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Hydrodynamic principles of wave power
extraction
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The hydrodynamic principles common to many wave power converters are reviewed via
two representative systems. The first involves one or more floating bodies, and the second
water oscillating in a fixed enclosure. It is shown that the prevailing basis is impedance
matching and resonance, for which the typical analysis can be illustrated for a single buoy
and for an oscillating water column. We then examine the mechanics of a more recent
design involving a compact array of small buoys that are not resonated. Its theoretical
potential is compared with that of a large buoy of equal volume. A simple theory is
also given for a two-dimensional array of small buoys in well-separated rows parallel to
a coast. The effects of coastline on a land-based oscillating water column are examined
analytically. Possible benefits of moderate to large column sizes are explored. Strategies
for broadening the frequency bandwidth of high efficiency by controlling the power-takeoff
system are discussed.

Keywords: wave power; energy from ocean waves; water-wave scattering and radiation;
wave–body interaction

1. Introduction

Despite the abundance of wave power in the sea, technologies for its extraction
share with offshore wind power at least two similar challenges, i.e. unsteadiness
in the supply and survivability of installations in stormy weather. To varying
degrees of success, mastering these two challenges has been among the major
objectives of research and development. There are now many different designs of
wave energy converters (WECs). One type is to use waves to send water to an
elevated reservoir. The stored water is then released through a turbine at a lower
elevation. Tapchan, Oyster and Wave Dragon belong to this category. Others
convert wave energy directly to the oscillatory motion of a rigid body, which then
drives a linear generator. The body can be a cam [1], a buoy [2], an Archimedes
wave swing or a series of rafts hinged together at the ends (Hagen–Cockerell raft
and Pelamis). Alternatively, waves can also excite oscillations of the water surface
inside a fixed chamber and force the air above through a turbine. Limpet, Pico
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Table 1. Order estimate of power flux per unit length of wavefront.

amplitude (m) power flux (kW m−1)

0.5 10
1 40
2 160

Plant and Mighty Whale have demonstrated the versatility of the oscillating water
column (OWC) in various configurations. Devices involving flexible structures
such as airbags [3] and bulging pipes [4] have also been proposed.

The ingenuity of many inventors has stimulated a large body of theoretical
research to provide a sound and quantitative basis for these designs. Extensive
surveys of the underlying theories as well as the history and progresses can be
found in monographs [5–9], and in survey articles [10,11]. In this article, we
only review some hydrodynamic principles and describe a few recent efforts,
based exclusively on linearized theory. Computational methods and the mooring
systems are left out. Nonlinear theories that are crucial to the survivability
of WECs in stormy seas are still in progress, and are not discussed.

2. Power in ocean waves

Although much wave energy exists in deep seas far away from the coast, the high
cost of construction, maintenance, transmission and storage makes it preferable
to install WECs near the shore. By the physics of refraction, the propagation
speed of a long-crested progressive wave decreases with decreasing water depth.
Hence, incident waves from different directions in deep sea tend to approach a
shallow coast normally. For a crude estimate, let us consider a plane wave of
amplitude A and frequency u. The rate of power flux across one unit length of
the wavefront is

P = 1
2rg|A|2Cg, (2.1)

where Cg is the group velocity,

Cg = u

2k

(
1 + 2kh

sinh 2kh

)
, (2.2)

related to the wavenumber k and the local sea depth h by the dispersion relation

u2 = gk tanh kh. (2.3)

For a typical period of T = 10 s, the power available is estimated for several
amplitudes based on (2.1), as shown in table 1. In real seas, waves are irregular
and broad-banded. We may regard A as the significant wave amplitude and u
the spectral peak frequency. The above estimate is of course highly simplistic,
without due account of weather-related variabilities. Based on statistical data,
Thorpe [12] has estimated the wave power potential along various coasts in the
world ocean, as cited in figure 1. Based on the medium potential of 40 kW m−1,
all the wave energy along 25 km of a coastline must be captured to match the
capacity of a conventional power plant (O(1 GW)).
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Figure 1. World’s wave power potential in kW m−1. Adapted from Thorpe [12]. (Online version
in colour.)

3. Heuristic estimate of maximum efficiency

In a train of incoming waves, a converter scatters energy outwards simply by its
presence, and also radiates energy by its motion. If by proper design of the system,
the radiated waves are made to cancel most of the scattered waves, absorption
efficiency can be high. The ground-breaking invention by Salter [1] illustrates this
point clearly. Energy is transferred from waves to the power-takeoff device by the
rolling motion of a long cam about a horizontal axis. With a circular stern of
large enough radius and a pointed bow, the cam reflects almost all the incident
waves and allows little transmission. By synchronizing its rolling motion, waves
radiated against the incident waves can cancel the reflected waves to achieve
complete absorption.

For a horizontal cylinder with a symmetrical cross section, cancellation of
incident waves can be achieved by allowing two modes of oscillatory motion,
e.g. heave and surge. Let the reflected and transmitted wave amplitudes be RA
on the incidence side x ∼ −∞ and TA on the transmission side x ∼ ∞. The
amplitudes of radiated waves owing to heave are symmetric (AaH) on both sides,
while those owing to surge are antisymmetric (±AaR as x → ±∞). Cancellation
of all outgoing waves on both sides x → ±∞ is possible if R + aH − aR = 0 and
T + aH + aR = 0, from which the factors aH and aR can be uniquely solved. Hence,
total absorption is also possible in principle.

