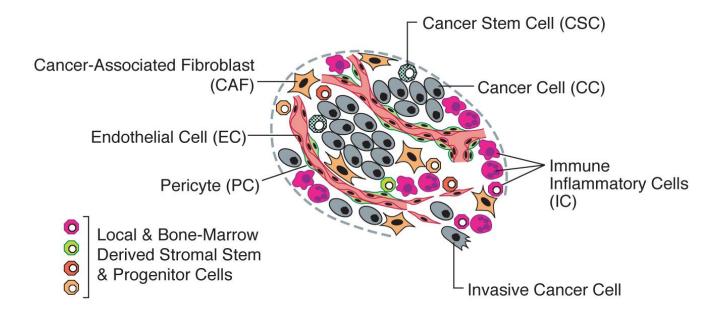
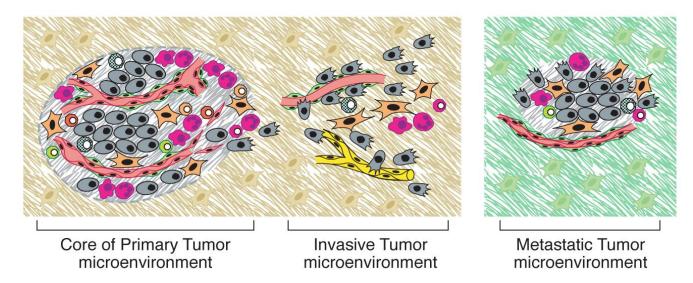
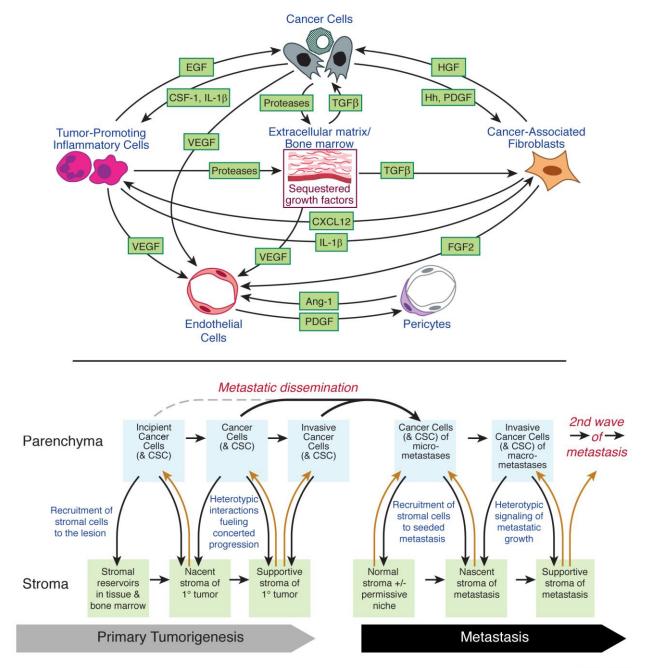
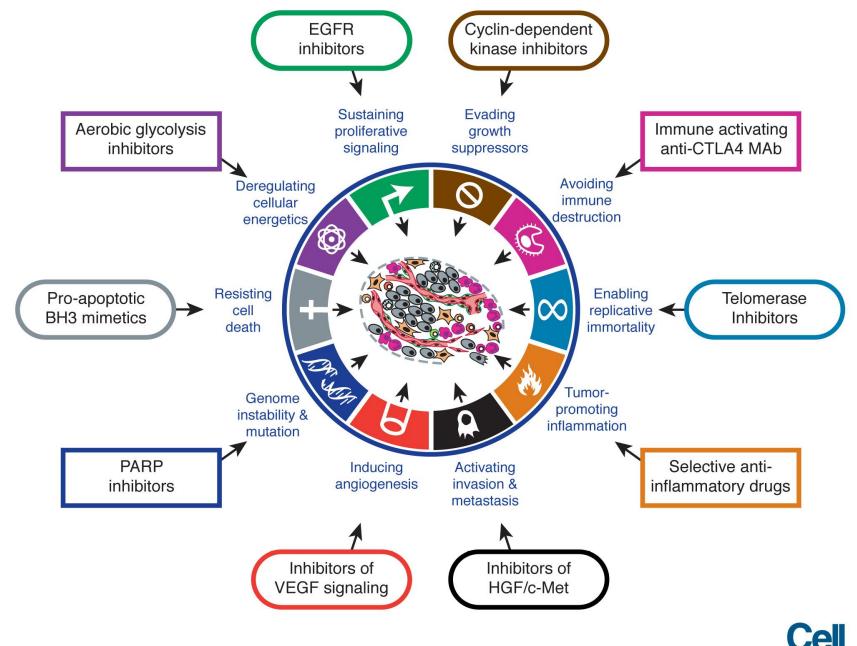

