3

Rules:
For k = 0 the roots are the open-loop poles pi
For k → ∝ a number m of the roots approach the
open-loop zeros zi. The remaining roots approach ∝
The directions of the asymptotes of those roots that
approach ∝   are given by the angles
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Root locus method-4

The asymptotes intersect on the real axis in the point

Those sections of the real axis located to the left of
an odd total number of open-loop poles and zeros on
this axis belong to a locus
The loci are symmetric with respect to the real axis
....

(sum of open-loop poles) (sum of open-loop zeros)
n m
−
−
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Root locus method-5
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Guillemin-Truxal method-1

Procedure:
Specify H
Solve the compensator from

Closed-loop transfer
function:
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Guillemin-Truxal method-2

Example: Choose

This guarantees the system to be of type m + 1
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How to choose the denominator polynomial?
Well-known options:

Butterworth polynomials
Optimal ITAE polynomials
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Butterworth and ITAE polynomials

Butterworth polynomials
Choose the n left-half plane poles on the unit circle so
that together with their right-half plane mirror images
they are uniformly distributed along the unit circle

ITAE polynomials
Place the poles so that

is minimal, where e is the tracking error for a step input

0
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Butterworth and ITAE

0m =
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Guillemin-Truxal method-3

Disadvantages of the method:
Difficult to translate the specs into an unambiguous
choice of H. Often experimentation with other design
methods is needed to establish what may be
achieved. In any case preparatory analysis is
required to determine the order of the compensator
and to make sure that it is proper
The method often results in undesired pole-zero
cancellation between the plant and the compensator
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Quantitative feedback theory QFT-1

Ingredients of QFT:
For a number of selected frequencies, represent the
uncertainty regions of the plant frequency response
in the Nichols chart
Specify tolerance bounds on the magnitude of T
Shape the loop gain so that the tolerance bounds
are never violated
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QFT-2

Example: Plant

Parameter uncertainties:

Nominal parameter values:

Tentative compensator:
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QFT-3

Responses of the nominal design

Specs on |T |

Frequency
[rad/s]

0.2
1
2
5
10

Tolerance band
[dB]

0.5
2
5
10
20
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Uncertainty regions

Uncertainty
regions for the
nominal design
The specs are
not satisfied
Additional
requirement:
The critical area
may not be
entered
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QFT-4

Design method: Manipulate the compensator frequency
reponse so that the loop gain
satisfies the tolerance bounds
avoids the critical region

Preparatory step 1: For each selected frequency,
determine the performance boundary
Preparatory step 2: For each selectedfrequency,
determine the robustness boundary
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Performance and robustness boundaries

Nominal plant
frequency
response

Robustness
boundaries

Performance
boundaries
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QFT-5

Design step: Modify the loop gain such that for each
selected frequency the corresponding point on the loop
gain plot lies above and to the right of the corresponding
boundary
For the case at hand this may be accomplished by a lead
compensator of the form
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sTC s
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Step 1: Set T2 = 0, vary T1

Step 2: Keep T1 fixed, vary T2
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QFT-6

Eventual
design:
T1  = 3
T2 = 0.02
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QFT-7

Responses of the
redesigned system
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Prefilter design-1

2½-degree-of-freedom
configuration
Closed-loop transfer
function

For the present case:
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Prefilter design-2

Use the polynomial F to cancel the (slow) pole at –0.3815,
and let

Perturbed
responses
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