The simplest three-dimensional absorber is a circular buoy, as shown in figure 2.
With the time factor e−iut omitted, the free-surface displacement of the plane
incident wave hI can be decomposed as a sum of various angular modes,

hI = Aeikx = A
∞∑

n=0

en inJn(kr) cos nq, (3.1)
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Figure 2. A typical buoy for wave power extraction. The tall spar-buoy serves as the shaft and
provides stability. In waves, the disc-like buoy on the sea surface slides up and down the vertical
shaft, and produces electricity through a linear generator. From http://www.ece.oregonstate.
edu/wesrf, Prof. Annette von Jouanne, Oregon State University. (Online version in colour.)

where e0 = 1, en = 2, n = 1, 2, 3, . . .. For large kr , the nth angular mode in the sum
above consists of a pair of radially incoming and outgoing waves,

en
A
2

√
2

pkr

[
ei(kr−p/4−np/2) + e−i(kr−p/4−np/2)

]
cos nq, kr � 1. (3.2)

Across a large circular cylindrical surface encircling the buoy, the total energy
outflux (or influx) from each outgoing (or incoming) mode is

en

2k
rg|A|2Cg. (3.3)

Since the rate of energy influx per unit length of the incident wavefront is given by
(2.1), the capture width L is en/k for mode n. For a circular buoy with a vertical
axis, total cancellation of the isotropic outgoing mode (n = 0) can be achieved by
the heave motion alone. On the other hand, the outgoing mode with n = 1 can
be cancelled by the surge motion. Thus, the maximum possible capture width L
is 1/k with optimal heave and 2/k with optimal surge, and 3/k with both [6,13].
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4. Typical analysis for energy conversion by oscillating bodies

As will be reviewed later, to achieve the maximum efficiency by judicious
cancellations, the basic strategy is to adjust the impedance of the device.
Specifically, the WEC must first be resonated at the design frequency (e.g. the
frequency at the peak of the incident wave spectrum). Second, the extraction
rate of the power-takeoff system must be neither too small nor too large.
Within the framework of the linearized potential theory, the analysis involves
two parts: the wave hydrodynamics around the converter and the dynamics of
the converter including the power-takeoff system. Taking a single floating body
for illustration, the hydrodynamics consists of wave diffraction by the stationary
body, and wave radiation owing to the forced motion of the body. Using linearity,
the radiation problem for each forced mode is first solved for unit velocity (or
displacement) amplitude. The amplitudes of all modes are then found from the
dynamic equations of the body, after accounting for forces from diffraction and
radiation of waves, and for coupling with power-takeoff and mooring systems.

The boundary-value problems involved can be stated for simple harmonic
motion as follows. The amplitude of the velocity potential, defined by

u(x , y, z , t) = VJ(x , y, z , t) = Re(VF(x) e−iut), (4.1)

satisfies Laplace’s equation in water,

V2F = 0, x ∈ water, (4.2)

and the boundary condition on the free surface Sf ,

vF

vz
− u2

g
F = 0, (x , y) ∈ Sf (z = 0). (4.3)

On the surface of the rigid structure SB, the normal velocity must be
continuous,

vF

vn
=

∑
a

naVa, x ∈ SB, (4.4)

where Va is the amplitude of the body velocity in the generalized mode a (heave,
sway, surge, etc.), and ni is the generalized unit normal pointing into the body.
In the far field, the incident wave

4I = − igA
u

eikx cosh k(z + h)
cosh kh

(4.5)

induces scattered waves by the presence, and radiated waves by the body motion.
Both waves must be outgoing in the far field. These potentials can be solved
separately from the body velocities.

To find Va, one must consider the dynamics of the body, with additional
account of the reaction forces from the power-takeoff and the mooring systems.

5. An isolated buoy converter

As an example, let us consider an axially symmetric buoy attached to a stationary
electric generator. Making use of linearity, we decompose the total potential into
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two parts, representing diffraction (4) and radiation (f),

F = 4 + f. (5.1)

Each potential satisfies (4.2) throughout the sea water. On the wetted body
surface, the diffracted wave must satisfy the no-flux condition

v4

vn
= 0, x ∈ SB, (5.2)

since the body is stationary. Let the radiation potential be decomposed into three
generalized modes (heave, sway and surge),

f =
3∑

a=1

Vafa. (5.3)

For each radiation mode, the body oscillates at unit normal velocity

vfa

vn
= na, (5.4)

where na is the generalized unit normal. In the far field, kr � 1, the scattered
4S = 4 − 4I and the radiated wave fa must behave as outgoing waves

√
kr

(
v

vr
− ik

)
[(4 − 4I), fa] → 0, kr � 1. (5.5)

For any general geometry, there are now several effective numerical schemes
to solve the boundary-value problems for these potentials (WAMIT, hybrid
elements, etc.). Afterwards, the diffraction (exciting) force can be computed by
integrating the dynamic pressure over the wetted body surface,

FD
a = iru

∫∫
SB

4 na dS . (5.6)

From the radiation potential due to unit motion of mode b, i.e. fb, the ath
component of the hydrodynamic reaction on the body can also be computed,

fba = iru

∫∫
SB

fbna dS , (5.7)

which is complex. The imaginary part of this complex reaction defines the matrix
of apparent inertia

mba = 1
u

Imfba, (5.8)

while the real part defines the radiation damping matrix

lba = −Refba. (5.9)

Let us define the displacement component Xb by including the time factor,

dXb

dt
= Re(Vb e−iut), Xb = Re(xb e−iut), (5.10)
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then the total hydrodynamic reaction is

FR
a =

∑
b

[u2mba + iulba]xb. (5.11)

The power-takeoff device exerts a reaction force on the body in the direction
a. In general, it can contain inertial, elastic and damping forces. For simplicity,
all these forces are modelled by terms linear in body displacement or velocity.
For sinusoidal motion, the total reaction can be expressed as

(u2m′
ab − C ′

ab + iul′
ab)xb, (5.12)

where m′
ab is the inertia, C ′

ab the elasticity and l′
ab the extraction rate. One must

then solve for the body displacements xb of the floating buoy from Newton’s law,

[−u2(M + mab + m′
ab) + (Cab + C ′

ab) − iu(lab + l′
ab)]xb = FD

a + Fa, (5.13)

where M is the static buoyant mass, Cab is the restoring force matrix owing to
buoyancy and Fa denotes the mooring force.

Once xb is solved, the total rate of power extraction can be obtained.
For the same frequency, the boundary-value problems for diffraction and

radiation are similar, and can be solved by the same numerical scheme. To check
the correctness and accuracy of computations, use can be made of a number
of integral identities that can be deduced by applying Green’s formula to a
pair of wave potentials over a large fluid domain surrounding the body [13,14].
For example, by choosing a pair of two radiation potentials, (fa, fb), one can
prove the symmetry of apparent inertia and damping matrices. From a diffraction
potential and a radiation potential, one gets Haskind’s relation, which can be
used to derive the following identity between the exciting force and the radiation
damping coefficient,

laa = k/8p

rgCg|A|2
∫ 2p

0
|FD

a (q)|2 dq. (5.14)

By choosing the diffraction potential 4 = 4I + 4S and its own complex conjugate,
4, 4∗, one gets the law of conservation of mechanical energy, etc. These identities
are also useful for physical insight and for theoretical analysis [6,7].