<u>OCT5715 - Modelos Experimentais em Oncologia:</u> <u>Aula 1</u>


Prof. Dr. Harley Francisco de Oliveira FMRP-USP

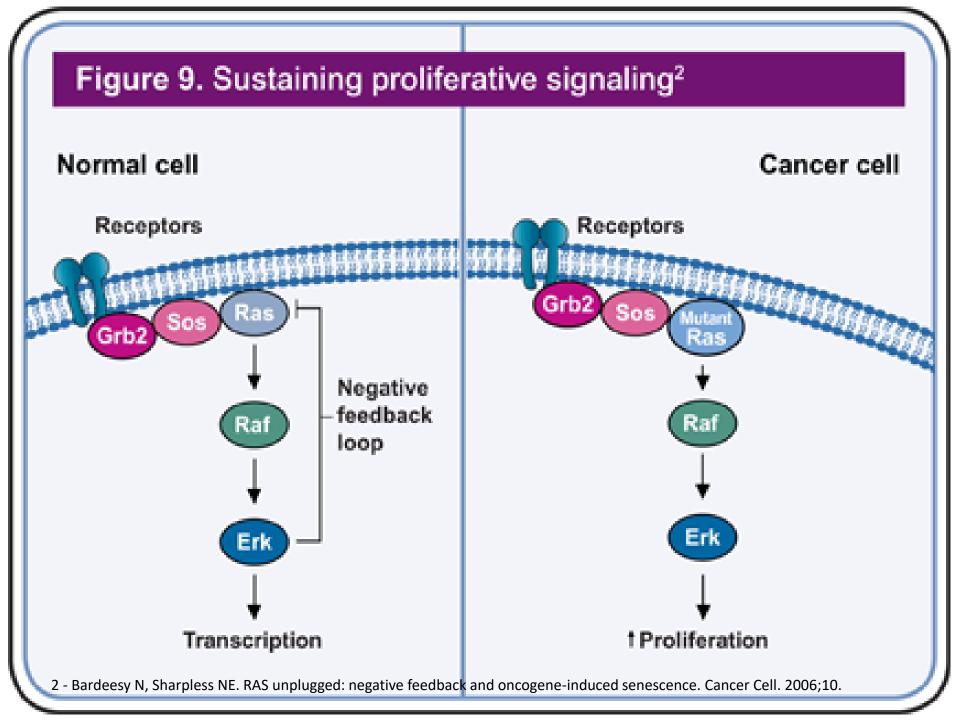




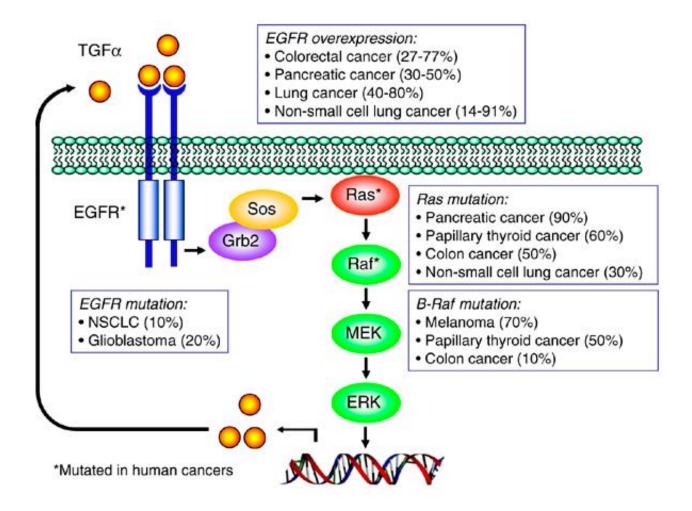


PRESS

 Growth signaling in normal cells is a highly regulated process where in proliferative signals are activated whenever necessary and deactivated when no longer necessary; this tight regulation ensures cell homeostasis. However, in cancer cells this regulation is compromised.

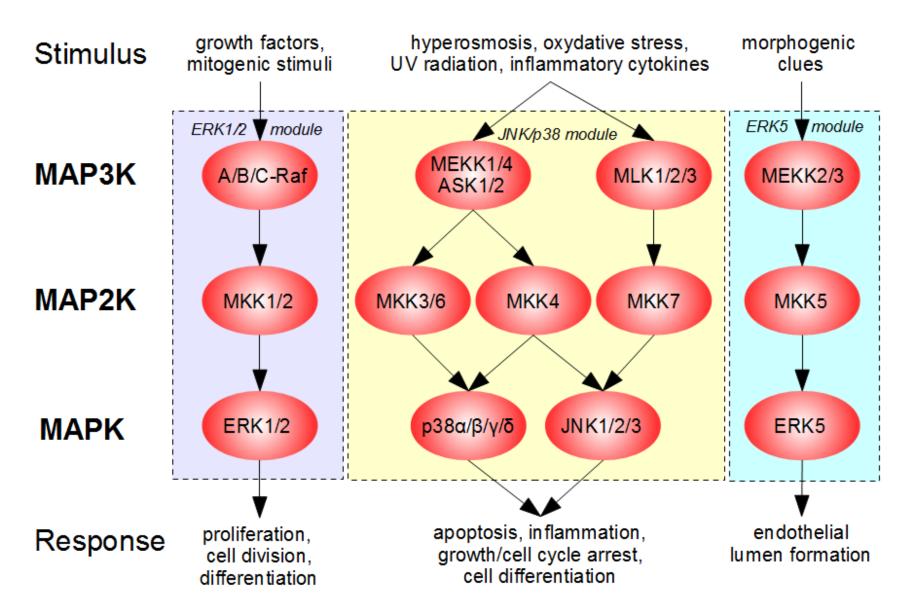

- Increasing growth factor production;
- Stimulating normal cells in the microenvironment to provide cancer cells with growth factors;
- Increasing the number of receptors on the cell surface;
- Structurally altering receptors to facilitate cancer cell signaling;
- Activating proteins in the downstream signaling pathway.

