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Overview

Design Methods for Control Systems

Ch. 1. Introduction to feedback control theoryCh. 1. Introduction to feedback control theory

Ch. 2. Classical control system designCh. 2. Classical control system design

Ch. 3. Design of multivariable control systemsCh. 3. Design of multivariable control systems

Ch. 4. LQ, LQG and  H2  control system designCh. 4. LQ, LQG and  H2  control system design

Ch. 5. Uncertainty models and robustnessCh. 5. Uncertainty models and robustness

Ch. 6.         optimization and   -synthesisCh. 6.         optimization and   -synthesis∞H µ



Scope and features
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Linear time-invariant systems
70% SISO- 30% MIMO
Continuous-time
MATLAB exercises

⎯ Control toolbox
⎯ Mu-Tools and Robust Control toolboxes

Mature review of “classical” and 
“modern” control system design techniques



Overview
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Ch. 1. Introduction to feedback control theoryCh. 1. Introduction to feedback control theory

IntroductionIntroduction

System functionsSystem functions
PerformancePerformance

Types of control systemsTypes of control systems

Design issuesDesign issues Low and high frequenciesLow and high frequencies

ConfigurationsConfigurations

High-gain feedbackHigh-gain feedback

StabilityStability

Closed-loop characteristic polynomialClosed-loop characteristic polynomial

Nyquist criterionNyquist criterion

Stability marginsStability margins

RobustnessRobustness

Robustness functionsRobustness functions

Loop shapingLoop shaping

Limits of performanceLimits of performance

Two-degree-of-freedom control systemsTwo-degree-of-freedom control systems



Types of control systems
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Regulator systems
Servo or positioning systems
Tracking systems



Design issues
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Closed-loop stability
Disturbance attenuation
Good command response
Robustness

Plant capacity
Measurement noise

Targets Limitations



Configurations
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Two degrees
of freedom

One degree of 
freedom



High-gain feedback-1
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Signal balanceLoop gain

γ ψ φ= ( )e r eγ= −

Feedback equation
( )e e rγ+ =



High-gain feedback-2
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Feedback equation ( )e e rγ+ =

High gain:

Implies:

Hence:

So that

( )e rγ ≈

1( )y rψ −≈

|||)(| ee >>γ

)(|||| yrre ψ≈⇒<<

In case of unit feedback y r≈ Good tracking



High-gain feedback-3
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( ) ( )δ φ ψ= − −Loop gain

Signal balance:

High gain:

Hence:

Good disturbance reduction

( )z d zδ= −

|||)(| zz >>δ

|||| dz <<



High-gain feedback-4
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Need closed-loop stability

Good tracking and disturbance attentuation are 
retained as long as
the closed-loop system remains stable
the gain remains high

Under these conditions high-gain feedback implies
robustness with respect to loop uncertainty



Pitfalls of high-gain feedback
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High-gain feedback has pitfalls:
Naively making the gain large easily results in an
unstable feedback system
Even if the feedback system is stable overly large
plant inputs may occur that exceed the plant capacity
Measurement noise causes loss of performance



Stability-1
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State space representation: ( ) ( ) ( )
( )
( ) ( ) ( )
( )

x t Ax t Br t
e t
u t Cx t Dr t
z t

= +

⎡ ⎤
⎢ ⎥ = +⎢ ⎥
⎢ ⎥⎣ ⎦



Stability-2
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( ) ( ) ( )
( )
( ) ( ) ( )
( )

x t Ax t Br t
e t
u t Cx t Dr t
z t

= +

⎡ ⎤
⎢ ⎥ = +⎢ ⎥
⎢ ⎥⎣ ⎦

The closed-loop system is 
stable if its state space
representation is 
asymptotically stable

Equivalent statements:
for every solution of

All eigenvalues of A have strictly negative real parts
All roots of det(sI – A) have strictly negative real parts

( ) ( )x t Ax t=( ) 0 asx t t→ → ∞



Stability-3
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The control system is BIBO stable if every bounded input 
signal r results in bounded output signals e, u and z.