For quantitative insight, we now consider an idealized circular buoy heaving
in a sea of constant depth h as sketched in figure 3 [2]. For this simple
geometry, the scattered and heave-induced radiated waves can be found by
eigenfunction expansions. In particular, the radiated wave is isotropic in all
horizontal directions. Let the heave displacement be Z = Re(z e−iut). Assuming
for simplicity that the power-takeoff system exerts only a damping force on the
buoy, the buoy displacement z is governed by

−Mu2z = FD
z + u2mzzz − iuz(lzz + lg) + rgpa2z, (5.15)

where lg ≡ l′
zz . Hence, the buoy displacement is

z = FD
z

rgpa2 − u2(M + mzz) − iu(lg + lzz)
. (5.16)
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Figure 3. Sketch of the system. Energy extractor is symbolized by the dashpot.
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Figure 4. Normalized amplitude of the buoy displacement for three buoys with a/h = 0.17,
0.27, 0.43. The draft H of each buoy is equal to the radius a. The coefficient lg is chosen such
that energy extraction is the greatest at resonance. Adapted from Garnaud & Mei [19].

From the numerical solution of the scattering and radiation problems for a buoy
with equal radius and draft, the dimensionless amplitude of the buoy displacement
on the depth-to-wavelength ratio kh is plotted in figure 4. Note that for a larger
buoy, the peak of resonance occurs at a lower k = kR, or longer waves. In a sea
of depth h = 15 m, the resonance wave periods for a/h = 0.43, 0.27, 0.17 are
8, 5, 4 s, respectively (figures 4 and 5). The bandwidth of resonance is also
narrower. It can be estimated that the peak frequency is roughly inversely
proportional to the buoy radius, i.e. kRa = O(1).

The rate of power extracted is

P = 1
2

lgu2|z|2 = 1
2

lgu2|FD
z |2

(rgpa2 − u2(M + mzz))2 + u2(lg + lzz)2
. (5.17)
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Figure 5. Energy extraction and buoy movement for three different sizes of buoys with a = H . The
dimensionless energy extraction rate lg is constant and chosen such that the energy extraction is
maximum at resonance, and the ratio a/h is shown next to the curves. Adapted from Garnaud &
Mei [19].

Dividing P by the power influx across a unit width of the incident wavefront leads
to the capture width L

kL = k
Cg

lgu2|FD
z |2/(rgA2/2)

u2(lzz + lg)2 + (rgpa2 − u2(M + mzz))2
. (5.18)

Conditions for maximum energy extraction are

rgpa2 − u2(M + mzz) = 0, (5.19)

i.e. resonance, and that the extraction rate equals the radiation damping rate

lg = lzz . (5.20)

Making use of (5.14), equation (5.17) reduces to

Pmax = 1
2k

rg|A|2Cg, (5.21)

so that kLmax = 1.
It can be shown that this maximum occurs when kRa = O(1). If resonance

is desired at a low frequency, the buoy must be sufficiently large, but then the
bandwidth is small. It is difficult for a small buoy of a few metres radius to
resonate at a wave period around 10 s and to have a wide bandwidth of high
efficiency, without adding extra controls of the power-takeoff system.

At present, the estimated power-generating capacity of a single buoy is about
50–100 kW. Therefore, it would take 20–40 buoys to match a wind turbine of
2 MW capacity. How to arrange an array of many buoys must take account
of the absorption efficiency, economy of materials, ease of maintenance and the
acceptable size of the footprint. For 100 per cent efficiency or complete absorption
of the incoming wave energy, one can in principle construct a linear array parallel
to the wavefront if the buoys are separated at a distance of O(1/k). Budal [15] has
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(a) (b)

Figure 6. Compact arrays of buoys. (a) FO3 of Norway (from http://www.abb.com). (b)
Manchester Bobber of UK (from http://www.manchesterbobber.com).

shown that for two parallel rows of linear arrays in normally incident waves, the
spacing can be as large as 2p/k for perfect absorption, owing to interference of
adjacent buoys. For four parallel lines of buoys, the spacing can be doubled [16].
Thus, for the same number of buoys, different array geometry can be considered
to satisfy navigational and environmental constraints.

6. A compact array of small buoys

As mentioned in the previous section, a single buoy has a limited frequency
band of high efficiency, and needs to be reasonably large to achieve resonance
at a frequency typical of the spectral peak in coastal seas. To broaden the
bandwidth, K. Budal & S. Salter have proposed phase control (see [17,18]
for more recent accounts). An alternative answer seems to be provided by
several recent designs based on the idea of a compact array of small buoys
(figure 6). Fred Olsen of Norway (http://www.abb.com/) and Peter Stansby
of UK (http://www.manchesterbobber.com/) have separately proposed similar
designs by installing dozens of small buoys on a square rig (figure 6). The
horizontal dimension of the rig is a sizeable fraction of a design wavelength, while
the buoy diameter and spacing are much smaller. The projected capacity of one
rig is about 2.5 MW, comparable with a wind turbine. WaveStar of Denmark
(http://www.WaveStarEnergy.com/) is based on similar ideas and has the small
buoys forming two linear arrays instead.