• Cancer cells to disrupt negative feedback loops - dampen a signaling pathway


whenever a mitogenic signal is hyperactivated. ex: RAS oncoprotein and PTEN.

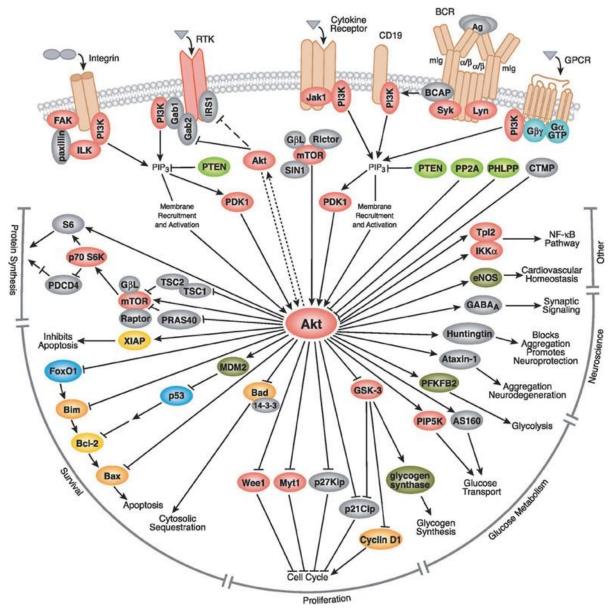
- Oncogenic activity of RAS is not the result of overactive RAS signaling but rather the disruption of normal negative feedback mechanisms operated by the oncogenic GTPase.
- Loss-of-function mutations in Phosphatase and TENsin homolog (PTEN), which amplify phosphatidylinositol 3-kinase (PI3K) signaling.

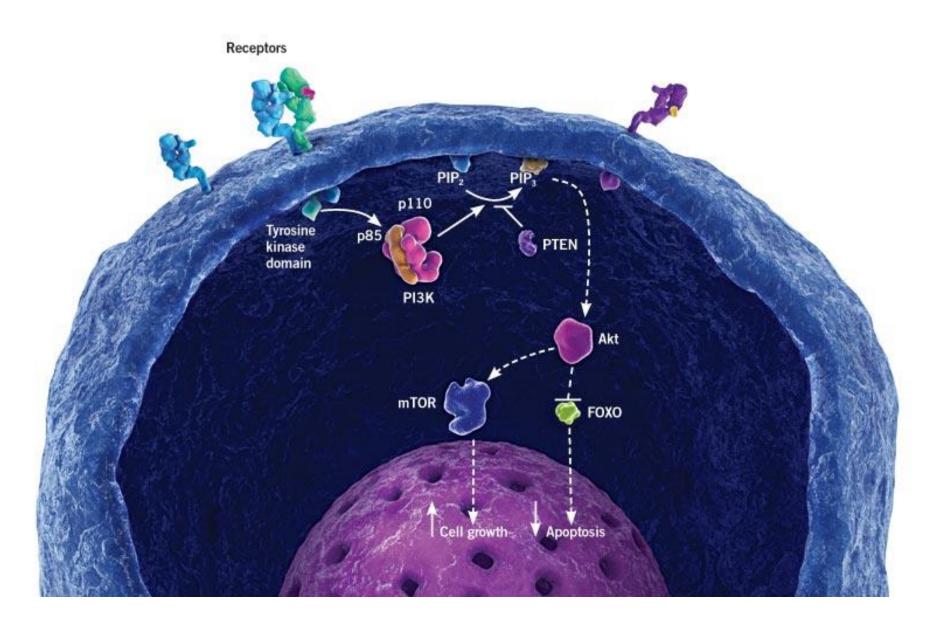
- Key Signaling pathways:
 - Ras Pathway;
 - MAPK Signaling;
 - PTEN Pathway;
 - PI3K Pathway;
 - mTOR Pathway;
 - AKT Signaling;
 - Cyclins and Cell Cycle Regulation;


Oncogene activation of the ERK MAPK cascade

Mitogen-activated protein kinases - MAPk

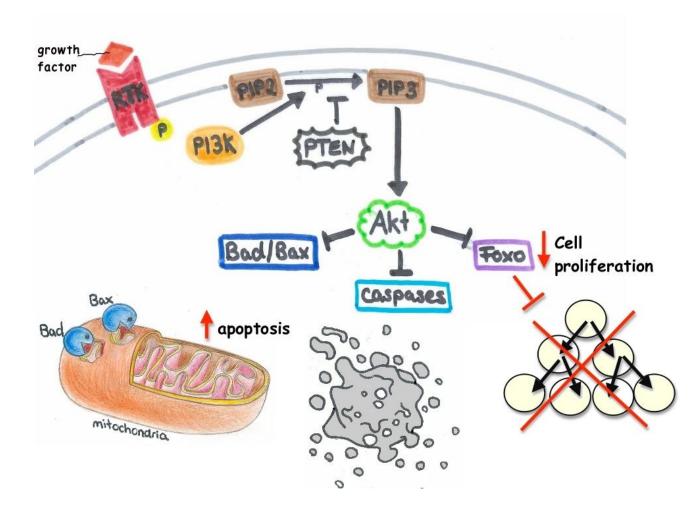
- CMGC (CDK/MAPK/GSK3/CLK) kinase group.
- Cyclin-dependent kinases (CDKs).
- Involved in directing cellular responses to a diverse array of stimuli, such as mitogens, osmotic stress, heat shockand proinflammatory cytokines.
- Regulate proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis among many others.