BIBO = “bounded input bounded output”

Asymptotic stability BIBO stability⇒

The converse is not true



Stability-4
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Internal stability

Inject “internal” signals into each “exposed
interconnection” of the system, and define additional
“internal” output signals after each injection point

Then the system is internally stable if it is BIBO stable with
respect to all inputs (external and internal) and all
(external and internal) outputs



Stability-5
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Example



Stability-6
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If each component system is stabilizable and detectable
(“has no hidden unstable modes”) then

Stability Internal stability⇔

When input-output descriptions are used (such as 
transfer functions) internal stability is often easier to
check than asymptotic stability



Closed-loop characteristic polynomial-1
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( ) ( ) ( )
( ) ( ) ( )

x t Ax t Be t
y t Cx t De t

= +
= +

State space representation of 
the open-loop system:
Characteristic polynomial: ( ) det( )s sI Aχ = −

State space representation
of the closed-loop system:

Characteristic polynomial: ( ) det( )cl cls sI Aχ = −

1

( ) ( ),

( )
cl

cl

x t A x t

A A B I D C−

=

= − +



Closed-loop characteristic polynomial-2
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P(s) plant transfer matrix
C(s) compensator transfer matrix
L(s)=P(s)C(s) loop gain transfer matrix

Then
det( ( ))( ) ( )
det( ( ))cl

I L ss s
I L

χ χ +
=

+ ∞



Closed-loop characteristic polynomial-3
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det( ( ))( ) ( )
det( ( ))cl

I L ss s
I L

χ χ +
=

+ ∞

( ) ( )( ) ( ) ( )
( ) ( )

N s Y sL s P s C s
D s X s

= = ⋅SISO case:

Then (within a nonzero constant factor)

( ) ( ) ( ) ( ) ( )cl s D s X s N s Y sχ = +( ) ( ) ( )s D s X sχ =



Nyquist criterion

Design Methods for Control Systems

Consider the SISO case 
The locus of                               in the complex plane is 
called the Nyquist plot of the loop gain

The number of unstable closed-
loop poles

=
The number of times the Nyquist 

plot encircles the point –1
+

The number of unstable open-loop 
poles

( ),L jω ω ∈ R



Generalized Nyquist criterion
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Consider the MIMO case

The number of unstable closed-loop poles
=

The number of times the locus of

encircles the origin
+

The number of unstable open-loop poles

det( ( )), RI L jω ω+ ∈

(Principle of the argument)



Stability margins-1
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In the SISO case, the point –1 is a critical point for
the Nyquist plot of the closed-loop system. If the 
Nyquist plot is changed so that it crosses the point –1 
then the system becomes unstable
If the closed-loop system is stable but the Nyquist 
plot passes closely by –1 then
the system is near-unstable, that is, has an
oscillatory response
the system may become unstable by small
perturbations of the plant, that is, the system is not
robust



Stability margins-2
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There exist various stability margins. They measure
how close the Nyquist plot gets to –1 

Gain margin km

Phase margin φm

Modulus margin τm
(Landau)



System functions: L and S
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Loop gain L Sensitivity function S

1
1

z v
L

S

=
+

L PC=



System functions: R
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Input disturbance (‘proces’) sensitivity
function R

1
1

z Pv SP r
L R

= =
+



System functions: H and T
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Closed-loop transfer 
function H

Complementary
sensitivity function T

1
Lz F r

L
H

=
+ 1

LH F
L

T

=
+



System functions: U
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Input (‘control’) sensitivity function U

( )
1

Cu Fr m v
CP

U

= − −
+



Measurement noise
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1
1 1 1

PC PCz v Fr m
PC PC PC

T TS

= + −
+ + +



S, R, U and T
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1 1 1

2 2 2

1
1 1

1 1

P
z v vS RPC PC
z v vC PC U T

PC PC

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤+ += =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦− −⎢ ⎥+ +⎣ ⎦

S R
U T

⎡ ⎤
⎢ ⎥− −⎣ ⎦



Design interrelations
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1
1

1

S
L

LT
L

=
+

=
+

/U P
R

T

T F
SP

H

=
=
=

S and  T are suitable objects for manipulation



Low and high frequencies-1
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Typical shapes for S and T



Low and high frequencies-2
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Loop gain L

large at low frequencies:
small at high frequencies:

Crossover region:

| ( ) | 1, 1/ , 1L j S L Tω >> ≈ ≈
| ( ) | 1, 1,L j S T Lω << ≈ ≈

| ( ) | 1L jω ≈



Low and high frequencies-3

Design Methods for Control Systems

1/ for low frequencies
/

for high frequencies1
PCU T P

CPC
⎧

= = ≈ ⎨
+ ⎩

input sensitivity

input disturbance
sensitivity

1/ for low frequencies
for high frequencies1

CPR SP
PPC

⎧
= = ≈ ⎨

+ ⎩

closed-loop transfer
function

H TF= F corrects T



Robustness functions-1
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Sufficient condition for
stability under perturbation:

( ) ( ) 1 ( ) ,o oL j L j L jω ω ω

ω

− < +

∈R



Robustness functions-2
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Equivalently,

( ) ( ) 1 ( )
,

( ) ( )
o o

o o

L j L j L j
L j L j

ω ω ω
ω

ω ω
− +

< ∈ R

or

( ) ( ) 1 ,
( ) ( )

o

o o

L j L j
L j T j

ω ω
ω

ω ω
−

< ∈R



Robustness functions-3
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Bound on the relative size of perturbations:

1
( ) ( )

( ) ,
( )

o

o

L j L j
W j

L j
ω ω

ω ω
ω

−
≤ ∈R

Sufficient and necessary condition for stability under all
perturbations that satisfy the bound:

1
1( ) ,
( )o

W j
T j

ω ω
ω

< ∈R



Robustness functions-4
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Size of the smallest
perturbation that may
destabilize the system:

1
1( ) ,

( )o

W j
T j

ω ω
ω

= ∈R



Robustness functions-5
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The preceding discussion focuses on preventing the
Nyquist plot of the loop gain L from crossing the point −1.
Preventing the inverse Nyquist plot − that is, the Nyquist
plot of 1/L − from crossing the point −1 also guarantees
stability.

Sufficient condition:

1 1 11 ,
( ) ( ) ( )o oL j L j L j

ω
ω ω ω

− < + ∈R



Robustness functions-6
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Equivalently,

1 1
( ) ( ) 1 ,

1 ( )
( )

o

o
o

L j L j
S j

L j

ω ω
ω

ω
ω

−
< ∈ R



Robustness functions-7
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Consider perturbations such that

2

1 1
( ) ( )

( ) ,
1
( )

o

o

L j L j
W j

L j

ω ω
ω ω

ω

−
≤ ∈R

Sufficient and necessary condition for robust stability:

2
1( ) ,
( )o

W j
S j

ω ω
ω

< ∈R



Robustness functions-8
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Size of the smallest
perturbation that may
destabilize the system:

2
1( ) ,
( )o

W j
S j

ω ω
ω

= ∈R



Combined robustness test-1
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Define

( ) ( )
( )

( )
o

L
o

L j L j
j

L j
ω ω

δ ω
ω

−
=

1

1 1
( ) ( )

( )
1
( )

o
L

o

L j L j
j

L j

ω ω
δ ω

ω

−

−
=



Combined robustness test-2
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Then the perturbed closed-loop system is stable if

ω∀ ∈ R

typically satisfied
at high frequencies

typically satisfied
at low frequencies

or1

1( )
( )L

j
S j

δ ω
ω

− <
1( )

( )L j
T j

δ ω
ω

<



Combined robustness test-3
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Critical frequency region: crossover area



Loop shaping

Design Methods for Control Systems

Low frequencies: large
loop gain
High frequencies: small
loop gain

In the crossover region the 
phase is constrained
because of stability



Bode’s gain-phase relationship-1
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Between break frequencies the loop gain behaves as

( ) ( )nL j c jω ω≈

Hence
| ( ) |

arg ( )
2

nL j c

L j n

ω ω
πω

≈

≈ ×

Phase and magnitude do not behave independently
Bode’s gain-phase relationship describes the relation
more accurately



Bode’s gain-phase relationship-2
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The limitations imposed by stability on the phase in the 
crossover region by Bode’s gain-phase relationship limit 
the rate at which the loop gain decreases:
If, say,

then

arg ( ) in the crossover region
2

L j πω ≈ −

1| ( ) | in the crossover regionL j cω ω −≈



Limits of performance
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Bode’s integral 
The Freudenberg-Looze equalities

Limitations are imposed by
causality
the pole-zero configuration



Bode’s integral-1
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If L has at least two more poles than zeros then

0
log ( ) Re 0i

i
S j d pω ω π

∞
= ≥∑∫

The pi are the right-half plane poles of the loop gain.

Proof: Use the Poisson 
integral from complex 
function theory



Bode’s integral-1
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Bode’s integral-1
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Bode’s integral-2
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“Dual” result: Suppose that the loop has integrating 
action of at least order 2. Then

0

1log (1/ ) Re 0
i i

T j d
z

ω ω π
∞

= ≥∑∫
The zi are the right-half plane zeros of the loop gain.