The main objective of a compact array of small buoys is to broaden the
efficiency bandwidth. Optimum efficiency at any frequency is sacrificed by not
attempting impedance matching. To examine the potential performance of such
a design, a theory has been given by Garnaud & Mei [19,20]. Heuristically, a
compact array of small buoys acts like a mat of dampers distributed over an area
of the sea surface. The mathematical consequence is to change the free-surface
boundary condition (4.3) to a different form. Referring to figure 7, let us consider
one small buoy with ka = O(kH ) � 1. The linearized kinematic condition for the
buoy displacement Z is

vZ
vt

= vJ

vz
, z = 0, (6.1)
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Figure 7. A compact array of small buoys. Adapted from Garnaud & Mei [19].

applied on the mean free surface because of the small draft. Assuming that all
the small buoys have the same extraction rate lg, the dynamic condition on
each buoy can be obtained by approximating (5.15) for small ka. First, radiation
damping lzz is at most of the order O(k2a2) and negligible. The exciting force
can be approximated by using the local pressure averaged over the buoy bottom
−rgpa2(vJ/vt). Furthermore, by the Archimedes principle, M = rpa2H , hence
the ratio of inertia to buoyancy is small, Mu2/rgpa2 = u2H /g = O(kH ) � 1. The
apparent mass is at best of the same order as the actual mass, hence is likewise
small. Assuming that the extraction rate lg is not small, i.e. much greater than
the radiation damping rate, the dynamic condition is simply

0 = −rgpa2Z − lg
vZ
vt

− rpa2 vJ

vt
, z = 0, (6.2)

to the leading order. Furthermore, as the wavelength is much larger than the size
of the buoy, the averaged potential (J) differs little from the local potential J.
After eliminating Z , we get(

lg

rgpa2

v

vt
+ 1

)
vJ

vz
+ 1

g
v2J

vt2
= 0, z = 0. (6.3)

It follows for simple harmonic motion that

vF

vz
− u2/g

1 − (ilgu/rgpa2)
F = 0, z = 0, (6.4)

which holds under each buoy.
Over the free surface in the open water surrounding the buoy, the boundary

condition is obtained by taking lg = 0. The corresponding body displacement is

Z = Re(z e−iut), z = iuF|z=0

1 − (ilgu/rgpa2)
. (6.5)

Phil. Trans. R. Soc. A (2012)

 on April 1, 2016http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


Hydrodynamics of wave power extraction 219

in
co

m
in

g
w

av
e

Figure 8. A circular array of energy-absorbing buoys.

Now consider the coarse scale comparable with a wavelength. Let f ≡ pa2/d2 be
the area fraction covered by buoys, which is in the range of 0 < f < p/4 for circular
cylinders in a square array since a ≤ d/2. The averaged free-surface condition1 is

(1 − f )
(

vF

vz
− u2

g
F

)
+ f

(
vF

vz
− u2/g

1 − (ilgu/rgpa2)
F

)
= 0, (6.6)

or
vF

vz
− u2

g
[1 + f (F0 − 1)]F = 0, (6.7)

where

F0(u) = 1
1 − (ilgu/rgpa2)

(6.8)

expresses the effect of the energy absorber. Note that only the area fraction
f matters and the small buoy draft is immaterial. Equation (6.7) can be derived
by the more systematic asymptotic method of multiple scales [19].

With the familiar boundary condition over the sea surface uncovered by buoy
rigs, we can now solve the coarse-scale boundary-value problem for the interaction
between waves and the rig. Continuity of pressure and normal velocity must be
required along the vertical cylindrical surface separating the buoys and the open
water. For a circular rig of radius R, as shown in figure 8, the boundary-value
problem can be solved by separation of variables involving vertical eigenfunctions
corresponding to the eigenvalues that are the complex roots kn , n = 1, 2, 3, . . .
of the transcendental relation

u2(f F0(u) + (1 − f )) = gk tanh(kh). (6.9)

1It can be easily modified for the sea surface covered with small ice floes.
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Figure 9. Dependence of effectiveness on the extraction rate l whose values are indicated next to
the curves. The packing ratio is f = 0.2. (a) R = 1, (b) R = 1, (c) R = 5, (d) R = 5. Adapted from
Garnaud & Mei [19].

The effects of varying extraction rates on the capture width are shown for
two arbitrarily chosen array sizes in figure 9. The dimensionless extraction rate
is defined by

l̄g = lg

r
√

ghpa2
. (6.10)

Not relying on resonance, the array does not suffer the shortcoming of narrow-
bandedness of an isolated large buoy. The ratio of capture length to the array
radius R is less than 100 per cent, however, the bandwidth is not sharply peaked
as that of a large single buoy. Note that the efficiency approaches a finite limit as
kh increases, and the limit is reached at smaller kh for larger R/h. As expected, the
larger array extracts more energy at low frequencies, similar to an isolated large
buoy. Note also that the extraction rate has to be of certain intermediate value
(here approx. 0.5) for the efficiency to be the best. We caution however that these
computed results are within the assumed bounds of small kH or ka only for rela-
tively long waves, say, kh < 2. For shorter waves, the buoy inertia and radiation
damping may need to be taken into account for more accurate prediction.

How is a compact array of small buoys compared with a single large buoy
of equal volume? Let us consider a circular array of overall radius R and area
fraction of solid f . The total volume of all small buoys in the array is f pR2H ,
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Figure 10. Comparison of capture widths of three circular arrays of small buoys with three large
buoys of equal volume. Dashed curves represent the compact arrays with the same f = 0.2 and
l̄g = 0.5 and draft H /h = 1/10. The array radii are R/h = 0.5, 1, 2. Results for the corresponding
large buoys (radius/draft: ab = (fR2H /d)1/3 = 0.17, 0.27, 0.43) are shown by solid curves. For each
large buoy, the extraction rate is chosen to be the optimum at the peak. Adapted from Garnaud &
Mei [19].

where H denotes the draft of each small buoy.2 Let the radius and draft of the
corresponding large buoy be ab so that its volume is pa3

b. Equating the two
volumes, we get ab = (fR2H )1/3. In figure 10, we fix f = 0.2 and H = 0.1h and
consider three arrays with R = (0.5, 1.0, 2.0)h. The corresponding large buoys
have the radii and draft ab = (0.17, 0.27, 0.43)h, respectively. Their capture widths
are compared. It is clear that the compact array is hydrodynamically very
promising as it can extract much more energy than a single buoy of equal volume,
and with a much wider bandwidth. In reality, friction losses will likely be much
greater for the compact array and reduce the efficiency predicted by the potential
theory. Further experiments are needed.

Of course, additional technical challenges remain. For example, can the overall
efficiency be improved by separately controlling the rate of energy extraction
from each small buoy? To what extent does the rig movement influence energy
extraction? What is the power potential of dozens or hundreds of these platforms
in a large array? Aside from more accurate accounts of buoy inertia (real and
added) and radiation damping by existing computational schemes, mooring
systems, nonlinear effects of finite-amplitude waves and frictional loss owing to
flow separation must all be considered for more comprehensive mathematical
modelling of actual designs.These factors and the questions of cost and safety are
worth further study.