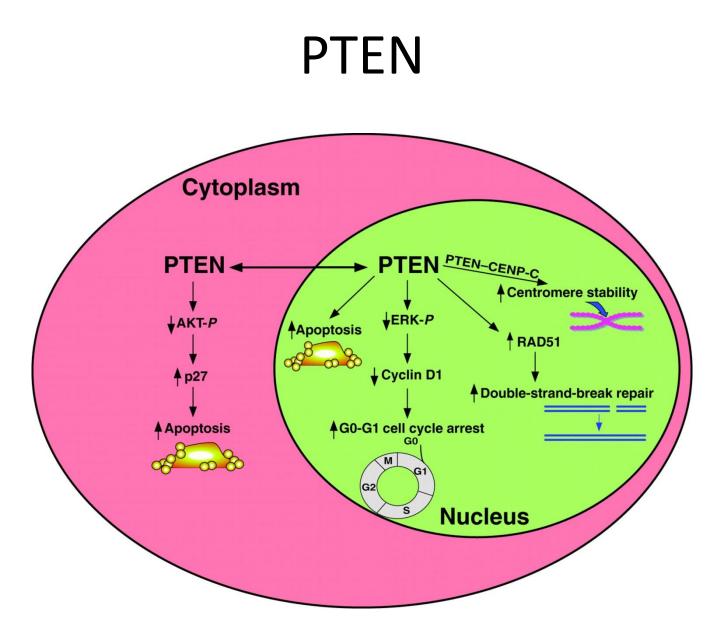

Simplified overview of mammalian MAPK cascades


Targeting PI3K/Akt/mTOR signaling: The shutdown of cell survival signaling

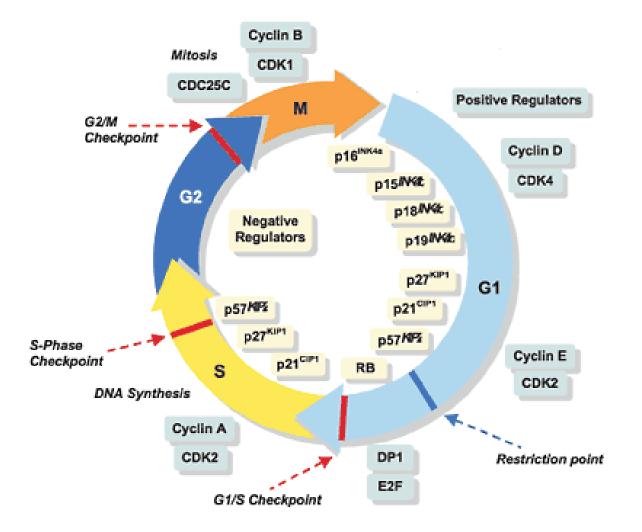
- Activation of the PI3K/Akt/mTOR signaling pathway regulates¹:
- Cell growth
- Cell proliferation
- Cell survival