Freudenberg-Looze equality-1
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Let z be any right-half plane zero of the loop gain. Poisson’s
formula of complex function theory leads to the equality

1
poles0

log( ( ) ) ( ) log ( ) 0zS j dW B zω ω
∞ −= ≥∫ Strengthens Bode’s

integral

1 Im 1 Im( ) arctan arctan
Re Rez

z zW
z z

ω ωω
π π

− +
= + Increasing function. 

Rises most steeply at |z|.

poles ( ) i

i i

p sB s
p s

−
=

+∏ Blaschke product



Freudenberg-Looze equality-2
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Frequencies where Wz
rises most steeply 
contribute most to the 
integral

Wz for different values of arg z
(a) arg z = 0
(b) arg z is almost π/2



Freudenberg-Looze equality-3
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The bounds for |S| hold provided

1

1
1

( )
11 ( ) -1 1 ( )

poles
1 ( )

z

z
z

W
W

WB z
ω

ω
ωµ

ε
−

−⎛ ⎞≥ ⋅⎜ ⎟
⎝ ⎠

The dependence of the right-hand 
side on the various parameters 
may be analyzed



Freudenberg-Looze equality-4

Design Methods for Control Systems

Effects of right-half plane zeros on S
|S| may be made small up to the frequency mini |zi|. 

Attempting to make |S| small beyond this frequency 
makes |S| peak

Right-half plane poles 
further impair the 
achievable reduction of 
|S| (in particular, nearly-
cancelling right-half plane 
pole-zero pairs)



Freudenberg-Looze equality-5
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Rederivation of the Freudenberg-Looze equality while

replacing L with 1/L, so that

interchanging the roles of the poles and the zeros

leads to

1 1
11 11

LS T
L L

L

= → = =
+ ++

1
zeros0

log( ( ) ) ( ) log ( ) 0pT j dW B pω ω
∞ −= ≥∫



Freudenberg-Looze equality-6
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1
zeros0

log( ( ) ) ( ) log ( ) 0pT j dW B pω ω
∞ −= ≥∫

p is any right-half plane pole of the loop gain, and

zeros ( ) i

i i

z sB s
z s

−
=

+∏

In the application of the equality, interchange the roles of 
low and high frequencies



Freudenberg-Looze equality-7
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Effects of right-half plane poles on T
|T| may be made small above the frequency maxi |pi|. 

Attempting to make |T| small below this frequency 
makes |T| peak
Right-half plane zeros further impair the achievable 
reduction of |T| (in particular, nearly-cancelling right-half 
plane pole-zero pairs)



Freudenberg-Looze equality-8
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Consequences
for S and T



Two-degree-of-freedom systems-1
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,N YP C
D X

= =Let

Then the closed-loop transfer function is

cl1
PC NYH F F

PC D
= =

+

with Dcl the closed-loop characteristic polynomial

clD DX NY= +



Two-degree-of-freedom systems-2
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Other two-degree-of-freedom configuration:

cl

NXH F
D

=

has zeros at the 
roots of N and X

cl

NYH F
D

= has zeros at the 
roots of N and Y

Can the zeros of H be made independent 
of the feedback compensator?



Two-degree-of-freedom systems-3
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Further two-degree-of-freedom configuration

1 2
1 2

1 2

, Y YNP C C
D X X

= = =

HaveNeed
to achieve the same loop 
gain as in the two previous 
cases

1 2 1 2,X X X Y Y Y= =

1 2 1

cl1
PC NX YH

PC D
= =

+



Two-degree-of-freedom systems-4

Design Methods for Control Systems

2 1

cl

NX YH
D

=

H is independent of the compensator if we let

1 2 2 11 ,Y X Y Y X X= = ⇒ = =

so that

1 2
cl

1 , , NC C Y H
X D

= = =



Two-degree-of-freedom systems-5

Design Methods for Control Systems

Resulting feedback system Equivalent configuration



Two-degree-of-freedom systems-6
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Extension

May choose F polynomial so that we obtain a 
“1½-degree-of-freedom” system



Two-degree-of-freedom systems-7
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Further extension:

F polynomial, Fo rational:
“2½-degree-of-freedom” system

o
cl

NFH F
D

=
F =1, Fo rational:
2-degree-of-freedom system
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