2Recall that the performance of the compact buoy array does not depend on the buoy draft.
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7. Many rows of small buoys

There have been many ideas of installing a large group of WECs either in
clusters or in long rows parallel to the coastline. A long array of buoys has been
studied theoretically by Budal [15] and Falnes & Budal [16]. Typically the units
are separated by distances comparable with or greater than the incident wave
length, i.e. kb = O(1). When the separation between buoys is comparable with a
wavelength, resonance owing to their interaction may occur at some frequencies
within the energetic part of the incident wave spectrum. Falcäo [21] found for a
linear array of OWCs, that resonance occurs when kb = 2np(1 + sin a) and the
efficiency vanishes, where a is the angle of incidence with a = 0 corresponding to
normal incidence.

As remarked at the end of §5, if a periodic array of buoys is lined in a row
parallel to the coast, perfect extraction can be achieved if the spacing between
adjacent buoys is properly chosen. The optimum spacing between two adjacent
buoys in the same row can be increased by increasing the number of rows. To
allow easy communications to and from the coast, one can in principle line up
many parallel rows of buoys. Such a wave power farm can also be formed by many
attenuators (lines of buoys perpendicular to the coast), such as Cockeral’s rafts or
Pelamis. The attenuators can be much farther apart than the spacing d between
neighbouring buoys in the same attenuator, thereby facilitating navigation to and
from the shore. This idea has been explored by Falnes [22] who considered the
constructive interference between buoys and showed that for infinitely many lines
of attenuators spaced at W apart, with N degrees of freedom per attenuator,3
100 per cent absorption of normally incident waves is possible if N > 2 + 2kW /p.
In these theories, the buoy size is not small so that resonance can be induced for
maximum extraction.

As an alternative to attenuators composed of several large buoys, Garnaud &
Mei [23] considered an infinite number of parallel attenuators, each of which
consisted of many small buoys. The attenuators were separated by the distance
W , and the spacing d between neighbouring buoys in the same attenuator
was assumed to be d = O(h) = O(1/k). For normal incidence, the mathematical
problem is equivalent to one attenuator along the centreline of a channel. They
gave the following crude account of the physics by neglecting the influence of
the neighbouring buoys. As the buoy size is much smaller than the incident
wavelength, scattering is negligible and the diffraction pressure is dominated by
rgA. Ignoring the small buoy mass, the vertical displacement of a single boy of
small radius a and draft H is governed by (6.5), from which the period-averaged
rate of energy extraction per buoy 1

2u2lg|z|2 is found. Dividing by the energy
influx rate across the channel width W , the fraction of power extracted per unit
time by one buoy is

(1/2)u2lg|z|2
(1/2)rg|A|2CgW

. (7.1)

Let us examine the macro-scale picture of many buoys. Since the density of buoys,
i.e. the number of buoys per unit length, is 1/d, the fractional rate of power

3For example, if all buoys can only heave, N is the total number of buoys in an attenuator.
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extraction per unit macro-scale length is

1
L = (1/2)lgu2|z|2

(1/2)rg|A|2CgWd
= u2

rgCgWd
lg

1 + (ulg/pa2rg)2
. (7.2)

The fraction of energy flux rate remaining at station dx is

F(x + dx) = F(x)
(

1 − dx
L

)
. (7.3)

It follows after Taylor expansion that

dF
dx

= −F
L , (7.4)

which has the solution
F = e−x/L. (7.5)

For a linear array of fixed total length X , the efficiency is

E0 = 1 − e−X/L. (7.6)

The total power extracted per attenuator is

P = 1
2rg|A|2CgW (1 − e−X/L). (7.7)

To save the cost of construction, L should be small. Clearly, when either lg → 0 or
lg → ∞, L → ∞, both E0 and P vanish for a fixed X . For finite X , extremization
with respect to lg gives the optimum rate

lopt
g = pa2rg

u
, (7.8)

which must be larger for longer waves. For complete extraction of all wave power
coming into the channel, the array length should be of the order of

Lopt = 2W dCg

pa2u
, (7.9)

which is large when compared with d or h, larger for longer waves, and of course
must increase with W and d. The number of rows required is N̄ = O(Lopt/d),
which increases with W . This result is similar to that in [22] for buoys of any
size. Figure 11a shows the efficiency as a function of kh for one X and different
extraction rates, while figure 11b shows the effects of array length X when the
optimal extraction rate (7.8) is chosen for every u, hence k. Again for short waves
(e.g. kh > 2), the numerical results reported here may require improvement by
accounting for buoy inertia and radiation damping.

Garnaud & Mei [23] also found that the preceding result holds only if the buoy
spacing d is not close to the special value kd = np, i.e. d = np/l, for an integer
n = 1, 2, 3, . . .. Otherwise, Bragg resonance happens so that even the weak effect
of scattering by each buoy is accumulated to give rise to strong reflection. Buoys
behind the front rows are shielded from the incident wave, leading to considerable
drop of overall extraction efficiency. Fortunately, the loss occurs only in narrow
bands around these discrete and relatively high frequencies. Details can be found
in the study of Garnaud & Mei [23].
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Figure 11. Energy extraction efficiency E0 versus kh for a square array with d/h = 1. (a) Effects
of the dimensionless extraction rates l̄g = l/(rgpa2

√
gh) = 0.1, 0.5, 1, 2 for normalized array length

X̄ = (a2/h)X = 1. (b) Effects of complete optimization for every frequency, for X̄ = 0.25, 0.5, 1, 2.
Adapted from Garnaud & Mei [23].

8. Oscillating water column on the coast

Savings in construction, maintenance, power transmission and storage are some
of the reasons to build a wave energy system on land. A few years ago, there
was a plan in Portugal for a full-scale OWC installed at the tip of a breakwater
at the mouth of River Douro. While numerical modelling is needed to simulate
the actual geometry, local bathymetry and the coastline, for physical insight,
analytical studies have been made for the idealized geometries of an OWC
at the tip of a very thin breakwater [24], or along the straight coast [25], or
at a coastal corner [26]. The column is assumed to be a vertical cylinder of
circular cross section, with an opening below the mean sea surface. One of the
findings is that if the radius of a circular OWC is sufficiently large, the air
chamber can serve the purpose of broadening the bandwidth of high efficiency.
This result can be used to devise strategies for optimizing the power-takeoff
characteristics.