PI3K/Akt/mTOR signaling

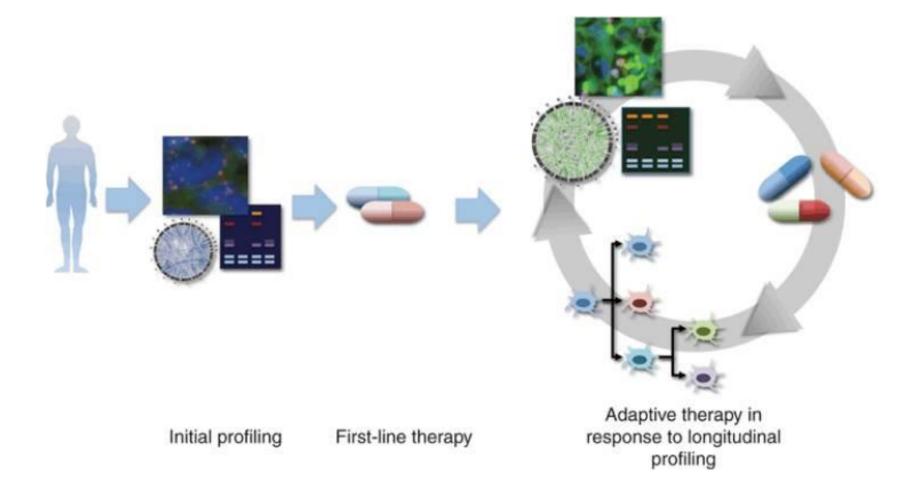

PI3K/Akt/mTOR signaling



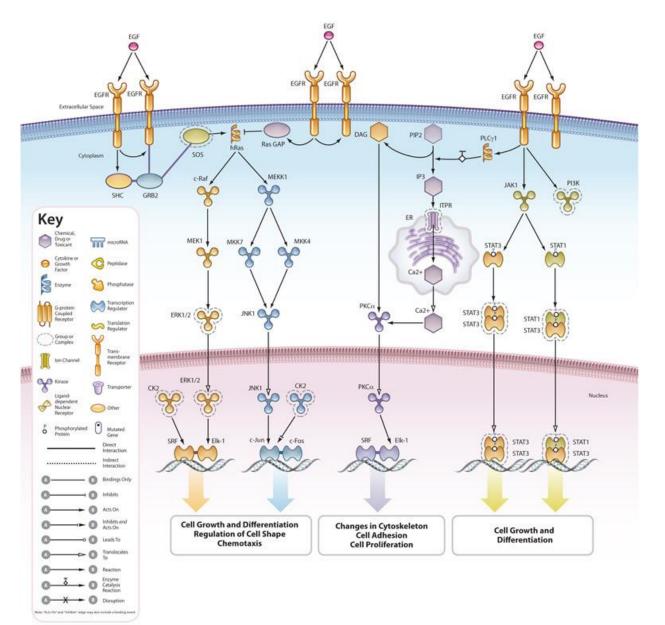
Phosphatase and tensin homolog (PTEN)

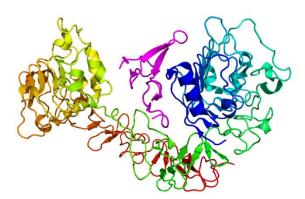

- Mutations of this gene are a step in the development of many cancers.
- Tumor suppressor gene through the action of its phosphatase protein product.
- This phosphatase is involved in the regulation of the cell cycle, preventing cells from growing and dividing too rapidly.
- It is one of the targets of an oncomiR, MIRN21.
- This gene was identified as a tumor suppressor that is mutated in a large number of cancers at high frequency.
- PIP3 PIP2 in cells and functions as a tumor suppressor by negatively regulating Akt/PKB signaling pathway.

PTEN



Cell Cycle Regulation: cyclins and cell cycle checkpoints

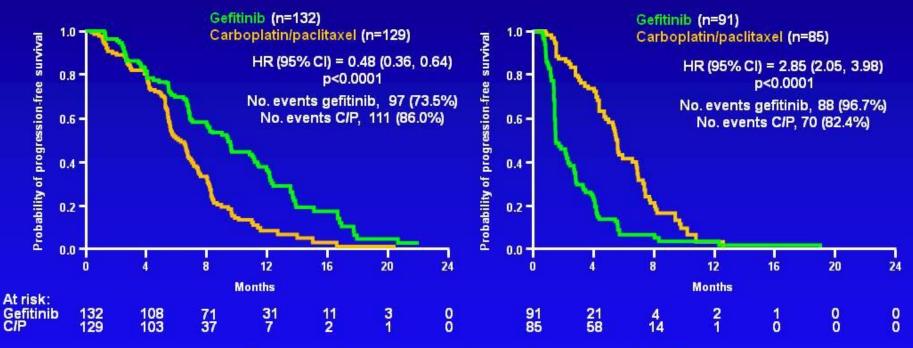

Translational medicine: Personalized cancer medicine


Model: Epidermal growh factor (EGF) family

- Regulate cell proliferation, migration and differentiation via tyrosine kinase receptors on target cells.
- The EGF receptor has a cytoplasmic tyrosine kinase domain, a transmembrane domain and an extracellular domain that binds to EGF.
- Ligand binding to the EGF receptor results in its dimerization, autophosphorylation and activation.
- Once activated, the EGF receptor transmits intracellular signals via the phosphorylation of several proteins.

Model: Epidermal growh factor (EGF) family

EGFR/ HER1 in cancer:


Below is a timeline of the major events that have bought about personalised treatment for non-small cell lung cancer

- 1962 Stanley Cohen discovers EGF in mice
- 1977 Identification of EGFR by Cohen
- 1980 Demonstration that EGFR has intrinsic kinase activity
- 1981 John Mendelsohn conducts research focusing on EGFR proposes EGFR as anticancer target
- 1984 Human EGFR cloned and sequenced
- Late 1980s Mounting evidence for EGFR importance
- 1990 First clinical trial of anti-EGFR agent (monoclonal antibody) confirms mode of action
- 1994 New class of EGFR-tyrosine kinase inhibitors discovered
- 2001 Anti-tumour activity shown in Phase II results
- € 2002 Gefitinib approved for non-small cell lung cancer in Japan
- 2004 Erlotinib approved by FDA for non-small cell lung cancer
- € 2004 Discovery of EGFR mutations exons 18–21 linked to sensitivity to gefitinib
- 2005 Results from the BR21 study
- 2004–2006 Research into EGFR biomarkers widens
- 2006 Panitumumab approved for colorectal cancer
- 2007- Results from key clinical trials
- 2007 DxS develop EGFR29 Mutation Test Kit
- 2008 Results from the IPASS study
- € 2011 Results from the EURTAC study