Figure 12 depicts the idealized geometry where a circular column of radius a is
centred at the tip of a wedge-like coast. In plane polar coordinates, the coastlines
are defined by the rays q = 0 and np with 0 < n < 2, so that the land mass is
defined by np < q < 2p, r > a. The column is open to the sea over the depth range
−h < z < −d. Plane incident waves arrive from the angle a with respect to one
coast (q = 0). Water inside the column rises and falls with the incoming waves
and forces the air in the chamber above through one or several Wells turbines at
the top. For simplicity, the cylinder wall has no thickness and the sea depth h is
constant everywhere.

The dynamics of an OWC consists of wave diffraction by and radiation
from the partially open column next to the coastline, and the compression and
expansion of chamber air between the water surface and the Wells turbines.
Leaving the mathematical details to earlier studies [24–26], we sketch the essential
ideas below.
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Figure 12. An OWC at the tip of a wedge-like coast. Incident plane waves arrive at angle a.
(a) Top view. (b) Side view.

(a) Power-takeoff

Because of the relatively low frequency of water waves and the high speed of
sound in air, the air pressure inside the chamber is virtually uniform. The mass
flux rate of air through the turbines is proportional to the pressure difference
across them. Assuming the chamber air to be compressible and its motion
isentropic, then for simple harmonic motion of angular frequency u, the complex
amplitudes of the total volume flux rate Q̂ and the air pressure p̂a are related
by [27]

Q̂ =
(

KD
Nra

− iuV0

c2
ara

)
p̂a, (8.1)

where Q̂ and p̂a are the amplitudes of Q and pa defined by

Q = Re {Q̂ e−iut} = Re
{
e−iut

∫∫
SC

vF

vz

∣∣∣∣
z=0

dS
}
, (8.2)

and pa = Re(p̂a e−iut) with F being the spatial amplitude of the total velocity
potential and SC the water surface inside the column. D is the diameter of the
turbine blades, N the rate of turbine rotation in r.p.m., assumed to be constant
for simplicity, ra the mean air density, ca the sound speed in air, V0 the volume
of air chamber in the column and K is an empirical characterizing the turbine.4

Now, F is the sum of diffraction (4) and radiation (f) potential amplitudes to
be defined later, and Q̂ is the sum of corresponding flux rates Q̂D and Q̂R, i.e.

F = 4 + f; Q̂ = Q̂D + Q̂R, (8.3)

where

Q̂D =
∫∫

SC

v4

vz

∣∣∣∣
z=0

dS ≡ GA, (8.4)

4For the OWC system with one turbine on Pico Island, Portugal, K = 3–4.
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with A being the incident wave amplitude. Thus, G is the diffraction flux factor
G for unit wave amplitude. The radiation flux rates can be written as

Q̂R =
∫∫

SC

vf

vz

∣∣∣∣
z=0

dS = −(B − iC)p̂a, (8.5)

where the real coefficients B represent the radiation damping coefficient and C
the added compliance that plays the same role as the added mass coefficient of
a rigid floating body [28]. The coefficients G, B and C are to be found from the
solutions of the diffraction and radiation problems.

From (8.1) and (8.5), one can solve p̂a in terms of G,

p̂a

A0
= G

[(KD/Nr0
a + B) − i(C + (uV0/c2

ar0
a))]

. (8.6)

The period average of power extracted is

P = d(raV )
dt

pa

r0
a

= KD
2Nra

|p̂a|2. (8.7)

The dimensionless capture width or efficiency is then

kL = P
rgA2

0Cg/2k
= khg

Cg
√

g/h

c|G̃|2
(c + B̃)2 + (C̃ − b)2

, (8.8)

where the following dimensionless parameters B̃, C̃ and G̃ are used:

B = B̃ h

ru

√
g/h

, C = C̃ h

ru

√
g/h

, G = G̃
hg√
g/h

, (8.9)

and

c = rwKD
√

g/h
raNh

and b = −
(

uVorw
√

g/h
c2
arah

)
. (8.10)

In particular, c characterizes the turbine (power-takeoff) system, while b is
analogous to a negative spring constant, and is proportional to the chamber
volume V0.

The diffraction problem can be divided into two parts. The first is owing
to diffraction by a solid column at the tip of a wedge, and can be solved
explicitly. The second accounts for the oscillations inside and the continuity of
normal velocity and pressure at the opening. For the radiation problem, one
considers the oscillatory forcing on the free surface by a spatially uniform air
pressure. For this idealized geometry, these linear problems can be solved by
eigenfunction expansions and relatively straightforward computations [24–26].
For more realistic geometry involving complex bathymetry, strictly numerical
methods must be employed and are available.

(b) Hydrodynamic coefficients for a convex corner

Let us examine the case of n = 3/2, so that the wedge is a convex corner of
right. The column radius is allowed to be moderately large so that a few higher
modes can be excited inside the chamber in addition to the Helmholtz mode.
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Figure 13. Diffraction flux coefficient as a function of kh. Solid line: a/h = 1/4; dashed and dotted
line: a/h = 1/3; dashed line: a/h = 1/2. All for d/h = 0.2 and a = p/4. Coast angle = 3p/2, i.e.
n = 3/2. Adapted from Falnes & Budal [16].

Figure 13 shows the vertical flux factor |G̃|2 due to diffraction for a wide range
of kh for a fixed incidence angle a = p/4 and three column radii: a/h = 1/2,
1/3,1/4.