IPASS: Progression-free survival in EGFRmutation + vs - patients

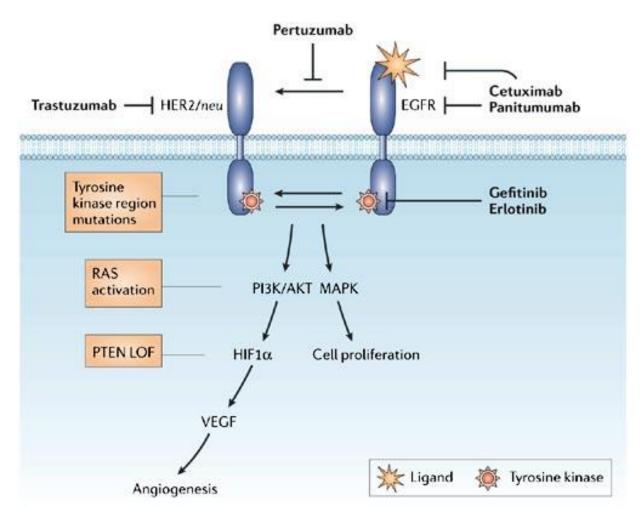
EGFR mutation-positive

EGFR mutation-negative

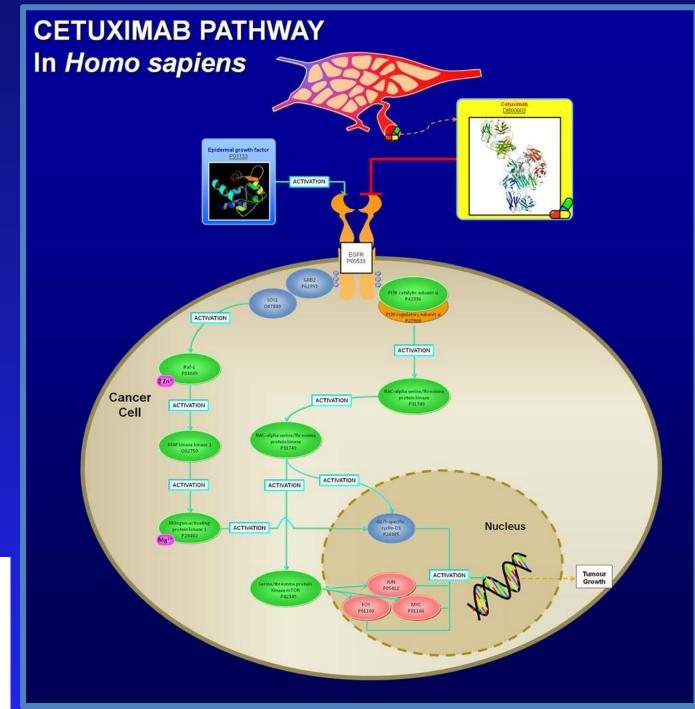
Treatment by subgroup interaction test, p<0.0001

Incidence of EGFR mutation: 261/437 = 59.7%

Mok et al 2008

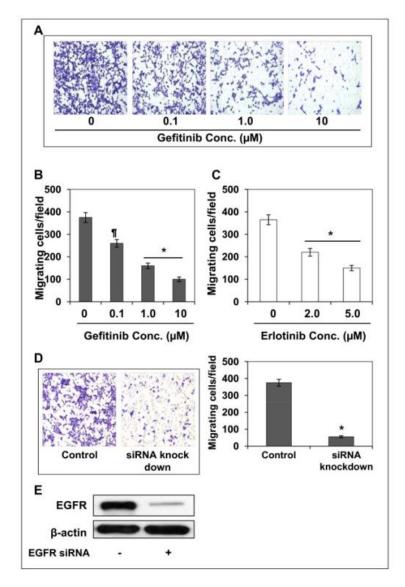

EGFR Mutations by Race and Other Clinical Characteristics

Subgroup	<u>Total</u>	<u>East Asian</u>	<u>Non-East</u> <u>Asian</u>
Smokers	11%	17%	4%
Never-smokers	54%	60%	35%
Adenocarcinoma	42%	49%	16%
Non-AdenoCa	3%	4%	1%
Male	16%	22%	1%
Female	46%	58%	20%


From trials: Paez, 2004; Pao 2004; Han 2005, Mitsudomi 2005, Eberhard 2005 Shigamatsu 2005, Huang 2005

Janne, ASCO Educational Session, 2007

EGFR Inhibitors



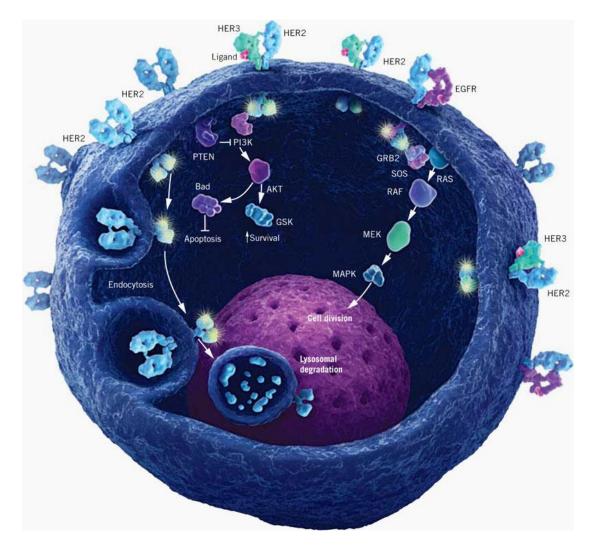
Copyright © 2006 Nature Publishing Group Nature Reviews | Drug Discovery

Inhibitor the invasive potential of head and neck cutaneous squamous cell carcinoma cells by targeting EGFR expression and epithelial-to-mesenchymal transition

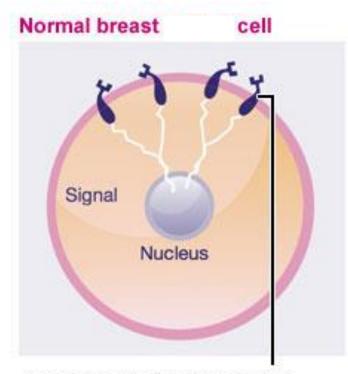
EGFR-Expressing Tumors

Examples of EGFR-Expressing Tumors	Examples of Non–EGFR-Expressing Tumors			
 Non-small-cell lung cancer Colorectal cancer Breast cancer Pancreatic cancer Prostate cancer Ovarian cancer Head and neck cancer Esophageal cancer Glioblastoma multiforme 	 Small-cell lung cancer Sarcomas Lymphoma/leukemia Myeloma 			

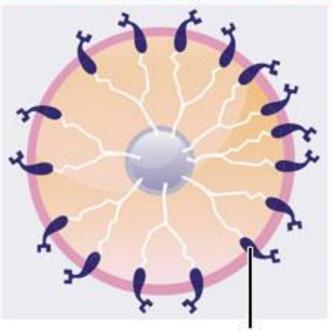
Ciardiello F, Tortora G. Eur J Cancer. 2003;39:1348-1354. Salomon DS et al. Ori Rev Grack Histophyl. 1856;19:183-232.


Incidence of EGFR Expression in Selected Solid Tumors

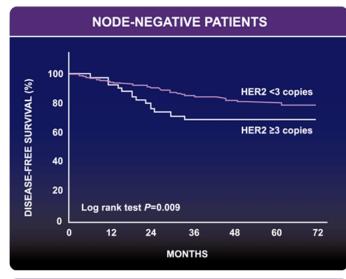
Tumor Type	EGFR Expression (%)		
NSCLC	40-80		
SCCHN	95		
Colorectal	25-77		
Glioblastoma	40-60		
Breast	14-91		
Esophageal	35-88		
Pancreatic	30-50		
Prostate	41-100		
Ovarian	35-70		

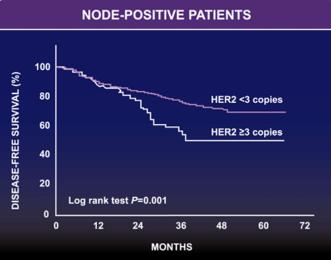

SCCHN = Squamous cell carcinoma head and neck.

Reprinted with permission from Arteage C. Sensin Oncol (2003;30(suppl 7):3-14.


HER2 / c - erb2

HER2 / c – erb2: Breast cancer




Normal amount of HER2 receptors send signals telling cells to grow and divide.¹ Abnormal HER2+ breast cancer cell

Too many HER2 receptors send more signals, causing cells to grow too quickly.¹

HER2 / c – erb2: Breast cancer

HER2 / c - erb2

- How is HER2 measured?
- Fluorescence in situ hybridization (FISH), which detects gene amplification by measuring the number of copies of the *HER2* gene in the nuclei of tumor cells
- Immunohistochemistry (IHC), which measures the number of HER2 receptors on the cell surface and therefore detects receptor overexpression
- Other methods of HER2 testing have been used increasingly in clinical studies and may eventually be incorporated into routine practice. These include:
- Chromogenic in situ hybridization (CISH), which measures gene amplification using a light microscope rather than a fluorescent microscope, which is required for FISH
- Reverse-transcriptase polymerase chain reaction (RT-PCR), which detects *HER2* gene amplification