For the smallest column, a/h = 1/4, there is only one resonance peak in
the computed range of kh. For the larger columns, signs of more peaks at
higher frequencies appear. These peaks correspond to the natural modes in a
closed cylinder, Jn(kmr)(cos nq, sin nq), where kma = j ′

nm is the mth eigenvalue of
J ′

n(j ′
nm) = 0. As a/h decreases, the highest peak shifts towards higher frequency

and diminishes in intensity.
Figure 14 shows the dependence of the radiation damping B̃ and added

compliance coefficients C̃ on kh. As a/h increases, more resonance peaks appear
in the damping coefficient within the computed range of kh. These peaks occur
at the same values of kh as those of G. It has been confirmed that the first
peak at kh = 2.18 (i.e. ka = 1.09) is dominated by the Helmholtz mode modified
slightly by the sloshing mode proportional to cos q. The second peak at kh = 4.10
or ka = 2.05 is dominated by the sloshing mode, which is close to the eigenvalue
j ′
11 = 1.84118 of the natural mode aJ1(k11r) cos(q) + bJ1(k11r) sin(q) in a closed
circular cylinder. The third peak occurs at kh = 6.34 or ka = 3.17, which is close to
j ′
21 = 3.05424, i.e. close to the natural mode aJ2(k21r) cos(2q) + bJ2(k21r) sin(2q).
The free surface resembles a saddle. The existence of multi-resonant peaks is
the consequence of large radius, and has been studied before for wave power
absorption by an OWC in a sufficiently large harbour along a coast [29].

Note next that C̃ is negative over certain range of frequencies; this is a
distinctive feature of OWCs, similar to a moon pool. For the smallest column
a/h = 1/4, the curve of B̃ has only one peak of resonance in the range of kh
examined. For larger a/h = 1/3 and 1/2, two and three peaks are evident. The
peaks are higher and sharper for the larger radius. For the largest column with
a/h = 1/2, the three peaks are at the same values of kh as B̃.
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Figure 14. Effects of a/h on the (a) radiation damping and (b) added compliance coefficients.
Solid line: a/h = 1/4; dashed-dotted line: a/h = 1/3; dashed line: a/h = 1/2. In all cases, d/h = 0.2.
Adapted from Lovas et al. [26].

(c) Optimization schemes

Once the dimensions of an OWC are chosen, the factors G, B and C are
fixed functions of u of kh. Only the turbine and elasticity parameters c and
b can be controlled to maximize the efficiency. Of the two, b is the less easy
to manipulate, once the volume of the air chamber V0 is chosen. However, it
may be possible to install many small turbines with adjustable blades or to use
other devices to control the parameter c over a wide range of frequencies. We now
explore the theoretical potential of two strategies for maximizing the efficiency kL:
(i) optimization with limitless control and (ii) optimization with limited control
of the power-takeoff system.

As a preliminary, let us first choose to optimize only for one frequency.
Extremizing kL with respect to b and c separately leads to the familiar criteria

b(u) = C̃(u) and c(u) = B̃(u), (8.11)
i.e. resonance and equality of radiation and extraction rates. Under these
conditions, (8.8) becomes

kLmax = gkh

Cg
√

g/h

|G̃(a)|2
4B̃

. (8.12)

The following reciprocity relation can be derived for an OWC on a wedge, by a
simple modification of an earlier study [28] for an open sea and the study by
Evans [30] for a straight coast,

B̃ = kh2
√

g/h
8pCg

∫ np

0
|G̃(q)|2 dq. (8.13)

Calculating Q̂D, hence G̃, according to (8.4), we obtain the maximum normalized
capture length

kLmax(a) = 2p|G̃(a)|2∫np

0 |G̃(q)|2 dq
. (8.14)

These features are essentially the same as those of a simple buoy.
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The averaged maximum capture length over all angles of incidence can be used
as a measure of the overall efficiency for one frequency,

kLmax = 1
np

∫ np

0
kLmax(a) da = 2

n
. (8.15)

In particular, it is equal to unity for a thin breakwater (n = 2) and is unaffected by
the presence of the breakwater as found earlier [24], and equal to 2 for a straight
coastline (n = 1, [25]). In general, kLmax increases monotonically with decreasing n.
This is heuristically reasonable, since for a smaller opening angle np, the incident
wave energy is channelled more towards the OWC. Less energy is lost owing to
radiation forced by the chamber pressure. In contrast, an OWC in the open sea
scatters away most of the incident wave energy in all directions, and produces
greater radiation loss. The reduction of radiation damping as n decreases is borne
out later by comparing the computed B̃ for different n.

It must be emphasized that for fixed chamber and column dimensions and a
simple turbine system, the above maximum can only be attained for a single
resonance frequency.

In the first (ideal) strategy, we assume b to be fixed and choose the best
extraction coefficient c to extremize kL for all frequencies. The condition for
ideal optimum is

copt(u) =
√

B̃2 + (C̃ − b)2. (8.16)

With this result and the reciprocity relation (8.13), (8.8) gives the ideal optimum
capture length,

kLopt = 8pB̃
√

B̃2 + (C̃ − b)2|G̃|2[(√
B̃2 + (C̃ − b)2 + B̃

)2

+ (C̃ − b)2

] ∫np

0 |G̃(a′)|2 da′
. (8.17)

Note that kLopt ≤ kLmax in general. Equality holds only if C̃(u) = b(u), which is
realizable only for one frequency. In the following subsection, we examine the
ideal efficiency for four coasts: a breakwater [24], a straight coast [25], a convex
corner and a concave corner of right angle [26].

A second and likely more practical strategy is to allow c only a few values over
separate frequency ranges. Efficiencies by both ideal and practical strategies of
optimization will be compared for one depth of h = 10 m. In subsequent examples,
b is calculated for rw/ra = 1000, g = 9.81 m s−2, ca = 340 m s−1.

(d) Ideal optimization

Let us consider the special case of n = 3/2 so that the coastline forms a
convex corner of right angle. The angle of incidence is fixed at a = p/2, and
the chamber volume V0 = pa2h. The calculated optimum capture length (kL)opt
and the optimal turbine parameter copt are shown for three values of a/h in
figure 15. For the smallest column with a/h = 1/4, only the lowest modes are
resonated within the computed range of kh, corresponding to the two maxima
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Figure 15. (a) Optimal capture length and (b) the corresponding turbine parameter as functions of
kh for a/h = 1/2, 1/3 and 1/4. For all cases n = 3/2, a = p/2, d/h = 0.2 and V0 = pa2h. Adapted
from Lovas et al. [26].

of kL. For the largest radius, four modes can be excited and hence four maxima.
As a/h decreases, the efficiency curve becomes flatter and the resonance peaks
are lower. The peak frequencies increase with decreasing a/h.

Note that to achieve optimum by this strategy, the turbine parameter must
be varied significantly for all frequencies. This may be very difficult to realize
in practice.