Highlights from the EGF Signaling Pathway

Gene Symbol	Name	Cellular Functions	Disease Associations	Subcellular Locations	Upstream Regulators	Binding Partners	Downstream Interactors	Antibodies	8mail Molecules
8TAT3	signal transducer and activator of transcription 3 (scute-phase response factor)	proliferation apoptosis expression in transformation differentiation	tumorigenesis obesity enterocolitis Crohn's Disease hyperphagia	nucleus cytopiasm focal adhesions nuclear foci plasma membrane	IL6 IL10 IL2 IL21 Interferon Alpha	FOS EGFR PRKCD DIRAS3 IL2RB	TERT IL10 HIF1A CDKN1A SOCS3	SAB2500993, AntI-STAT3 antibody produced in goat	
EGFR	epidermal growth factor receptor	proliferation apoptosis migration transformation survival	cancer tumorigenesis neoplasia psoriasis endometriosis	cell surface plasma membrane nucleus cytoplasm caveolae	EGF TNF CBL Iysophosphatidic acid HBEGF	EGF AXL GRB2 CBL SRC	Mapk MAPK1 Akt Erk1/2 MAPK3	E2169, Monocional Anti-EGF Receptor antibody produced in mouse	Inhibitor: PZ0129, CP-380736
o-Raf	v-raf-1 murine leukemia viral oncogene homolog 1	transformation proliferation apoptosis cell cycle progression cell death	transformation proliferation apoptosis cell cycle progression cell death	cytopiasm nucleus perinuclear region piasma membrane filamentous network	EGF TP53 JAK1 OSM HRAS	HRAS YWHAZ MAP2K1 YWHAB RB1	MAPK1 RB1 HMGA2 MAP2K1 Mapk	R2404, Monocional Anti-Raf-1/c-Raf antibody produced in mouse	Inhibitor: G8418, GW5074
JNK1	mitogen- activated protein kinase 8	apoptosis celi death proliferation survival differentiation	tumorigenesis hypertrophy Insulin resistance cancer heart failure	nucleus cytopiasm focal adhesions piasma membrane mitochondria	TNF EGF IL18 EGFR IGF1	JUN MAPK8IP1 MAP2K4 MAP2K7 THRB	CDKN1B JUN APP AP-1 MAP3K11	8AB4200178, Monocional Anti-JNK antibody produced in mouse	Inhibitor: 86687, SP600125
o-Jun	Jun proto- oncogene	apoptosis proliferation transformation expression in cell death	tumorigenesis cancer neoplasia Alzheimer's Disease dedifferentiation	nucleus cytoplasm perinuclear region Goigi apperatus apical processes	TNF IL18 beta-estradiol TGFB1 lipopolysaccharide	FOS PTG52 MAPK3 TAF1 ATF2	HIF1A SPP1 IL6 IL8 ESR2	SAB4300306, Antl-JUN (Ab- 91) antibody produced in rabbit	
PKCa	protein kinase C, aipha	apoptosis proliferation activation in migration phosphorylation in	neurodegenerative disease diabetes rheumatoid arthritis malignant neoplasm cardiomyopathy	cytopiasm nucleus plasma membrane principal plece cytoskeleton	phosphatidylserine EGF beta-estradiol 15(S)-HETE D-glucose	ITGB1 AKAP12 EGFR CAV1 SELL	Erk1/2 APP PDE3A MAPK1 IGF2	WH0006578M1, Monocional Anti-PRKCA antibody produced in mouse	inhibitor: K1839, K- 252a
8TAT1	signal transducer and activator of transcription 1, 91kDa	apoptosis expression in proliferation response differentiation	Infection tumorigenesis pneumonia cancer fibrosis	nucleus cytoplasm mitochondria neuromuscular junctions	IFNG Interferon Alpha IFNA2 IL6 IFNB1	EIF2AK2 IFNGR1 FOS STAT2 PIN1	IRF1 CDKN1A IRF7 CASP1 CD40	8AB4300328, Anti-STAT1 (Ab-701) antibody produced in rabbit	
EOF	epiciermai growth factor	proliferation migration apoptosis growth activation in	Alzheimer's Disease diabetes meilitus polycystic kidney disease schizophrenia cancer	apical membrane basolateral membrane cell surface Golgi apparatus clathrin-coated vesicles	ER882 ER883 ADAI/10 CHUK PI4KA	EGFR ER883 ER882 PIK3R2 TAT	EGFR MAPK1 MAPK3 FLT1 Erk1/2	E2620, Monocional Anti-Epidermal Growth Factor antibody produced in mouse	inhibitor: 82871, Suramin sodium sait
ORB2	growth factor receptor- bound protein 2	growth proliferation differentiation signaling transformation	Crohn's disease leiomyomatosis cardiac fibrosis hypetrophy uterine cancer	centrosome cytosol perinuclear region plasma membrane axons	F2 EGF Bcr IGF1 SHC1	SHC1 OBL SOS1 EGFR GAB1	MAPK3 EGFR ERBB2 RAF1 CBL	SAB2500491, Antl-GRE2 antibody produced in goat	
MEK1	mitogen- activated protein kinase kinase1	apoptosis proliferation transformation differentiation migration	tumorigenesis neopiasia hypertrophy cardiofaciocutaneous syndrome hyperaigesia	cytoplasm midbody nucleus centrosome mitotic spindle	EGF LEF RAF1v RAC1 TNF	MAPK1 RAF1 MAPK3 PEBP4 KSR1	MLANA MAPK1 DCT SILV TYRP1	8AB4602408, Anti-MEK1 antibody produced in rabbit	inhibitor: P216, PD 98,059
hRas	v-Ha-ras Harvey rat sarcoma viral oncogene homolog	transformation proliferation growth apoptosis senescence	tumorigenesis cancer neoplasia papillomatosis neurodegeneration	nucleus plasma membrane Golgi apparatus cytoplasm iameilipodia	Cd3 CD28 AXIN1 FTase IL6	RAF1 RALGOS RIN1 Bink Raf	reactive oxygen species CDKN1A MAPIK1 Erk1/2 Mapk	8AB4601441, Antl-RASH, N- Terminal antibody produced in rabbit	Antagonist: E7781, Erastin
o-Fos	FBJ murine osteosarcoma viral oncogene homolog	transformation apoptosis proliferation expression in growth	cancer rheumatoid arthritis endometriosis neoplasia seizures	nucleus cytopiasm perinuclear region Goigi apparatus cell periphery	beta-estradioi TNF IL18 EGF ESR2	JUN STAT3 PTG52 SRF IL8	IL6 CSF2 ESR2 IL8 CFLAR	SAB2104185, Anti-FOS antibody produced in rabbit	