As seen in (8.10), the effective spring constant b is proportional to the chamber
height or volume V0. Can a fixed value of V0 be suitably chosen for good
performance? Consider the smallest column radius with a/h = 1/4. Figure 16
displays the results for a = p/2 only, as results for other incidence angles are quite
similar. The added mass curve of C̃(u) versus kh is in general shaped like the letter
N , which crosses the zero line. If V0 = 0 , as in figure 16a, the b curve is horizontal
and intersects with the C̃ curve only once near kh ≈ 3. Correspondingly, (kL)opt
reaches a single maximum. As V0 increases, the b curve is slanted downwards. The
negative branch of C̃ now intersects with b twice, as seen in figure 16b, giving rise
to two well-separated peaks of (kL)opt, hence broadening the bandwidth of large
capture width and high efficiency. As V0 increases further, the two intersections
eventually merge and the bandwidth shrinks. Beyond V0 = 5pa2h, intersection
no longer occurs and the capture width drops to a small local maxima, as seen
in figure 16d. Similar features are found for the larger columns with a/h = 1/3
and 1/2. This shows that the bandwidth of high extraction efficiency can be
widened by proper choice of the column height. In subsequent computations, we
set V0 = pa2h.

By the same scheme of optimization, the effects of coastal geometries on the
performance of an OWC with the same column dimensions (a/h = 1/4 , d/h = 0.2
and V0 = pa2h) are compared in figure 17 for the four coastlines. The optimal
capture length is seen to be smaller for larger opening angles (larger n), consistent
with (8.15). The variation of c with respect to kh is smaller and smoother,
implying less difficulty in the design of the control system.
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Figure 16. Optimal capture length (solid line), added mass coefficient (dashed line) and b (dashed-
dotted line) versus kh for different pneumatic chamber volume V0. (a) V0 = 0, (b) V0 = pa2h,
(c) V0 = 3pa2h, (d) V0 = 6pa2h. For all cases, n = 3/2, a = p/2, a/h = 1/4, d/h = 0.2, h = 10 m.
Adapted from Lovas et al. [26].

(e) Practical optimization

As seen in figure 15, the ideal optimization scheme requires the turbine
parameter c to vary drastically over the frequency range. Let us examine the
second strategy, which is less ambitious and likely more feasible.

Consider first an OWC at the convex corner of right angle. First, we compute
(kL)opt according to the ideal strategy, and identify (kh)1 and (kh)2 at two
resonant peaks where b = C̃. The corresponding turbine parameters c1, c2 are
found from c(u) = B̃. We now choose c to be piece-wise constant, i.e. c = c1
for 0 < kh < (kh)∗ and c = c2 for kh > (kh)∗, where (kh)∗ can be decided by trial
and error. With this strategy, the new curves of the capture width, (kL)prac,
are recomputed. In the numerical example, we choose a column with a/h = 1/2,
d/h = 0.2 and the angle of incidence at p/2. For this configuration, c1 = 4.812 and
c2 = 0.202 from two resonance peaks at (kh)1 = 2.11 and (kh)2 = 4.77. Choosing
(kh)∗ = 3.97, the predicted (kL)prac and the corresponding c are shown in figure 18
by solid lines. For comparison, the corresponding curves by ideal optimization are
shown by dashed lines. Clearly, the capture width by the practical strategy is not
far from that by the ideal one.

Next, consider a concave corner with the same column parameters and a
different angle of incidence a = p/4. Figure 19 shows the comparison of two
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Figure 17. Comparison for different coastline angles np. Solid line with point markers: p/2 (concave
corner); dashed line: p (straight coast); dashed-dotted line: 3p/2 (convex corner); solid line: 2p

(breakwater). (a) Capture length, (b) added compliance coefficient, (c) free-surface elevation, (d)
turbine parameter. In all cases, n = 3/2, a = p/4, d/h = 0.2, a/h = 1/4 and V0 = pa2h. Adapted
from Lovas et al. [26].
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Figure 18. Comparison of practical versus ideal optimizations for an OWC at a convex corner
(n = 3/2) with a/h = 1/2, d/h = 0.2 and a = p/2. (a) Capture length kL. (b) Turbine parameter
c. Practical optimization (solid line) and ideal optimization (dashed line). Adapted from Lovas
et al. [26].

strategies. Here, c1 = 0.604, c2 = 1.181 and (kh)∗ = 3.68. Again, the two strategies
give roughly the same capture length for almost all frequencies. This encouraging
result can be understood from figure 19b, where copt and cprac coincide at eight
values of kh.
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Figure 19. Comparison of practical versus ideal optimizations for an OWC at a concave corner
(n = 3/2) with a/h = 1/2, d/h = 0.2, a = p/4 and V0 = pa2h. (a) Optimal capture length kL.
(b) Turbine parameter c. Practical optimization (solid line) and ideal optimization (dashed line).
Adapted from Lovas et al. [26].

9. Concluding remarks

We have reviewed the hydrodynamics of two representative WECs that transfer
sea wave energy to the power-takeoff via the oscillatory motion of the system.
The common principle for optimum design is shown to be impedance matching,
whereby the system geometry produces resonance at the design frequency and the
extraction rate equal to the rate of radiation damping. We have also discussed
a compact array of small buoys that are not resonated, hence do not suffer the
inherent bandwidth limit of a large buoy. For an OWC, it is suggested that a
proper choice of the air chamber height and a modest control of the power-take off
system may broaden the bandwidth of high efficiency, Finally, a concave coastline
can help channel the incident wave towards the converter and increase the capture
width.

Many important topics such as the randomness of incident waves, dynamic
coupling with the mooring system and the effects of local bathymetry are not
covered here, but they can, within the framework of the linear potential theory,
be dealt with by existing computational means. A challenge of the utmost
urgency is to model the nonlinear dynamics of the violent sea. Greater efforts
by hydrodynamicists and closer collaborations with designers and planners are
needed to expedite the full utilization of wave power.

Liberal use has been made of the results in recent publications with my collaborators. Herve Martin-
Rivas, Xavier Garnaud and Stéphanie Lovas. The authors thank the Earth Systems Initiative of the
Massachusetts Institute of Technology for a grant supporting parts of the research reported here.
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